CS4442/9542b: Artificial Intelligence II Prof. Olga Veksler

Lecture 16: Computer Vision Motion

Slides are from Steve Seitz (UW), David Jacobs (UMD)

Why estimate motion?

- Lots of uses
 - Track object(s)
 - Correct for camera jitter (stabilization)
 - Align images (mosaics)
 - 3D shape reconstruction
 - Special effects

Optical Flow and Motion Field

- Optical flow is the apparent motion of brightness patterns between 2 (or several) frames in an image sequence
- Why does brightness change between frames?
- Assuming that illumination does not change:
 - changes are due to the RELATIVE MOTION between the scene and the camera
 - There are 3 possibilities:
 - Camera still, moving scene
 - Moving camera, still scene
 - Moving camera, moving scene
- Optical Flow is what we *can* estimate from image sequences

$$\frac{Computing Optical Flow: Brightness Constancy Equation}{I[x(t),y(t),t] = constant}$$

$$I[x(t),y(t),t] = constant$$
Taking derivative with respect to time:

$$\frac{d I[x(t),y(t),t]}{dt} = 0$$

$$\bigcup_{\substack{i \in I \\ \partial x \ \partial t}} \frac{\partial I}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial I}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial I}{\partial t} = 0$$

Observation

- This is a two image problem BUT
 - Can measure sensitivity by just looking at one of the images!
 - This tells us which pixels are easy to track, which are hard
 - very useful for feature tracking

Errors in Lucas-Kanade

- What are the potential causes of errors in this procedure?
 - Suppose A^TA is easily invertible
 - Suppose there is not much noise in the image
- When our assumptions are violated
 - Brightness constancy is not satisfied
 - The motion is not small
 - A point does **not** move like its neighbors
 - window size is too large
 - what is the ideal window size?

Iterative Refinement

- Iterative Lucas-Kanade Algorithm
 - 1. Estimate velocity at each pixel by solving Lucas-Kanade equations
 - 2. Warp H towards I using the estimated flow field use image warping techniques
 - 3. Repeat until convergence

Tracking features

- Feature tracking
 - Compute optical flow for that feature for each consecutive H, I
- When will this go wrong?
 - Occlusions—feature may disappear
 - need mechanism for deleting, adding new features
 - Changes in shape, orientation
 - allow the feature to deform
 - Changes in color
 - Large motions
 - will pyramid techniques work for feature tracking?

Tracking Over Many Frames

- Feature tracking with m frames
 - 1. Select features in first frame
 - 2. Given feature in frame i, compute position in i+1
 - 3. Select more features if needed
 - **4**. i = i + 1
 - 5. If i < m, go to step 2

Issues

- Discrete search vs. Lucas Kanade?
 - depends on expected magnitude of motion
 - discrete search is more flexible
- Compare feature in frame i to i+1 or frame 1 to i+1?
 - affects tendency to drift..
 - How big should search window be?
 - too small: lost features. Too large: slow