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CS4442/9542b: Artificial Intelligence II
Prof. Olga Veksler

Lecture 10

NLP: Part of Speech Tagging (POS)

Many slides from: L. Kosseim, M. Hearst, K. McCoy, 

Yair Halevi
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Outline

� What is POS and POS tagging

� Why we need POS tagging

� Different Approaches to POS

1. rule-based tagging

2. statistical tagging
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What is a Part of Speech ?

� Words that somehow ‘behave’ alike:

� Appear in similar contexts

� Perform similar functions in sentences

� Undergo similar transformations

� Terminology

� POS (part-of-speech tag) are also called  

grammatical tag, grammatical category, syntactic 

class, word class
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Substitution Test

� Two words belong to the same part of 
speech if replacing one with another does 
not change the grammaticality of a 
sentence.

� The {sad, big, fat, green, …} dog is barking.
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How many word classes are there?

� A basic set: 
� N(oun), V(erb), Adj(ective), Adv(erb), 

Prep(osition), Det(erminer), Aux(ilaries), Part(icle), 
Conj(unction)

� A simple division: open/content vs. 
closed/function
� Open: N, V, Adj, Adv

� New members are added frequently

� Closed: Prep, Det, Aux, Part, Conj, Num
� New members are added rarely

� Many subclasses, e.g.
� eats/V ⇒ eat/VB, eat/VBP, eats/VBZ, ate/VBD, 

eaten/VBN, eating/VBG, ...
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POS tagging

� Goal: assign the right part of speech tag (noun, 

verb, …) to words in a text

“The/AT representative/NN put/VBD chairs/NNS on/IN

the/AT table/NN.”

� What set of parts of speech do we use?

� There are various standard tagsets to choose 

from; some have a lot more tags than others

� The choice of tagset is based on the application

� Accurate tagging can be done with even large 

tagsets
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What does Tagging do?

1. Collapses distinctions

� E.g., all personal pronouns tagged as PRP

� Lexical identity may be completely discarded

2. Introduces distinctions (by reducing 
ambiguity)

� E.g., “deal” tagged with NN or VB
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� word sense disambiguiaton (semantics)
� Limits the range of meanings, “deal” as noun vs. “deal” as 

verb

� speech recognition / synthesis (better accuracy)
� how to recognize/pronounce a word 
� CONtent/noun VS conTENT/adj

� stemming
� which morphological affixes the word can take
� adverb - ly = noun (friendly - ly = friend)

� question answering
� analyzing a query to understand what type of entity the 

user is looking for and how it is related to other noun 
phrases mentioned in the question

� partial parsing/chunking 
� to find noun phrases/verb phrases

� information extraction
� tagging and partial parsing help identify useful terms and relationships 

between them

Why do POS Tagging?
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Tag sets

� Different tag sets, depends on the purpose 
of the application

� 45 tags in Penn Treebank

� 62 tags in CLAWS with BNC corpus

� 79 tags in Church (1991)

� 87 tags in Brown corpus

� 147 tags in C7 tagset

� 258 tags in Tzoukermann and Radev (1995)



Modified from Diane Litman's 

version of Steve Bird's notes
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Penn Treebank

� First syntactically annotated corpus

� 1 million words from Wall Street Journal

� Part of speech tags and syntax trees



Slide modified from Massimo 

Poesio's

11

Important Penn Treebank tags

…

preposition or subordinating conjunct.IN 

adjective or numeral, ordinal JJ 

adjective, comparative JJR

noun, proper, singular NNP

noun, common, singular or mass NN 

noun, common, plural NNS

"to" as preposition or infinitive markerTO 

verb, base form VB 

verb, past tenseVBD

verb, present tense, 3rd p. singularVBZ

verb, present tense, not 3rd p. singular VBP

verb, past participle VBN

verb, present participle or gerund VBG

� 45 tags



Slide modified from Massimo 

Poesio's
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Verb inflection tags



Slide modified from Massimo 

Poesio's
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The entire Penn Treebank tagset
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Terminology

� Suppose we have text “The cat decided to jump 

on the couch to play with another cat”

� Terminology

� Word type

� Distinct words in the text (vocabulary), the text above has 10 
word types: “the cat decided to jump on couch play with 
another”

� Word token

� any word occurring in the text

� The text above has 13 word tokens
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Distribution of Tags

� Parts of speech follow the usual frequency-
based distributional behavior

� Most word types have only one part of speech

� Of the rest, most have two

� A small number of word types have lots of parts 

of speech

� Unfortunately, the word types with lots of parts 

of speech occur with high frequency (and 

words that occur most frequently tend to have 

multiple tags)
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� but most word types are rare…

� Brown corpus (Francis&Kucera, 1982):

� 11.5% word types are ambiguous (>1 tag)

� 40% word tokens are ambiguous (>1 tag)

 num. word types  

Unambiguous (1 tag) 35 340  

Ambiguous (>1 tag) 4 100  

2 tags 3760  

3 tags 264  

4 tags 61  

5 tags 12  

6 tags 2  

7 tags 1 “still” 
 

 

Most word types are not ambiguous but...
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Why is Tagging Hard?

� Tagging is a type of disambiguation

� Examples:

1. Book/VB that/DT flight/NN

� “book” can also be NN

� Can I read a book on this flight?

2. Does/VBZ that/DT flight/NN serve/VB

dinner/NN ?

� “that” can also be a complementizer

� My travel agent said that there would be a meal on 

this flight.



Potential Sources of Disambiguation

1. Lexical information:

� look up all possible POS for a word in a dictionary

� “table”: {noun, verb} but not a {adj, prep,…}

� “rose”: {noun, adj, verb} but not {prep, ...}

2. Syntagmatic information: 

� some tag sequences are more probable than others:

� DET + N occur frequently but DET+V never occurs

� ART+ADJ+N is more probable than ART+ADJ+VB

� We can find the syntagmatic information

� by talking to the experts

� or, better,  from training corups



Syntagmatic information from Corpus

� For a is a sequence of tags t1,t2,..,tk

compute P(t1,t2,..,tk), which will tell us how 

likely this tag sequence is

� we have done something very similar before, 

i.e. we computed probability of a sequence of 

words

� will make similar approximations as before,   

P(tn|t1,t2,..,tn-1) = P(tn|tn-k…tn-1) 

� in fact, for computational efficiency, the 

assumption will be 

P(tn|t1,t2,..,tn-1) = P(tn|tn-1) 
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1. rule-based tagging

� uses hand-written rules

2. statistical tagging

� uses probabilities computed from training 

corpus

� Charniak

� Markov Model based

Techniques to POS tagging
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Rule-based POS Tagging

� Step 1: Assign each word with all possible 
tags

� use dictionary 

� Step 2: Use if-then rules to identify the 
correct tag in context (disambiguation rules) 
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Rule-based POS Tagging: Sample rules 

� N-IP rule: 
A tag N (noun) cannot be followed by a tag IP (interrogative 

pronoun)
... man who …
� man: {N}
� who: {RP, IP} --> {RP} relative pronoun

� ART-V rule:
A tag ART (article) cannot be followed by a tag V (verb)

...the book…
� the: {ART}

� book: {N, V} --> {N}



23

Rule-based Tagger

� using only syntagmatic patterns

� Green & Rubin (1971)

� accuracy of 77%

� In addition, it is very time consuming to 
come up with the rules and need an expert 
in English to come up with the rules
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Statistical POSTagger: Charniak 1993

� Simplest statistical tagger

� Use corpus to calculate most probable tag for 

each word

� that is the one maximizing

count(word has tag t)/count(word)

� Charniak tagging assigns POS tag to each 

word separately 

� Given a word to tag, 

1. for each possible tag t for this word, compute 

count(word has tag t)                              

2. choose tag t that maximizes the above 
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Statistical POSTagger: Charniak 1993

� Accuracy of 90% 
� contrast with 77% accuracy of the rule-based tagger!

� Another evidence of the power of statistical methods 
over rule-based meothds

� MUCH better than rule based, but not very good... 

� 1 mistake every 10 words

� funny fact: every word will have only one POS assigned 
to it (book will always be assigned the noun tag)

� This tagger is used mostly as baseline for 
evaluation

� How do we improve it?
� tag of a word should depend on tags of other words 

around it, i.e. have to take “context” in the account

� in other words, some sequence of tags are much more 
likely than others
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Statistical Tagger:  Markov Model  Based

� Suppose we want to tag sentence of words w1 w2… wn

� Let t1 t2… tn be a possible sequence of tags corresponding 
to the sentence above
� That is ti is a tag for word wi

� Let  w1,n be shorthand for sentence w1 w2… wn and t1,n be 
shorthand for its tagging t1 t2… tn

� We want to find the “best” tagging t1,n out of all possible 
taggings

� We have 2 sources of information in our corpus:
1. given that the previous word tag is ti, we can find how likely the tag 

of the next word is ti+1 , namely P(ti+1|ti)

2. we can find how likely is each word for each tag, namely P(wi|ti)

� tells us how likely part of speech ti will “generate” a word wi

� For example, if we know that that tag of the word is ti = noun, 
what is the probability of the word to be “book”

� P(book|verb) > P(book|noun), because there are many more 
nouns than verbs
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Statistical Tagger:  Markov Model  Based

� Suppose we are given tag assignment  t1n for sentence w1n

� Using Bayes law:

P(t1,n | w1,n) = ________________

P(w1,n)

P (w1,n| t1,n )P(t1,n )

� This says: 

=









P

word_1 
has tag_1

word_2 
has tag_2

word_n
has tag_n

…….

tag_1 “gives”
word_1 








P tag_n “gives”

word_n
… 








P tag_1 tag_n…









P word_1 word_n…

=



Statistical Tagger:  Markov Model  Based

P(t1,n | w1,n) = ________________

P(w1,n)

P (w1,n| t1,n )P(t1,n )

� We will make two simplifying assumptions

1. Given a POS tag, probability of a word is independent of 

the tags of other words in a sentence:

= Π P (wi| ti )
n

i=1
P (w1,n| t1,n )

tag_1 “gives”
word_1 =








P tag_n “gives”

word_n
…









= P tag_1 “gives”

word_1 







P tag_n “gives”

word_n
…

� P(wi | tk) can be approximated from the tagged corpus as:         
C(wi has tag tk)/C(tk), that is how many times word_i has tag_k
divided by how often tag_k occurs in the corpus



Statistical Tagger:  Markov Model  Based

P(t1,n | w1,n) = ________________

P(w1,n)

P (w1,n| t1,n )P(t1,n )

2. Each tag is only dependent only on one previous tag:

P(t1,n )= Π P(ti|ti-1 )
i=1

n

tag_1 ( ) =P tag_n…

tag_1(((( ))))|P==== …tag_0 tag_n tag_(n-1) ( )|P

� this is  Markov assumption that we have seen before in language 
modeling

� Recall that P(tag 1| tag2 ) can be approximated by                
C(tag2 tag1)/C(tag2)

� Here P(tag 1| tag 0) stands for P(tag 1) and is approximated by       
C(tag1)/(number of tokens in the training corpus)
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Statistical Tagger:  Markov Model  Based

� Using these 2 simpifications, we get

P(t1,n | w1,n) = ________________

P(w1,n)

Π P (wi| ti )P(ti|ti-1 )
n

i=1

� Given a possible sequence of tags t1,n for 

sentence w1,n, we can evaluate how good this 

tag/sequence assignment is using P(t1,n | w1,n)

� Algorithm: go over all possible tag assignments 

and choose the tag assignment which gives 

highest P(t1,n | w1,n)

� Notice that P(w1,n) does not effect maximization so we 

do not have to compute it
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Statistical Tagger:  Markov Model  Based

� Algorithm: given sentence w1,n  go over all 

possible tag assignments  t1,n and compute 

Π P (wi| ti )P(ti|ti-1 )
n

i=1

� Choose final tagging  t1,n which maximizes 

� Efficiency

� For each word wi, try only the tags given by the 

dictionary (lexical information)

� Ex: for “fly”, possible tags are NOUN, VERB and also 

ADJECTIVE (meaning “keen” or “artful”, mainly in 

England)
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Statistical Tagger:  Markov Model  Based

� Side note: Markov tagger becomes Charniak’s

tagger if tags are assumed independent, that is if 

P(ti|ti-1 ) = P(ti), then

( ) ( )∏
=

− =
n

i

iiii t|tPt|wP
1

1 ( ) ( )∏
=

n

i

iii tPt|wP
1

( )
( )

( )∏
=

=
n

i

i

i

ii tP
tP

t,wP

1

( )∏
=

=
n

i

ii t,wP
1
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Statistical Tagger:  Markov Model Based

� Algorithm: given sentence w1,n go over all possible tag 

assignments  t1,n and compute Π P (wi| ti )P(ti|ti-1 )
n

i=1

word 1 word 2 word nword 3 …….

ADJ

NOUN

VERB

ADJ

NOUN

PREPOS

NOUN

PREPOS

NOUN

VERB

DETER

� 40% words have more than 1 tag

� Too many tag assignments to try!

� If 2 tags per word are possible, 2n

tag assignments are possible
� exhaustive search is exponential  



MM based Tagger: Viterbi Algorithm
� Fortunately there is a very useful algorithm (Viterbi)

� If there are k tags per word and n words, can find best 
tagging in time k2n
� There are kn different tag assignments possible

� First, to avoid floating point underflows, take logarithm of 

( ) ( )1ii

n

1i

ii t|tPt|wP −

=

∏

� Now we want to maximize:

( ) ( ) ( ) ( )( )∑∏
=

−−

=

+=






 n

1i

1iiii1ii

n

1i

ii t|tPlogt|wPlogt|tPt|wPlog

( ) ( )[ ] ( ) ( )∑ ∑∑
= =

−

=

− +=+
n

1i

n

1i

1iiii

n

1i

1iiii t|tPlogt|wPlogt|tPlogt|wPlog

how likely word wi

is for tag ti

how likely tag ti

to follow tag ti-1



MM based Tagger: Viterbi Algorithm

� Maximizing:

( ) ( )∑ ∑
= =

−+
n

i

n

i

iiii t|tPlogt|wPlog
1 1

1

� Is equivalent to minimizing

( ) ( )∑ ∑
= =

−−−
n

i

n

i

iiii t|tPlogt|wPlog
1 1

1

� It is more convenient to minimize the expression above



MM based Tagger: Viterbi Algorithm

� To simplify notation, will write 

� L(w|t)    instead of  -log[P(w|t)]

� L(ti|ti-1) instead of  -log[P(ti|ti-1)]

� So we need to find a sequence of tags t1, t2,...,tn

to minimize:
( ) ( )∑ ∑

= =

−−−
n

i

n

i

iiii t|tPlogt|wPlog
1 1

1

( ) ( )[ ]∑
=

−+
n

i

iiii t|tLt|wL
1

1

� In new notation, we need to find a sequence of 

tags t1, t2,...,tn to minimize:



MM based Tagger: Viterbi Algorithm

word 1 word 2 word 3 ….

ADJ

NOUN

VERB

ADJ

NOUN

PREPOS

VERB

(((( ))))ADJwordL |1

L(NOUN|ADJ)

(((( ))))NOUNwordL |2 (((( ))))VERBwordL |3

L(VERB|NOUN)

( ) ( )[ ]∑
=

−+
n

i

iiii t|tLt|wL
1

1

L(ADJ)

L(NOUN)

L(VERB)



MM based Tagger: Viterbi Algorithm
� Let’s change notation slightly for the first word

� L(word1|tag)  will stand for -log[P(word1|tag)] - log [P(tag)]

� This will simplify the pictures:

word 1

ADJ

NOUN

VERB

(((( ))))ADJwordL |1

L(ADJ)

L(NOUN)

L(VERB)

instead of this:

word 1

ADJ

NOUN

VERB

(((( ))))ADJwordL |1

we will picture this:

(((( )))) (((( ))))∑∑∑∑ ∑∑∑∑
==== ====

−−−−++++
n

i

n

i
iiii ttPtwP

1 2
1|log|log



MM based Tagger: Viterbi Algorithm
� Each node has cost L(word|tag)

� Each link between nodes has cost L(tag 1| tag 2)

� Cost of path,  summing up node costs and edge costs is:

word 1 word 2 word 3 …

ADJ

NOUN

VERB

ADJ

NOUN

PREPOS

VERB

(((( ))))ADJwordL |1

L(NOUN|ADJ)

(((( ))))NOUNwordL |2 (((( ))))VERBwordL |3

L(VERB|NOUN)

(((( ))))NOUNwordL |2

(((( ))))VERBwordL |1

L(PREPOS|NOUN)

(((( )))) (((( ))))∑∑∑∑ ∑∑∑∑
==== ====

−−−−++++
n

i

n

i
iiii ttLtwL

1 2
1||



MM based Tagger: Viterbi Algorithm

� So we need to find the path with smallest cost that starts at 
some node corresponding to word 1 and ends at some node 
corresponding to word n

word 1 word 2 word n
….

ADJ

NOUN

VERB

ADJ

NOUN

PREPOS

VERB

….

….

(((( )))) (((( ))))∑∑∑∑ ∑∑∑∑
==== ====

−−−−++++
n

i

n

i
iiii ttLtwL

1 2
1||

sits on nodes sits on edges



MM based Tagger: Viterbi Algorithm

� Idea: for every node corresponding to word i, we can 
efficiently find the best (smallest cost) path that ends at it  
(and starts at any node corresponding to word 1)

word 1 word 2 word n
….

ADJ

NOUN

VERB

ADJ

NOUN

PREPOS

VERB

….

….

For word 2, can compute
the best path that ends here

and here



MM based Tagger: Viterbi Algorithm
� First compute the best path that ends at any node for word 1
� Then compute the best path that ends at any node for word 2
� …..
� Finally compute the best path that ends at any node for word n

� The best path overall is the smallest cost path out of those paths that 
end at word n

word 1 word 2 word n

….

ADJ

NOUN

VERB

ADJ

NOUN

PREPOS

VERB

….

….

For word n, can compute the best path that 
ends here and here. Take the smallest cost 
path out of these two as the final best path



MM based Tagger: Viterbi Algorithm
� First compute the best path that ends at any node for word 1
� Trivial, since the path has just 1 node
� C(w1,tag) = L(w1|tag), holds the cost of the best path ending at (w1,tag)
� P(w1,tag) = null, holds the parent node on the best path ending at (w1,tag)

word 1

ADJ

NOUN

VERB

(((( ))))ADJwordL |1

(((( ))))NOUNwordL |1

(((( ))))VERBwordL |1



MM based Tagger: Viterbi Algorithm
� In general, any node is specified by the word and the tag (word i,tag)

word 1 word 2 word n

ADJ

NOUN

VERB

ADJ

NOUN

PREPOS

VERB

….

….

node (word 2, ADJ)

node (word n, VERB)

� Let C(word k,tag) stand for the cost of the best path starting at any node for 
word 1 and ending at node (word k, tag)

� Let P(word k,tag) stand for the parent on the best cost path starting at any 
node for word 1 and ending at node (word k, tag). Note that the parent 
must be the node (word k-1, tag’)

� After all C(w,t) are computed, the best cost path overall is given by the 
minimum over all t of C(word n, t)



MM based Tagger: Viterbi Algorithm
� We saw that for all possible values of tag, computing  C(word 1,tag) and 

P(word 1,tag) is trivial
� Suppose we have computed C(word i,tag) and P(word i,tag) for all tags 

and all i < k

word 1 word k-1 word n

ADJ

NOUN

VERB

ADJ

NOUN

PREPOS

VERB

….

….

….

….

word k

ADJ

NOUN

all the best paths 
are computed

VERB



MM based Tagger: Viterbi Algorithm
� Suppose we have computed C(word i,tag) for all tags and all i < k
� Need to compute C(word k,tag) and P(word k,tag) for all possible tags of 

word k

word k-1

ADJ

NOUN

….

….

….

….

word k

ADJ

NOUN

VERB
C(word k-1,NOUN)

C(word k-1,ADJ)

� Consider node (word k, ADJ). Let P be the best path from the word 1 to 
node (word k, ADJ). Path P  will go either through either 
� node (word k-1,ADJ). In this case P follows the best path from word 1 to 

node (word k-1, ADJ)
� or through node (word k-1,NOUN). In this case P follows the best path 

from word 1 to node (word k-1, NOUN)
� we using  property that a subpath of the best path is a best path itself

word 1

best path from word 1

to (word k-1,ADJ)

best path from word 1

to (word k-1,NOUN



MM based Tagger: Viterbi Algorithm
� Therefore  C(word k, ADJ) is the smaller of 2 quantities

1. C(word k-1,ADJ)+L(ADJ|ADJ)+L(word k-1|ADJ)
� In this case, P(word k, ADJ) = (word k-1, ADJ)

2. C(word k-1,NOUN)+L(ADJ|NOUN)+L(word k-1|ADJ)
� In this case, P(word k, ADJ) = (word k-1, NOUN)

word k-1

ADJ

NOUN

….

….

….

….

word k

ADJ

NOUN

VERB
C(word k-1,NOUN)

C(word k-1,ADJ)

word 1

best path from word 1

to (word k-1,ADJ)

best path from word 1

to (word k-1,NOUN
L(A

DJ|N
OUN)

L(ADJ|ADJ)

L(word k|ADJ)



MM based Tagger: Viterbi Algorithm

� In general, C(word k, tag) is computed as follows:

(((( )))) ====tagkwordC ,

( )
( ){ } )tag|kword(L)t|tag(Lt,kwordCmin

kwordTt
++−=

−∈
1

1

search over all
tags t for word k-1

cost of best path from first 

word to node (word k-1, t)

cost of going between 

nodes (word k-1, t) 

and (word k,tag)

cost of  going through 

node (word k, tag)

� P(word k, tag) = (word k-1, t*) where t* is the tag for 
word k-1 minimizing the expression above



MM based Tagger: Viterbi Algorithm
� After we computed C(word i,t) for all i and t, the best cost 

path is found as the maximum of C(word n,t)  over all tags t
that word n can have

� The parents on the path can be traced back using the 
computed P(word i,t)

word 1 word 2 word n

ADJ

NOUN

VERB

ADJ

NOUN

PREPOS

VERB

….

….

word n-1

ADJ

NOUN

VERB
C(word n,VERB) is 

smallest.      

P(word n,VERB) = 
(word n-1, ADJ)

� Final tagging is: VERB NOUN … ADJ VERB

C(word 2,NOUN) 

is smallest.      

P(word 2,NOUN) = 
(word 1, VERB)



MM based Tagger: Small Example

� Notice that I made these log probabilities up

that

VERB

NOUN

PRON

CONJ

Flight.

NOUN

VERB

Book

ADJ

L(PRON|ADJ) =1

L(CONJ|ADJ) =2

L(PRON|VERB) = 3

L(CONJ|VERB)=4

L(CONJ|NOUN)= 1

L(PRON|NOUN) =2

L(NOUN|PRON) =1

L(VERB|PRON) =10

L(NOUN|CONJ) =4

L(VERB|CONJ) =2

L(BOOK|ADJ) = 10

L(BOOK|VERB) = 1

L(BOOK|NOUN) =2

L(THAT|PRON) = 2

L(THAT|CONJ) = 4

L(FLIGHT|NOUN) = 2

L(FLIGHT|VERB) = 1



MM based Tagger: Small Example

VERB

NOUN

Book

ADJ

L(BOOK|ADJ) = 10

L(BOOK|VERB) = 1

L(BOOK|NOUN) = 2

� Iteration 1:
� C(book,adj) = 10, P(book,adj) = null 
� C(book,verb) = 1, P(book,verb) = null
� C(book,noun) = 2, P(book,noun) = null



MM based Tagger: Small Example

that

VERB

NOUN

PRON

CONJ

Book

ADJ

L(PRON|ADJ) =1

L(PRON|VERB) = 3

L(PRON|NOUN) =2

L(THAT|PRON) = 2

L(THAT|CONJ) = 4

� Iteration 2:
� C(that, pron) = 6, P(that, pron) = (book,verb) 

C(book,adj) = 10, P(book,adj) = null 
C(book,verb) = 1, P(book,verb) = null
C(book,noun) = 3, P(book,noun) = null

C(book,adj)+L(pron|adj)+L(that|pron)=13

C(book,verb)+L(pron|verb)+L(that|pron)=6

C(book,noun)+L(pron|noun)+L(that|pron)=7



MM based Tagger: Small Example

that

VERB

NOUN

PRON

CONJ

Book

ADJ

L(CONJ|ADJ) =2

L(CONJ|VERB)=4

L(CONJ|NOUN)= 1

L(THAT|PRON) = 2

L(THAT|CONJ) = 4

� Iteration 2:
� C(that, pron) = 6, P(that, pron) = (book,verb) 
� C(that, conj) = 8, P(that, conj) = (book,noun) 

C(book,adj) = 10, P(book,adj) = null 
C(book,verb) = 1, P(book,verb) = null
C(book,noun) = 3, P(book,noun) = null

C(book,adj)+L(conj|adj)+L(that|conj)=16

C(book,verb)+L(conj|verb)+L(that|conj)=9

C(book,noun)+L(conj|noun)+L(that|conj)=8



MM based Tagger: Small Example

that

PRON

CONJ

� Iteration 3:
� C(flight, noun) = 9, P(flight, noun) = (that,pron) 

C(book,adj) = 10, P(book,adj) = null 
C(book,verb) = 1, P(book,verb) = null
C(book,noun) = 3, P(book,noun) = null
C(that, pron) = 6, P(that, pron) = (book,verb) 
C(that, conj) = 8, P(that, conj) = (book,noun)

Flight.

NOUN

VERB

L(NOUN|PRON) =1

L(NOUN|CONJ) =4

L(FLIGHT|NOUN) = 2

L(FLIGHT|VERB) = 1

C(that,pron)+L(noun|pron)+L(flight|noun)=9

C(that,conj)+L(noun|conj)+L(flight|nounj)=14



MM based Tagger: Small Example

that

PRON

CONJ

� Iteration 3:
� C(flight, noun) = 9, P(flight, noun) = (that,pron) 
� C(flight, verb) = 11, P(flight, verb) = (that,conj) 

C(book,adj) = 10, P(book,adj) = null 
C(book,verb) = 1, P(book,verb) = null
C(book,noun) = 3, P(book,noun) = null
C(that, pron) = 6, P(that, pron) = (book,verb) 
C(that, conj) = 8, P(that, conj) = (book,noun)

Flight.

NOUN

VERB

L(VERB|PRON) =10

L(VERB|CONJ) =2

L(FLIGHT|NOUN) = 2

L(FLIGHT|VERB) = 1

C(that,pron)+L(verb|pron)+L(flight|verb)=17
C(that,conj)+L(verb|conj)+L(flight|verb)=11



MM based Tagger: Small Example

that

PRON

CONJ

C(book,adj) = 10, P(book,adj) = null 
C(book,verb) = 1, P(book,verb) = null
C(book,noun) = 3, P(book,noun) = null
C(that, pron) = 6, P(that, pron) = (book,verb) 
C(that, conj) = 8, P(that, conj) = (book,noun)
C(flight, noun) = 9, P(flight, noun) = (that,pron) 
C(flight, verb) = 11, P(flight, verb) = (that,pron)

Flight.

NOUN

VERBVERB

NOUN

Book

ADJ

Final Tagging is: Book<verb> that <pron> flight<noun>



Viterbi Algorithm
for each t ∈Tags(word 1) do

C(word 1, t) = L(word 1 | t), P(word 1, t) = null

for i � 2 to n do

for each t ∈ Tag(word i)  do

C(word i,t) = -∝

for each t’ ∈ Tag(word i - 1)  do

nextCost =  C(word i -1,t’)+L(t|t’)+L(word i|t)

if nextCost < cost(word i,t ) do

C(word i,t ) =nextCost

P(word i,t) = t’

Note: Tags(word i)  is the set of all possible tags for word i
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Unknown Words

� Simplest method: assume an unknown word 
could belong to any tag; unknown words are 
assigned the distribution over POS over the whole 
lexicon
� P(verb|“karumbula”)=P(noun|“karumbula”)=P(adjective|

“karumbula”)=…. etc

� Some tags are more common than others
� for example a new word can be most likely a verb, a 

noun etc. but not a preposition or an article

� Use features of the word (morphological and other 
cues, for example words ending in –ed are likely 
to be past tense forms or past participles)
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Tagging Accuracy

� Ranges from 96%-97% 

� Depends on:
� Amount of training data available

� The tag set

� Difference between training corpus and 
dictionary and the corpus of application

� Unknown words in the corpus of application

� A change in any of these factors can have a 
dramatic effect on tagging accuracy – often 
much more stronger than the choice of 
tagging method


