CS4442/9542b: Artificial Intelligence Il
Prof. Olga Veksler

Lecture 16: Computer Vision
Motion

Slides are from Steve Seitz (UW), David Jacobs (UMD)

Outline

= Motion Estimation
= Motion Field
= Optical Flow Field

= Methods for Optical Flow estimation
1. Discrete Search
2. Lukas-Kanade Approach to Optical Flow
= Optical Flow Constraint Equation
= Aperture Problem
= Pyramid Approach

Why estimate motion?

= Lots of uses
= Track object(s)
= Correct for camera jitter (stabilization)
= Align images (mosaics)
= 3D shape reconstruction
= Special effects

Optical Flow and Motion Field

= Optical flow is the apparent motion of brightness patterns
between 2 (or several) frames in an image sequence
= Usually represent optical flow by a 2 dimensional vector (u,v)

Rubik's cube rotating to the : .
right on a turntable T i nornre”

Optical Flow and Motion Field

= Optical flow is the apparent motion of brightness
patterns between 2 (or several) frames in an image
sequence

= Why does brightness change between frames?

= Assuming that illumination does not change:

= changes are due to the RELATIVE MOTION between
the scene and the camera

= There are 3 possibilities:
= Camera still, moving scene
= Moving camera, still scene
= Moving camera, moving scene

= Optical Flow is what we can estimate from image
sequences

Motion Field (MF)

= The actual relative motion between 3D scene and
the camera is 3 dimensional

= motion will have horizontal (x), vertical (y), and depth
(z) components, in general

= We can project these 3D motions onto the image
plane

= What we get is a 2 dimensional motion field

= Motion field is the projection of the actual 3D
motion in the scene onto the image plane

= Motion Field is what we actually need to estimate
for applications

Examples of Motion Fields

LI —
S w0\
o [
eeeeee [‘3'])1
‘/"/‘\““_‘ \-_-/

- /{ . \“‘-'
Y

oy ~_.

(a) (b)

—_— e ——= —
— - —— —
—_— = —=
—_— = —=
———— —=
— - —— —

—_— = — —

(©)

(a) Translation perpendicular to a surface. (b) Rotation about axis
perpendicular to image plane. (c) Translation parallel to a surface at a
constant distance. (d) Translation parallel to an obstacle in front of a
more distant background.

Optical Flow vs. Motion Field

= Optical Flow is the apperent motion of brightness patterns
= We equate Optical Flow Field with Motion Field
= Frequently works, but not always

(a) A smooth sphere is rotating
under constant illumination.
Thus the optical flow field is
zero, but the motion field is
not

(b) A fixed sphere is illuminated
by a moving source—the
shading of the image

(b) changes. Thus the motion

field is zero, but the optical

flow field is not

Optical Flow vs. Motion Field

= Famous lllusions
= Optical flow and motion fields do not coincide

Optical Flow vs. Motion Field

= Motion field and Optical Flow are very different

fiﬁ
5 e

Barber's pols Motion ficld Optical flow

HilieheMotich SVeste
Q{‘@ S

from Gary Bradski and Sebastian Thrun

Discrete Search for Optical Flow

B .

o o

H(z,y) I(z,y)
= Given window W in H, find best matching window in /

= Minimize SSD (sum squared difference) or SAD (sum of absolute
differences) of pixels in window

= just like window matching for stereo, except the set of locations to
search over in the second image is different

Mmin) { > I+ u,y+v)— H(z, y)|2}
(zy)ew
= search over a specified range of (u,v) values
= this (u,v) range defines the search range
= can use integral image technique for fast search

Computing Optical Flow: Brightness
Constancy Equation

= Can we estimate optical flow without the
search over all possible locations?
= Yes! If the motion is small...
= Let P be a moving point in 3D
= At time t, P has coordinates (X(1), Y(#),Z(1))

= Let p=(x(1),y(1)) be the coordinates of its image
at time t

= Let I(x(1),y(1),t) be the brightness at p at time .
= Brightness Constancy Assumption:

= As P moves over time, I(x(),y(1),f) remains
constant

Computing Optical Flow: Brightness
Constancy Equation

Nx(9),y(t),f] = constant

Taking derivative with respect to time:

dilx(t),y(t).t]
at

I

dlox 9l 9y dl _

ox ot dy ot ot

Computing Optical Flow: Brightness
Constancy Equation

1 equation with 2 unknowns

ol ox , ol 9y , ol
- Y~ Vi I L 0
ax ot oy ot | ot

al
Let V= %_)I((Frame spatial gradient)

oy

ox

m - g_; (optical flow)

at
=21

= 5¢ (derivative across frames)

Computing Optical Flow: Brightness
Constancy Equation

ol ox , ol 9y . ol
2t Y~ i — 7 Y? 0
ax 3t oy ot | ot

= Written using dot product notation:

/x u _
{/yHV}”’ _0
= Where | have used more compact notation:

ﬂ=IX ﬂ:l
ox ay y

Computing Optical Flow: Brightness
Constancy Equation

1 equation with 2 unknowns: [/x} . [U} +1,=0

= [ntuitively, what does this constraint

mean?

= The component of the
flow in the gradient
direction is determined

= Recall that gradient
points in the direction
perpendicular to the edge [)

= The component of the o
flow parallel to an edge is

"4 any point on the red
line is a solution to the
equation above

unknown \

Aperture problem

true motion is in the
direction of the red

Aperture problem

Computing Optical Flow: Brightness
Constancy Equation

= How to get more equations for a pixel?

= Basic idea: impose additional constraints
= most common is to assume that the flow field is smooth locally
= one method: pretend the pixel’s neighbors have the same (u,v)
= If we use a 5x5 window, that gives us 25 equations per pixel!

1(p;)+ Vl(pi).[ﬂ _o

Ix(p1) Iy(p1) It(p1)
Ix(pz) Iy(p2) |:ui|= _ It(p2)
. . v .
1,(pss) Iy(p25) 1,(pzs)
matrix A vector d vector b
25x2 2x1 25x1

10

Computing Optical Flow: Brightness
Constancy Equation

= |, and |, are computed just as before (recalll
lectures on filtering)

= For example, can use Sobel operator

l_101 2]
gl-2]o0]2 glofo]o
1001 -1]-2]-1
Sq; Sy

= Note that 1/8 factor is now mandatory, unlike in edge
detection, since we want the actual gradient value

Computing Optical Flow: Brightness
Constancy Equation

= |, is the derivative between the frames

121|121 (122 | 123 | 122 | 123 121121122 {123 | 20 | 20
121 (121 (122 | 123 | 122 | 123 121 (121|122 (123 | 22 | 22
122 (123 (124 | 123 | 124 | 123 122 (123|124 1123 | 24 | 21
120 [122 (122 | 123 |1 22| 123 120|122 | 122 | 123 | 22 | 22
121 (121 (124 | 123 | 124 | 123 121 (121|124 (123 | 24 | 23
125(120 (124 | 123 | 124 | 123 125120 | 124 (123 | 24 | 24

I5: frame at time = 5 I6; frame at time = 5

= Simplest approximation to I,(p) =I*1(p)-1(p)
= For example for pixel with coordinates (4,3) above
1(4,3) =22 - 122 =-100

11

Lukas-Kanade flow

/X(p1) Iy(p1) /t(p,)
Ix(pz) ly(p2) [U} - _ /t(pz)
. . 4 .
1(pss) 1, (pas) I,(p2s)
matrix A vector d vector b
25x2 2x1 25x1

= Problem: now we have more equations than unknowns
= Where have we seen this before?

= Can’t find the exact solution d, but can solve Least Squares
Problem:

A d=b —— minimize ||Ad — b||?
25x2 2x1 25x1

Lukas-Kanade flow

A d=b —— minimize |Ad —b|?
25x2 2x1 25x1

= Solution: solve least squares problem
= minimum least squares solution given by solution (in d) of:
(AT A) d = ATh

2X2 2x1 2x1

i s - (3]
AT A ATh

= The summations are over all pixels in the K x K window
= This technique was first proposed by Lucas & Kanade (1981)

= Note: solution is at sub-pixel precision, that is you can get answer like
u=0.7 and v =-0.33

= Contrast this with discrete search: to find answer at sub-pixel precision,
you have to search at sub-pixel precision (usually)

12

Conditions for solvability

= Optimal (u, v) satisfies Lucas-Kanade equation

i] - (3]

AT A ATp

= When is this solvable?
= ATA should be invertible
= ATA entries should not be too small (noise)
= ATA should be well-conditioned
= A,/ A, should not be too large (A, = larger eigenvalue)
= The eigenvectors of ATA relate to edge direction and
magnitude

50 100

S vivnt
— gradients very large or very small
—large A,, small A,

13

Low texture region

150

S vivn®
— gradients have small magnitude
—small &, small A,

High textured region

S vivnt ,
— gradients are different, large magnltudes
—large A4, large A,

14

Observation

= This is a two image problem BUT

= Can measure sensitivity by just looking at one of the
images!

= This tells us which pixels are easy to track, which are
hard

= very useful for feature tracking

Errors in Lucas-Kanade

= What are the potential causes of errors in this
procedure?

= Suppose ATA is easily invertible
= Suppose there is not much noise in the image

= When our assumptions are violated
= Brightness constancy is not satisfied
= The motion is not small
= A point does not move like its neighbors
= window size is too large
= what is the ideal window size?

15

Iterative Refinement

= |terative Lucas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-
Kanade equations

2. Warp H towards | using the estimated flow field
- use image warping techniques

3. Repeat until convergence

Optical Flow Results

Lucas-Kanade
without pyramids

Fails in areas of large
motion

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

16

Revisiting the small motion assumption

= |s this motion small enough?

= Probably not—it’s much larger than one pixel How
might we solve this problem?

Reduce the resolution!

17

Coarse-to-fine optical flow estimation

N
e

u=1.25 pixels -
u=2.5 pixels -

u=10 pixels;

Gaussian pyramid of image H Gaussian pyramid of image I

Coarse-to-fine optical flow estimation

N
s

~_. run iterative L-K _-

lwarp & upsample

—— run |terat|ve L-K «—;

N /

Gaussian pyramid of image H Gaussian pyramid of image I

18

Image warping

= Given a coordinate transform (x’,y’) = h(x,y) and a
source image f(x,y), how do we compute a
transformed image g(x’,y’) = (T(x,y))?

Forward warping

= Send each pixel f(x,y) to its corresponding
location

(x,y’) = T(x,y) in the second image

Q: what if pixel lands “between” two pixels?

19

Forward warping

T(x,y)
i .

T fxy) Ty

=1

= Send each pixel f(x,y) to its corresponding
location
(x,y’) = T(x,y) in the second image

Q: what if pixel lands “between” two pixels?

A: distribute color among neighboring pixels (x',y’)
— Known as “splatting”

Optical Flow Results

Lucas-Kanade with Pyramids

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

20

Motion tracking

= Suppose we have more than two images
= How to track a point through all of the images?
= |n principle, we could estimate motion between each pair of
consecutive frames
= Given point in first frame, follow arrows to trace out it’s path
= Problem: DRIFT
= small errors will tend to grow and grow over time—the point will drift

way off course
= Feature Tracking

= Choose only the points (“features”) that are easily tracked
= How to find these features?
= windows where vI(VvI)T hastwo large
eigenvalues
= Called the Harris Corner Detector

Feature Detection

21

Tracking features

= Feature tracking

= Compute optical flow for that feature for each
consecutive H, |

= When will this go wrong?
= QOcclusions—feature may disappear
= need mechanism for deleting, adding new features
Changes in shape, orientation
= allow the feature to deform
Changes in color
= Large motions
= will pyramid techniques work for feature tracking?

Tracking Over Many Frames

= Feature tracking with m frames
1. Select features in first frame
2. Given feature in frame i, compute position in i+1
3. Select more features if needed
4. i=i+1
5. Ifi<m, go to step 2

= |ssues

= Discrete search vs. Lucas Kanade?
= depends on expected magnitude of motion
= discrete search is more flexible

= Compare feature in frame i to i+1 or frame 1 to i+1?
= affects tendency to drift..

= How big should search window be?
= too small: lost features. Too large: slow

22

