CS4442/9542b
Artificial Intelligence ||
prof. Olga Veksler

Lecture 3

Machine Learning
K Nearest Neighbor Classifier

Today

e kNN classifier - the simplest classifier on
earth

e matlab implementation of kNN

k-Nearest Neighbors

classify an unknown example with the most
common class among k closest examples

“tell me who your neighbors are, and I'll tell you

who you are”

Example:
k=3

2 sea bass, 1
salmon

Classify as sea
bass

length

A
s

o

>
lightness

KNN: Multiple Classes

e FEasytoimplement for multiple classes
e Examplefork=5
e 3 fish species: salmon, sea bass, eel

® 3seabass, 1 eel, 1 salmon = classify as sea bass

length — 55 55

lightness

kKNN: How to Choose k?

e In theory, if infinite number of samples
available, the larger is k, the better is
classification

e But the caveat is that all k neighbors have to be
close
e Possible when infinite # samples available
e Impossible in practice since # samples is finite

kKNN: How to Choose k?

Rule of thumb is k = sgrt(n), n is number of
examples

. interesting theoretical properties

In practice, k = 1 is often used for efficiency, but can
be sensitive to “noise”

noisy sample

>
every example in the blue every example in the blue

shaded area will be shaded area will be classified
misclassified as the blue class correctly as the red class

kKNN: How to Choose k?

larger k may improve performance, but too large k destroys
locality, i.e. end up looking at samples that are not neighbors

cross-validation (study later) may be used to choose k

1-NN 5-NN 20-NN
ot 1 oaf _ 1 08t ¥ .=
06} 5 339 3] 06l ;’j‘e.--..-ﬂ:.. 33§ 3] 06h 3 é"‘ﬁé 3
3 _ _.:': ?- ?-'- 3 -.E = 3 H

04t f?.’fmi"% 23-% %2,_3:.3 3 1 naf :?--5 3 2’%:2%3&.‘ 33 s 1 04 3 2 3,?@25& 33 3

S5 2 v 6 v N S W< it SPGB R b AR
) CEyofigetds | 1 W Ealipgends] T 25 a3
<or 3 imqﬁéﬁﬂjt’% 3 A0 %‘\!_32" %11111111}1? 2 3 8 3 32-@1 i g

sl AEER s £9°0 | on SAZER pnd e 0 FRA0 FP0

o4l 12 Lo 2 2’5 1 aal "™ Tommi 5 "?"r. ,Dl,‘f 33" H'|ifﬁ$:‘~u.§|!

33 "’*'&""“3 3353{,;:&%"” "3 L S 3
QB 3 33 333 3 1 Qe[3 733 %3 3 6L /-"'_f.,.:' i;":__.' 3'3633 3

- 03 a 05 1
o

picture from R. Gutierrez-Osuna

KNN: How Well does it Work?

KNN is simple and intuitive, but does it work?

Theoretically, the best error rate is the Bayes rate E*

e Bayes error rate is the best (smallest) error rate a classifier can have, for
a given problem, but we do not study it in this course

Assume we have an unlimited number of samples
kNN leads to an error rate greater than E*

But even for k=1, as n — oo, it can be shown that
kNN error rate is smaller than 2E*

As we increase k, the upper bound on the error gets
better, that is the error rate (as n — o) for the kNN
rule is smaller than cE*,with smaller ¢ for larger k

If we have lots of samples, kNN works well

1NN Visualization

e \Joronoi tesselation is useful for visualization

decision boundary

kNN Selection of Distance

e So far we assumed we use Euclidian Distance
to find the nearest neighbor:

D(a,b) =\/Zk:(ak ~b,)} =+/a-b

e Euclidean distance treats each feature as
equally important

e However some features (dimensions) may be
much more discriminative than other
features

kNN Distance Selection: Extreme Example

feature 1 gives the correct class: 1 or 2

feature 2 gives irrelevant number from 100 to 200

dataset: [1 150]
[2 110]
classify [1 100]

D(

D(

.
100 |
-
1100 |

—
110

—
1150

) =+/(1-1) +(100-150)* =50

)=+/(1-2)? +(100-110) =10.5

[1 100] is misclassified!
The denser the samples, the less of this problem

But we rarely have samples dense enough

kNN Distance Selection: Extreme Example

1809 ‘ ‘ ‘ ‘ |

o
®
160+
140+ o
®
1209
10 | | | | ;
(? 1.2 1.4 1.6 1.8 2

e Decision boundary is in red, and is really wrong because
e feature 1 is discriminative, but it’s scale is small

e feature 2 gives no class information but its scale is large, it
dominates distance calculation

KNN: Feature Normalization

Notice that 2 features are on different scales:

First feature takes values between 1 or 2

Second feature takes values between 100 to 200
Idea: normalize features to be on the same scale
Different normalization approaches

Linearly scale the range of each feature to be, say, in

range [0,1] _
f _ 1:old - 1:orlr(;Im

new max min
old old

KNN: Feature Normalization

Linearly scale to 0 mean variance 1:

If Zis a random variable of mean m and variance &7,
then (Z-m)/6 has mean 0 and variance 1

For each feature f let the new rescaled feature be
- fog — 4
new
O
C is a matrix with all samples stored as rows, in Matlab
can normalize all features simultaneously:

=(C-repmat(mean(C),size(C,1),1))*diag(1./std(C))

Cnew

Let us apply this normalization to previous example

1.5

0.5

1.5

KNN: Selection of Distance

e Feature normalization does not help in high dimensional
spaces if most features are irrelevant

D(a,b):\/zk:(ak—bk)z =\/Z(ai—bi)2+zj:(aj—bj)2

discriminative noisy
features features

e |f the number of useful features is smaller than the
number of noisy features, Euclidean distance is
dominated by noise

KNN: Feature Weighting

Scale each feature by its importance for classification

D(a,b) = \/ > w(a, —b,)
k

Can use our prior knowledge about which features are
more important

Can learn the weights w, using cross-validation (to be
covered later)

KNN: Computational Complexity

Basic kNN algorithm stores all examples

Suppose we have n examples each of dimension d
O(d) to compute distance to one example

O(nd) to find one nearest neighbor

O(knd) to find k closest examples examples

Thus total complexity is O(knd)

Very expensive for a large number of samples

But we need a large number of samples for KNN to
work well!

Reducing Complexity: editing 1NN

e |f all Voronoi neighbors have the same class, a sample is
useless, remove it

e Number of samples decreases
e Decision boundary does not change

Reducing Complexity: Partial Distance

e Have current k closes samples

e Abort distance computation if partial distance is already
greater than the full distance to the current k closest

samples

e Advantages:
e complexity decreases
e we are guaranteed to find closes neighbor(s)

e Disadvantages:

e how much complexity decreases depends on our luck
and data layout

classl =

class2 =

oONUT W
00~ OO0

e Want to classify X =

KNN in Matlab without Loops

numClassl =size(Classl,1);
numClass2 =size(Class2,1);
totalSamples = numClassl+numcClass2;

combinedSamples = [Class1;Class2];
trueClass = [zeros(numClass1,1)+1;zeros(numClass2,1)+2;];

testMatrix = repmat(newSample,totalSamples,1);
absDiff = abs(combinedSamples-testMatrix);
absDiff = absDiff.A2;

dist = sum(absDiff,2);

[Y,1] = sort(dist);

neighborsind = I(1:k);

neighbors = trueClass(neighborsind);

classl = find(neighbors == 1);
class2 = find(neighbors == 2);
joint = [size(class1,1);size(class2,1)];

[value class] = max(joint);

classl =

class2 =

numClassl
numClass2

totalSamples = numClassl+numClass2;

combinedSamples = [Class1;Class2];
trueClass = [zeros(numClassl1,1)+1;zeros(numClass2,1)+2;];

KNN in Matlab

= size(Class1,1);
= size(Class2,1);

numClassl =3
numClass2 =4

totalSamples =7 _

combinedSamples =

ONOIWOITWN

wSworNN

trueClass =

NNNNNRERP R

PP

=
05O

testMatrix = repmat(newSample,totalSamples,1);

KNN in Matlab

absDiff = abs(combinedSamples-testMatrix);
absDiff = absDiff.A2;
dist = sum(absDiff,2);
(4 7] (2 3
4 7 1 0
4 7 1 3
testMatrix =4 7 absDiff =|1 1
4 7 1 2
4 7 3 3
4 7 2 1
(4 9] (13]
1 0 1
_ 1 9 _ 10
absDiff ={1 1 dist =| 2
1 4 5
9 9 18
4 1] 5

combinedSamples =

trueClass =

ONOIWOTWN

NNNNNNRERP R

KNN in Matlab

[Y,1] = sort(dist);
neighborsind = 1(1:k);
neighbors = trueClass(neighborsind);

OIOINEF

10
13
18

2
neighborsind = {g} neighbors = {

Il
OFRPWNOIAN

N

:

dist =

trueClass =

3

KNN in Matlab

classl = find(neighbors == 1);
class2 = find(neighbors == 2);
joint = [size(class1,1);size(class2,1)];

[value class] = max(joint);

classl = 1]

|2
class2 = _3}

T
joint = [2}

class =2

neighbors ={

1
2
2

|

e http://videolectures.net/aaai07 bosch knnc/

KNN Summary

e Advantages

e Can be applied to the data from any distribution

e for example, data does not have to be separable with a linear
boundary

e Very simple and intuitive
e Good classification if the number of samples is large enough

e Disadvantages
e Choosing k may be tricky

e Test stage is computationally expensive
e No training stage, all the work is done during the test stage

e This is actually the opposite of what we want. Usually we can afford
training step to take a long time, but we want fast test step

e Need large number of samples for accuracy

