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Outline

• Introduction to Information Retrieval (IR)

• Ad hoc information retrieval

• Boolean Model

• Vector Space Model

• Cosine similarity measure

• Choosing term weights

• Performance evaluation methods

• Improving IR system

• Query expansion

• Relevance feedback
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Information Retrieval Intro

• Then: most digital information is stored in databases

• Structured data storage

• Supports efficient information extraction with queries

• mostly used by corporations/governments

• Majority of innovation is for structured data 

• Now: most digital information is stored in unstructured 
text form (reports, email, web pages, discussion 
boards, blogs, legal information retrieval, etc.)  

• Estimates: 70%, 90% ?? All depends how you measure

• Unstructured data, not  in traditional databases

• Used by companies/organizations/people

• How extract information from unstructured text data?

• Majority of innovation is for unstructured data
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The Problem

• When people see text, they understand its meaning 

(by and large)

• When computers see text, they get only character 

strings (and perhaps HTML tags)

• We'd like computer agents to see meanings and be 

able to intelligently process text

• These desires have led to many proposals for 

structured, semantically marked up formats

• But often human beings still resolutely make use of 

text in human languages

• This problem isn’t likely to just go away
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Information Retrieval

• IR deals with retrieving information from unstructured 

document repositories

• Traditionally 

• Text documents repositories

• More recently

• Speech

• Images

• music

• Video 
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Translating User Needs: Databases

User need User query Results

For databases, a lot

of people know

how to do this 

correctly, using

SQL or a GUI tool

The answers

coming out here

will then be

precisely what the

user wanted
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Translating User Needs: Text Documents

User need User query Results

For meanings in text,

no IR-style query

gives one exactly

what one wants;

it only hints at it

The answers

coming out may

be roughly what

was wanted, or

can be refined

Sometimes!
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Major Types of Information Retrieval
• ad-hoc retrieval

• user creates an “ad hoc” query which is usually not reused or saved

• system returns a list of (hopefully) relevant documents 

• sometimes also called “archival” retrieval

• no training data is available 

• classification / categorization

• training data is available

• documents are classified in a pre-determined set of categories

• Ex: Reuters (corporate news (CORP-NEWS), crude oil (CRUDE),  …)

• any of machine learning techniques can be used

• filtering / routing

• special cases of categorization

• 2 categories: relevant and not-relevant

• filtering: 

• absolute assessment  (d1 is relevant but d2 is not)

• routing: 

• relative ranking of documents, such as d 1, d 2
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Different Types of Ad-Hoc Retrieval

• Web search
• Massive collection (108-109) of documents

• Query log analysis reveals population-based patterns

• Typically high precision (most retrieved documents are relevant), 
low recall (not all relevant documents are retrieved)

• Commercial information providers (e.g. West, LexisNexis)

• Large Collection (106-108)  of documents

• often high recall is essential (e.g. legal or patent search)

• Enterprise search (e.g. UWO, IBM) 

• Medium-sized to large collection (104-106)  of documents

• Opportunity to exploit domain knowledge

• Personal search (e.g. your PC)

• Small collection (103-104) of documents

• Good opportunity to learn a user model, do personalization
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Example of ad-hoc IR



Index

Pre-process

Parse

Collections

Rank

Query

text input

How is query

constructed?

How is text 

processed?

information 
need

How to decide 

what is a 

relevant 

document and 

its rank?

Information Retrieval Process
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Relevance

• In what ways can a document be relevant to a 

query?

• Answer precise question precisely

• Partially answer question

• Suggest a source for more information

• Give background information

• Remind the user of other knowledge

• Others ...
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Two Major Issues

• Indexing

• How to represent a collection of documents to support fast 

search?

• Retrieval methods

• How do we match a user query to indexed documents?



Indexing
• Most IR systems use inverted index to represent collection of 

texts 

• Inverted Index = a data structure that lists for each word all 

documents in the collection that contain that word

• Sorted by document number

assassination {d1, d4, d95, d5, d90…}

murder {d3, d7, d95…}

Kennedy {d24, d33, d44…}

conspiracy {d3, d55, d90, d98…}

• Inverted index is usually implemented as a dictionary which allows 

fast lookups based on word
• B-trees, hash tables, etc are used to implement a dictionary



Indexing
• More sophisticated version of inverted index also contains 

position information, say byte offset from document start 
• Can search for phrases efficiently

• Example: need to find “car insurance”
• “car” in documents (d1, offset 5), (d7, offset 10),  (d9, offset 35)

• “insurance” in documents (d2, offset 3), (d7, offset 11),  (d8, offset 7)

• “car insurance” occurs in document d7

• Still rather primitive: “car insurance” ≠ “insurance for car”

• Possible solution: can find frequent phrases (simply frequently 

occurring bigrams, trigrams, etc.) and index those too, in 

addition to words: 
car insurance {d1, d4, d95, d155, d190…}

insurance for car {d5, d7, d95, d99…}

• So we index words and word phrases

• Say “term” to refer to these indexed entities
• However, sometimes just say “word”, because it’s simpler
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• For each term:

• DocCnt: in how many documents 

word occurs

• FreqCnt: total number of times word 

occurs in all documents

• For each document

• Freq: how many times word occurs 

in this document

• WordPosition: offset where these 

occurrences are found in document

Inverted Index Example
term
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Choosing Terms To Index

1. Controlled Vocabulary Indexing
• A human expert selects a set of terms to index

• This is done for libraries, web directories, etc

• Pros
• Usually “controlled” terms are unambiguous

• Cons:
• Expensive, need manual work

• Controlled vocabularies can’t represent arbitrary detail

2. Free Text Indexing
• Automatically select “good” terms to index

• Some search engines do this

3. Full Text Indexing
• Most search engines do this

• Cons:
• Many words are ambiguous

• Pros:
• Can represent arbitrary detail

• Inexpensive and easy



Full Text Indexing

Can you tell what this document is about?
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Full Text Indexing Design Issues

• To stem or not to stem
• Stemming: laughing, laughs, laugh and laughed are stemmed to laugh

• Problem: semantically different words like gallery and gall may both be 

truncated to gall making the stems unintelligible to

• Exclude/Include Stop words

• Stop words make up about 50% of the text, excluding them 

makes representation more space efficient

• But impossible to search for documents for phrases 

containing stop words

• “to be or not to be”, “take over”

• Most queries are unaffected, but could be very annoying sometimes



After Stemming and Stop Word Removal
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Problems with Index Terms

• May not retrieve relevant documents that 

include synonymous terms

• “restaurant” vs. “café”

• “PRC” vs. “China”

• May retrieve irrelevant documents that 

include ambiguous terms.

• “bat” (baseball vs. mammal)

• “Apple” (company vs. fruit)

• “bit” (unit of data vs. act of eating)
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Retrieval models

• We study 2 basic models:

• boolean model

• the oldest one, similar to what is used in database queries 

• vector-space model

• most popular in IR

• Models vary on:

• how they represent the query & the documents

• how they calculate the relevance between the query and 

the documents
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Boolean Model

• User gives a set of terms (keywords) that are likely to 

appear in relevant documents  
• Ex: JFK  Kennedy  conspiracy assassination

• Connects the terms in the query with Boolean operators 

(AND, OR, NOT)

AND(Kennedy, conspiracy, assassination)

• Can expand query using synonyms

AND (OR (Kennedy, JFK),

(OR (conspiracy, plot),

(OR (assassination, assassinated,

assassinate, murder, murdered, kill, killed)

) ))

• system returns set of documents that satisfy query exactly
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Example

• Which of these documents will be returned for 

the following query : 

computer AND (information OR document) AND retrieval

document collection:

d1: {computer √√√√ , software, information √√√√, language} ××××

d2: {computer √√√√, document √√√√, retrieval √√√√, library}    √√√√

d3: {computer √√√√, information √√√√, filtering, retrieval √√√√} √√√√
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Implementation With Set Operators

• Assume that the inverted index contains:

t1-list: {d1,d2,d3,d4}   t2-list: {d1,d2}   t3-list: {d1,d2,d3}   t4-list: {d1}

• The query Q = (t1 AND t2) OR (t3 AND (NOT t4))

• We perform set operations:  

• to satisfy (t1 AND t2), we intersect the t1 and t2 lists

• {d1,d2,d3,d4} ∩ {d1,d2} = {d1,d2} 

• to satisfy (t3 AND (NOT t4)), we subtract the t4 list from the t3 list 

• {d1,d2,d3} - {d1} = {d2,d3} 

• to satisfy (t1 AND t2) OR (t3 AND (NOT t4)), we take the union of the two 

sets of documents obtained for the parts. 

• {d1,d2} ∪ {d2,d3} = {d1,d2,d3} 



Query processing: AND

• Consider processing the query:

computer AND retrieval

• Locate computer in the Inverted Index

• retrieve its document list

• Locate retrieval in the Inverted Index

• Retrieve its postings.

• “Merge” (intersect) the document sets):

128
34

2 4 8 16 32 64
1 2 3 5 8 13 21

computer

retrieval



The Merge

• Walk through two lists, in time linear in to the 

total number of  entries
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34
1282 4 8 16 32 64

1 2 3 5 8 13 21

computer

retrieval

• If the list lengths are x and y, merge takes 

O(x+y) time

• Crucial: lists are sorted by document ID

{2,     }{     8 
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Analysis of the Boolean Model
• advantages

• queries are expressed with Boolean operators, i.e.semantics is 
clearly defined

• results are easy to explain

• usually computationally efficient

• useful for expert users

• disadvantages

• retrieval strategy is a binary decision (relevant or not) 

• difficult to rank documents in order of relevance

• non-expert users have difficulty to express their need as Boolean 
expressions

• “Feast of Famine” phenomena,  people create quires that are either

• too strict: few relevant documents are found

• too loose: too many documents, most irrelevant, are found

• Therefore most boolean searches on the web either return no 
documents or a huge set of documents



Ranked Retrieval Models

• Rather than a set of documents exactly satisfying a 

query expression, in ranked retrieval models, the 

system returns an ordering over the (top) documents 

in the collection with respect to a query

• large set of retrieved documents is not a problem, just show 

top 10 ranked documents

• Free text queries: rather than a query language of 

operators and expressions, the user query is just one 

or more words in a human language

• In principle, there are two separate choices here, but 

in practice, ranked retrieval models have normally 

been associated with free text queries and vice versa

29



Vector-Space Model

• Documents and queries are 

represented by a “term vector”

• each dimension corresponds to a term 

in the vocabulary

• Similarity between a document and 

a query is determined by a distance 

in vector space

• First system is “SMART” system 

• developed by G. Salton at Cornell 

1960-1999

• still used widely today

Gerard Salton
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Term-Document Matrix

• the collection of documents is represented by a matrix of weights 

called a term-by-document matrix

 d1 d2 d3 d4 d5 … 

term1 w11 w12 w13 w14 w15  

term2 w21 w22 w23 w24 w25  

term3 w31 w32 w33 w34 w35  

…       

termN wn1 wn2 wn3 wn4 wn5  
 

 

• 1 column = representation of one document

• 1 row = representation of one term across all documents

• cell wij = weight of term i in document j

• simplest weight wij is the count of times term i occurred in document j

• matrix is sparse, i.e. most weights are 0



Term-document Count Matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

• Consider number of occurrences of a term in a document: 

• each document is a count vector in �|V|: a column below 



Documents as Vectors

Star

Diet

Doc about astronomy
Doc about movie stars

Doc about mammal behavior



Bags of Words

• Even simpler representation is 

bags of words 

• The document is the “Bag”

• “Bag” contains word tokens

• A particular word may occur 

more than once in the bag

• Stop words are usually ignored

• “the”,”a”,”to”,…

• Word order is ignored

“I see what I eat “ =  “I eat what I see”

The quick brown 

fox jumped over 

the lazy dog’s 

back. 

Document 1

Document 2

Now is the time 

for all good men 

to come to the 

aid of their party.

quick

brown

fox

over

lazy

dog

back

now

time

all

good

men

come

jump

aid

their

party

0

0

1

1

0

1

1

0

1

1

0

0

1

0

1

0

0

1

1

0

0

1

0

0

1

0

0

1

1

0

1

0

1

1

Indexed

Term D
o

cu
m

e
n

t 
1

D
o

cu
m

e
n

t 
2

Stop words: for, is, of, ‘s, the, to



Documents as Vectors

• Now we have a |V|-dimensional vector space

• |V| is the number of terms

• Terms are axes of the space

• Documents are points or vectors in this space

• Very high-dimensional: tens of millions of 

dimensions when you apply this to a web 

search engine

• These are very sparse vectors – most entries 

are zero



Queries as vectors

• Key idea 1 

• represent queries also as vectors in the same vector space

• Key idea 2

• Rank documents according to their proximity to the query 

in this space

• proximity = similarity of vectors

• proximity ≈ inverse of distance

• Recall: we do this because we want to get away from 

the “you’re-either-in-or-out” Boolean model

• Instead: rank more relevant documents higher than 

less relevant documents
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Query Representation

• A query can also be represented as a vector,

like a document

q =(0,0,0,1,0,…1,..0,1)

• Size of vector corresponding to query q is also 

the number of terms |V|
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Example
• The collection:

• d1 = {introduction knowledge in speech and language processing ambiguity 

models and algorithms language thought and understanding the state of 

the art and the near-term future some brief history summary}

• d2 = {hmms and speech recognition speech recognition architecture 

overview of the hidden markov models the Viterbi algorithm revisited 

advanced methods in decoding acoustic processing of speech computing 

acoustic probabilities training a speech recognizer waveform generation for 

speech synthesis human speech recognition summary}

• d3 = {language and complexity the chomsky hierarchy how to tell if a 

language isn’t regular the pumping lemma are English and other languages 

regular languages ? is natural language context-free complexity and human 

processing summary}

• The query:

Q = {speech language processing}
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Example Continued

• The collection:

• d1 = {introduction knowledge in speech and language processing ambiguity 

models and algorithms language thought and understanding the state of the 

art and the near-term future some brief history summary}

• d2 = {hmms and speech recognition speech recognition architecture overview 

of the hidden markov models the viterbi algorithm revisited advanced 

methods in decoding acoustic processing of speech computing acoustic 

probabilities training a speech recognizer waveform generation for speech

synthesis human speech recognition summary}

• d3 = {language and complexity the chomsky hierarchy how to tell if a 

language isn’t regular the pumping lemma are English and other language

regular language ? is natural language context-free complexity and human 

processing summary}

• The query:

Q = {speech language processing}
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 d1 d2 d3 q 

introduction … … … … 

knowledge … … … … 

… … … … … 

speech 1 6 0 1 

language 2 0 5 1 

processing 1 1 1 1 

… … … … … 
 

 

• using raw term frequencies for weights
T

e
rm

 1
 

(s
p

e
e

ch
)

Te
rm

 3
 

(p
ro

ce
ss

in
g
)

Term 2 

(language)

d2 (6,0,1)

d1 (1,2,1)

d3 (0,5,1)
q (1,1,1)

Example Continued



Formalizing vector space proximity

• First idea: use standard Euclidean distance

• does not work well

• because Euclidean distance is large for vectors of 

different lengths

• documents tend to vary in lengths widely



Why Eucledian Distance is a Bad Idea

• Euclidean distance 

between q and d2 is 

large even though the 

distribution of terms 

in the query q and the 

distribution of terms 

in the document d2

are very similar

• Query q is closes to d1

in terms of Eucledian

distance



d’

Use Angle Instead 

• Thought experiment: 

• take a document d and append it to itself

• call this document d′

• “Semantically” d and d′ have the same 

content

• d is a short document, d’ is a long document

• The Euclidean distance between the two 

documents can be quite large

• The angle between the two documents is 

0, corresponding to maximal similarity

• Key idea: rank documents according to 

angle with query

d



From Angles to Cosines

• The following two notions are equivalent.

• rank documents in decreasing order of the angle between 

query and document

• rank documents in increasing order of 

cosine(query,document)

• Cosine is a monotonically decreasing function 

for the interval [0o, 180o]



From Angles to Cosines

• Why cosines?

• efficiency



Length Normalization

• A vector can be (length-) normalized by dividing 

each of its components by its length – for this we 

use the L2 norm:

∑=
i ixx 2

2

• Dividing a vector by its L2 norm makes it a unit 

(length) vector 

• Effect on the two documents d and d′ (d

appended to itself) from earlier slide: they are 

identical after length-normalization

• long and short documents now have comparable 

weights



Cosine(query,document)
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Cosine for Length-Normalized Vectors

• For length-normalized vectors, cosine 

similarity is simply the dot product (or scalar 

product):
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∑ =
=⋅=

V

i iidqdq)d,qcos(
1



Cosine Similarity Illustrated
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Example

Query = “speech language”

original representation:

la
n

g
u

a
g

e

speech

d2 (6, 0)

d1 (1, 2)

d3 (0, 5)

q (1, 1)



Example: Normalized vectors

la
n

g
u

a
g

e

d3(0, 1)
speech

d2‘(1, 0)

d1‘(0.45, 0.89)

q‘(0.71, 0.71)

q(1,1): ⇒ normalized   q’ (0.71, 0.71)

d1(1,2): ⇒ normalized   d1’ (0.45, 0.89)

d2(6,0): ⇒ normalized   d2’ (1, 0)

d3(0,5): ⇒ normalized    d3’ (0, 1)

1.4111L 22 =+=

2.2421L 22 =+=

606L 22 =+=

550L 22 =+=

1

Query = “speech language”
after normalization:



Term frequency tf

• Are word counts or binarized counts (bag of word) the 

best representation for document vectors?

• Define the number of occurrences of a term t in a 

document is d term frequency tftd

• Want to use tf when computing query-document 

match scores. But how?

• Raw term frequency is not what we want:

• document with 10 occurrences of term is more relevant 

than document with 1 occurrence of term

• But not 10 times more relevant

• Relevance does not increase proportionally with term 

frequency



Log-frequency weighting

• The log frequency weight of term t in d is



 >+

=
otherwise 0,

0  tfif ,tflog  1
  w tdtd10

td

• 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, 

etc

• document that has 10 times more occurrences of 

a term is only 2 times more important



Document Frequency

• Rare terms are more informative than frequent 

terms

• recall stop words “the”, “in”, “from”…

• Consider a term in the query that is rare in the 

collection 

• e.g., arachnocentric

• Document containing this term is very likely to 

be relevant to the query arachnocentric

• Want a higher weight for rare terms like 

arachnocentric



Document Frequency

• Frequent terms are less informative than rare terms

• Consider a query term that is frequent in the 

collection 

• e.g., high, increase, line

• A document containing such a term is more likely to 

be relevant than a document that doesn’t

• But it’s not a sure indicator of relevance

• For frequent terms, we want positive weights for 

words like high, increase, and line

• But lower weights than for rare terms

• We use document frequency (df) to capture this



idf weight

• dft, the document frequency of t is the number 

of documents that contain t

• dft is an inverse measure of the informativeness of t

• dft ≤ N, where N is the number of documents

• Define idf (inverse document frequency) of t

)/dfN( log  idf t10t =

• use log (N/dft) instead of N/dft to “dampen” the 

effect of idf

• the base of the log is of little importance



idf Example

term df
t

idf
t

calpurnia 1 6

animal 100 4

sunday 1,000 3

fly 10,000 2

under 100,000 1

the 1,000,000 0

)/dfN( log  idf t10t =

• Suppose N = 1 million

• There is one idf value for each term t in a collection



Effect of idf on ranking

• Question: Does idf have an effect on ranking 

for one-term queries, like

• iPhone

• idf has no effect on ranking one term queries

• idf affects the ranking of documents for queries 

with at least two terms

• For the query capricious person, idf weighting 

makes occurrences of capricious count for much 

more in the final document ranking than 

occurrences of person

58



tf-idf weighting
• The tf-idf weight of a term is the product of its tf

weight and its idf weight

• Best known weighting scheme in information retrieval

• Note: the “-” in tf-idf is a hyphen, not a minus sign!

• Alternative names: tf.idf, tf x idf

• Increases with the number of occurrences within a 

document

• Increases with the rarity of the term in the collection

)df/N(log)tflog(w td,td,t 101 ×+=
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Analysis of the Vector Space Model

• advantages:
• Simple and effective

• term-weighting scheme improves retrieval performance

• partial matching allows for retrieval of documents that 
approximate the query

• cosine ranking allows for sorting the results

• disadvantages
• no real theoretical basis for the assumption of a term space

• Assumed independence between terms is not really true

• Note: In WWW search engines the weights may be 
calculated differently  
• use heuristics on where a term occurs in the document (ex, 

title)

• notion of hub and authority
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Evaluation
• Suppose have several retrieval methods

• Which one is the best?

• for us, “best” = effectiveness, or the relevance of retrieved documents

• other possible measures: ease of use, efficiency, nice interface, cost, etc.

• An information need is translated into a query

• Relevance is assessed relative to the information need not the

query

• Information need: I’m looking for information on whether 

drinking red wine is more effective at reducing your risk of heart 

attacks than white wine.

• Query: wine red white heart attack effective

• You evaluate whether the doc addresses the information need, 

not whether it has these words
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Evaluation
• To evaluate, we need

• a benchmark document collection

• a benchmark set of queries

• a set of relevance query/document judgments

• To compare two (or more) methods

• Each method is used to retrieve documents for a 

query

• Results are compared using some measures

• Common measures are based on precision and 

recall



Relevant vs. Retrieved

relevant

retrieved

all documents



Precision vs. Recall

collection in documents relevantof  number

retrieved documents relevantof  number
  Recall =

 retrieved documentsof  number

retrieved documents relevantof   number
  Precision =

relevant

retrieved

all documents

= 
|O∩O|

|O|

= 
|O∩O|

|O|
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Evaluation: Example of P&R

• Relevant: d3 d5 d9 d25 d39 d44 d56 d71 d123 d389

• system1: d123 d84 d56

• Precision : ??

• Recall : ??

• system2: d123 d84 d56 d6 d8 d9

• Precision : ??

• Recall : ??
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• Relevant: d3 d5 d9 d25 d39 d44 d56 d71 d123 d389

• system1: d123√√√√ d84 ×××× d56√√√√
• Precision: 66%  (2/3)

• Recall: 20% (2/10)

• system2: d123√√√√ d84×××× d56√√√√ d6×××× d8×××× d9√√√√
• Precision: 50%  (3/6)

• Recall: 30% (3/10)

Evaluation: Example of P&R
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Why Precision and Recall?

• Get as much good stuff (high recall) while at the 

same time getting as little junk as possible (high 

precision)
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Retrieved vs. Relevant Documents

relevant

high precision, but low recall

retrieved
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Retrieved vs. Relevant Documents

relevant

high recall, but low precision

retrieved
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Retrieved vs. Relevant Documents

relevant

high precision, high recall (at last!)

retrieved
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Precision/Recall Curves

• There is a tradeoff between Precision and Recall

• easy to get either high precision or high recall, but not both

• So measure Precision at different levels of Recall

• Note: this is an AVERAGE over MANY queries

precision

recall

x

x

x

x



Precision/Recall Curves

• Difficult to determine which of these two hypothetical results is 

better:

• Is blue method performing better than the red one?

precision

recall
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Importance of Ranking

• IR systems typically output a 

ranked list of documents

• Should take “relevance” into 

account when measuring 

performance

• The three systems have same 

precision/recall rates, but the 

method in the first column is 

better since it ranks the 

relevant documents higher

system 1 system 2 system 3 

d1 √√√√ d10 ×××× d6 ×××× 

d2 √√√√ d9 ×××× d1 √√√√ 

d3 √√√√ d8 ×××× d2 √√√√ 

d4 √√√√ d7 ×××× d10 ×××× 

d5 √√√√ d6 ×××× d9 ×××× 

d6 ×××× d1 √√√√ d3 √√√√ 

d7 ×××× d2 √√√√ d5 √√√√ 

d8 ×××× d3 √√√√ d4 √√√√ 

d9 ×××× d4 √√√√ d7 ×××× 

d10 ×××× d5 √√√√ d8 ×××× 
 



Cutoff
• Look at precision of the top 5 (or 10, … etc) ranked documents

 system 1 system 2 system 3 

 d1 √√√√ d10 ×××× d6 ×××× 

 d2 √√√√ d9 ×××× d1 √√√√ 

 d3 √√√√ d8 ×××× d2 √√√√ 

 d4 √√√√ d7 ×××× d10 ×××× 

 d5 √√√√ d6 ×××× d9 ×××× 

 d6 ×××× d1 √√√√ d3 √√√√ 

 d7 ×××× d2 √√√√ d5 √√√√ 

 d8 ×××× d3 √√√√ d4 √√√√ 

 d9 ×××× d4 √√√√ d7 ×××× 

 d10 ×××× d5 √√√√ d8 ×××× 

precision at 5 1.0 0.0 0.4 

precision at 10 0.5 0.5 0.5 

 
 

• How to decide on the “cut off” threshold? 

• threshold 5 is informative in this example, threshold 10 is not informative
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Uninterpolated Average Precision

• Instead of using a single “cut off”, average precision at many “cut 

off” points, usually at points where a relevant document is found

 system 1 system 2 system 3 
 d1 √√√√ d10 ×××× d6 ×××× 

 d2 √√√√ d9 ×××× d1 √√√√ 

 d3 √√√√ d8 ×××× d2 √√√√ 

 d4 √√√√ d7 ×××× d10 ×××× 

 d5 √√√√ d6 ×××× d9 ×××× 

 d6 ×××× d1 √√√√ d3 √√√√ 

 d7 ×××× d2 √√√√ d5 √√√√ 

 d8 ×××× d3 √√√√ d4 √√√√ 

 d9 ×××× d4 √√√√ d7 ×××× 

 d10 ×××× d5 √√√√ d8 ×××× 

precision at 5 1.0 0.0 0.4 

precision at 10 0.5 0.5 0.5 

aver. precision 1.0 0.3544 0.5726 
 
 

For system 3:

• At cutoff d1: 2 

retrieved, 1 relevant, 

precision ½

• At cutoff d2: 3 

retrieved, 2 relevant, 

precision 2/3

• ………………

• At cutoff d4: 8 

retrieved, 5 relevant, 

precision 5/8

• Average precision 

0.5726

1/2

2/3

3/6

5/8

4/7
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F-Measure

• Sometime only one pair of precision and recall 

is available

• e.g., filtering task

• F-Measure

( )
RP

F
1

1
1

1

αα −+
=

• α > 0.5: precision is more important

• α < 0.5: recall is more important

• Usually α = 0.5
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• Text Retrieval 
Conference/competition

• Collection: about 3 
Gigabytes > 1 million 
documents

• Newswire & text news 
(AP, WSJ,…)

• Queries + relevance 
judgements

• Queries devised and 
judged by annotators

• Participants

• Various research and 
commercial group 

• Tracks

• Cross-lingual, filtering, 
genome, video, web, QA, 
etc.

Evaluation: TREC
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IR System Improvements

• Most Queries are short

• Web queries tend to be 2-3 keywords long

• The two big problems with short queries are:

• Synonymy: poor recall results from missing 

documents that contain synonyms of search terms, 

but not the terms themselves

• Polysemy/Homonymy: Poor precision results from 

search terms that have multiple meanings leading to 

the retrieval of non-relevant documents
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Query Expansion

• Find a way to expand a user’s query to automatically 

include relevant terms (that they should have 

included themselves), in an effort to improve recall

• Use a dictionary/thesaurus

• Use relevance feedback
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• Example:
• query: seller of email solutions for cell phones

• document: […] Giszmotron is a leading vendor of electronic messaging 
services for cellular devices […]

• But effect of polysemy on IR: 
• cell --> a prison room or a unit ? 

--> returning irrelevant documents

--> decrease precision

• Effects of synonymy and hyponymy on IR
--> missing relevant documents

--> decrease recall

• Solution: let’s expand the user query with related terms 
• often using a thesaurus to find related terms (synonyms, hyponyms)

• new terms will have lower weights in the query 

• ex: expanded query: seller vendor phones device …

• need to do WSD

Query Expansion
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Relevance Feedback

• Ask the user to identify a few documents which 
appear to be related to their information need

• Extract terms from those documents and add them to 
the original query

• Run the new query and present those results to the 
user

• Iterate (ask the user to identify relevant 
documents…extract terms… add them to the query…)

• Typically converges quickly
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Blind Feedback

• Assume that first few documents returned are most 
relevant rather than having users identify them

• Proceed as for relevance feedback

• Tends to improve recall at the expense of precision



83

Additional IR Issues

• In addition to improved relevance, can improve overall 
information retrieval with some other factors:

• Eliminate duplicate documents

• Provide good context

• For the web:

• Eliminate multiple documents from one site

• Clearly identify paid links



IR within NLP

• IR needs to process the large volumes of online text

• And (traditionally), NLP methods were not robust enough to 
work on thousands of real world texts.

• so IR:

• not based on NLP tools (ex. syntactic/semantic analysis) 

• uses (mostly) simple (shallow) techniques

• based mostly on word frequencies

• in IR, meaning of documents:

• is the composition of meaning of individual words

• ordering & constituency of words play are not taken into account

• bag of word approach

I see what I eat.

I eat what I see.
same meaning
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Summary

• Information Retrieval is the process of 

returning documents from unstructured data 

collection to meet a user’s information need 

based on a query

• Typical methods are BOW (bag of words) which 

rely on keyword indexing with little semantic 

processing

• Results can be improved by adding semantic 

information (such as thesauri) and by filtering 

and other post-hoc analysis.


