CS4442/9542b: Artificial Intelligence II Prof. Olga Veksler

Lecture 2: Machine Learning Introduction to ML Basic Linear Algebra Matlab

Some slides on Linear Algebra are from Patrick Nichols

Learning is NOT Memorization

- rote learning is easy
- Say we have 2 classes: face and non-face images
- memorize all the "face" examples
- For a new image, see if it is present in the stored "face" collection
 - if yes, output "face" as the classification result
 - If no, output "non-face"
- PROBLEM: in general, new "face" images are different from stored "face" examples
- The ability to produce correct outputs or behavior on previously unseen inputs is called GENERALIZAITION
- Rote learning is memorization without generalization
- The big question of Learning Theory (and practice): how to get good generalization with a limited number of examples

slide is modified from Y. LeCun

Training and Testing

- There are 2 phases, training and testing
 - Divide all labeled samples X¹,X²,...Xⁿ into 2 sets, training set and testing set
 - Training phase is for "teaching" our machine (finding optimal weights W)
 - Testing phase is for evaluating how well our machine works on unseen examples
- Training phase
 - Find the weights W s.t. f(Xⁱ,W) = Yⁱ "as much as possible" for the *training* samples Xⁱ
 - "as much as possible" needs to be defined
 - Training can be quite complex and time-consuming

Testing

Testing phase

- The goal is to design machine which performs well on unseen examples (which are typically different from labeled examples)
- Evaluate the performance of the trained machine f(X,W) on the testing samples (unseen labeled samples)
- Testing the machine on unseen labeled examples lets us approximate how well it will perform in practice
- If testing results are poor, may have to go back to the training phase and redesign f(X,W)

Generalization and Overfitting

- Generalization is the ability to produce correct output on previously unseen examples
 - In other words, low error on unseen examples
 - Good generalization is the main goal of ML
- Low train error does not necessarily imply that we will have low test error
 - Very easy to produce f(X,W) which is perfect on training samples
 - "memorize" all the training samples and output their correct label
 - random label on unseen examples
 - No training error but horrible test error
- Overfitting
 - when the machine performs well on training data but poorly on testing data

- For each example (e.g. a fish image), we will extract a set of features (e.g. length, width, color)
- This set of features we will represent as a *feature* vector
 - [length, width, color,...]
- All collected examples will be represented as collection of (feature) vectors
 - [l₁, w₁, c₁, ...], [l₂, w₂, c₂,...], [l₃, w₃, c₃,...], ...
 example 1 example 2 example 3
- Besides representation, we will often use linear models since they are simple and computationally feasible

- Starting matlab
 - xterm -fn 12X24
 - matlab
- Basic Navigation
 - quit
 - more
 - help general
- Scalars, variables, basic arithmetic
 - Clear
 - + * / ^
 - help arith
- Relational operators
 - ==,&,|,~,xor
 - help relop
- Lists, vectors, matrices
 - A=[2 3;4 5]
 - A'
- Matrix and vector operations
 find(A>3), colon operator
 - * / ^ .* ./ .^
 - eye(n),norm(A),det(A),eig(A)
 - max,min,std
 - help matfun

- Elementary functions
 - help elfun
- Data types
 - double Char
- Programming in Matlab
 - .m files
 - scripts
 - function y=square(x)
 - help lang
- Flow control
 - if i== 1else end, if else if end
 - for i=1:0.5:2 ... end
 - while i == 1 ... end
 - Return
 - help lang
- Graphics
 - help graphics
 - help graph3d
- File I/O
 - load,save
 - fopen, fclose, fprintf, fscanf