
CS4442/9542b: Artificial Intelligence II

Prof. Olga Veksler

Lecture 15: Computer Vision

Image Segmentation

Slides are from Steve Seitz (UW), David Jacobs (UMD),
Octavia Camps, Yaron Ukrainitz, Bernard Sarel

Today

� Perceptual Grouping in humans

� Gestalt perceptual grouping laws, describe

grouping cues of humans

� Image segmentation (“Pixel Grouping”)

� Clustering

� simple agglomerative algorithm

� K-means

� Histogram based

� Thresholding

� Mode-finding

� Mean shift

From Images to Objects

� Humans do not perceive the world as a collection of
individual “pixels” but rather as a collection of objects and
surfaces

� For many applications, it is useful to segment or group
image pixels into blobs which are perceptually meaningful
� hopefully belong to the same “object” or surface

� How to do this without (necessarily) object recognition?
� Subjective problem, but has been well-studied

� Gestalt Laws seek to formalize this

� proximity, similarity, continuation, closure, common fate

Grouping

Most human observers would report no particular grouping

Gestalt Principles of Grouping: Common Form
(includes color and texture)

Gestalt Principles of Grouping: Proximity

Gestalt Principles of Grouping: Good Continuation

Gestalt Principles of Grouping: Connectivity

Gestalt Principles of Grouping: Symmetry

Gestalt Principles of Grouping: Symmetry

Gestalt Principles of Grouping: Convexity

stronger than symmetry?

Gestalt Principles of Grouping: Closure

(Bregman)

Gestalt Principles of Grouping: Closure

Gestalt Principles of Grouping: Closure

Gestalt Principles of Grouping:Common Motion

Higher level Knowledge

Other Perceptual Grouping Factors

� Common depth

� Parallelism

� Collinearity

Take Home message

� We perceive the world in terms of objects, not pixels

� What forms an object is determined by regularities and

non-trivial inference

Human perceptual grouping

� Perceptual grouping has been significant

inspiration to computer vision

� Why?

� Perceptual grouping seems to rely partly on the

nature of objects in the world

� This is hard to quantify, we hypothesize that human

vision encodes the necessary knowledge

Computer Vision: Image Segmentation

� In vision, we typically refer to perceptual organization
problem as image segmentation or clustering

� Image segmentation is the operation of partitioning an
image into a collection of
� regions, which usually cover the whole image
� linear structures, such as

– line segments
– curve segments

� into 2D shapes, such as
– circles
– ellipses
– ribbons (long, symmetric regions)

� Clustering is a more general term than image
segmentation
� Can cluster all sorts of data (usually represented as feature vectors), not

just image pixels
� Web pages, financial records, etc.

� Clustering is a large area of machine learning (not supervised, that is
labels of feature vectors are not known)

Example 1: Region Segmentation

Example 2: Lines and Circular Arcs Segmentation

Image Segmentation: Cues for Grouping

Image cues are used for grouping/segmentation:

� Pixel-based cues:

� color

� depth (for stereo pairs)

� motion (for video sequences)

� Region-based cues:

� texture

� region shape

� contour-based cues:

� curvature

Image Segmentation Approaches

Approaches can be roughly divided into two groups:

1. Parametric: We have a description of what we

want, with parameters:

Examples: lines, circles, constant intensity regions,
constant intensity regions + Gaussian noise

2. Non-parametric: have constraints the group

should satisfy, or optimality criteria.

Example: SNAKES. Find the closed curve that is

smoothest and that also best follows strong image

gradients.

Clustering Algorithms

� Agglomerative
� Start with each pixel in its own cluster

� Iteratively merge clusters together according to some pre-
defined criterion

� Stop when reached some stopping condition

� Divisive
� Start with all pixels in one cluster

� Iteratively choose and split a cluster into two according to
some pre-defined criterion

� Stop when reached some stopping condition

� There are clustering methods which are both

agglomerative and divisive

Simplest Agglomerative Clustering based on

Color/Intensity

Initialize: Each pixel is a cluster (region)

Loop
� Find two adjacent regions with most similar color (or

intensity)
� Merge to form new region with:

� all pixels of these regions
� average color (or intensity) of these regions

� Several possibilities for stopping condition:
1. No regions similar (color or intensity differences between all

neighboring regions is larger than some threshold, etc.)
2. Found k regions

Example: Agglomerative Intensity Based
Clustering

244531

268733

2228261920

2425242218

2321192523

244531

268733

2228261920

2425242218

2321192523

244531

268733

2228261920

2425242218

2321192523

244531

268733

2228261920

2425242218

2321192523

Example: Agglomerative Intensity Based
Clustering

244531

268733

2228261920

2425242218

2321192523

244531

268733

2228261920

2424.52218

2321192523

24.5

Example: Agglomerative Intensity Based
Clustering

244531

268733

2228261920

2424.52218

2321192523

24.5

244531

268733

2228261920

24.324.32218

2321192523

24.3

Example: Agglomerative Intensity Based
Clustering

244531

268733

2228261920

24.324.32218

2321192523

24.3

244531

268733

22282619.519.5

24.324.32218

2321192523

24.3

Example: Agglomerative Intensity Based
Clustering

244531

268733

22282619.519.5

24.324.32218

2321192523

24.3

244531

267.57.533

22282619.519.5

24.324.32218

2321192523

24.3

Example: Agglomerative Intensity Based
Clustering

…

Example: Agglomerative Intensity Based
Clustering

22.94.254.254.254.25

22.94.254.254.254.25

22.922.922.922.922.9

22.922.922.922.922.9

22.922.922.922.922.9

244531

268733

2228261920

2425242218

2321192523

Example: Agglomerative Intensity Based
Clustering

Clustering complexity

� Assume image has n pixels

� Initializing:

� O(n) time to compute regions

� Loop:

� O(n) time to find 2 neighboring regions with most

similar colors (could speed up)

� O(n) time to update distance to all neighbors

� At most n times through loop so O(n2) time total

Agglomerative Clustering: Discussion

� Start with definition of good clusters

� Simple initialization

� Greedy: take steps that seem to most

improve clustering

� This is a very general, reasonable strategy

� Can be applied to almost any problem

� But, not guaranteed to produce good quality

answer

Clustering for Image Segmentation

� General clustering problem setting:

� have samples (or points, or feature vectors) x1,…,xn

� for segmentation, x1,…,xn, correspond to n image pixels

� each xi can be

� Intensity of pixel xi (for gray image segmentation)

� Color of pixel xi (for color image segmentation)

� Color of pixel xi + coordinates of pixel xi

� For example:

(2,44,55) (22,4,5) (32,5,6)

(4,4,25) (6,14,6) (7,8,91)

feature vectors
for color based
clustering

[]

[]

[]

[]

[]

[]9187

6146

2544

6532

5422

55442

,,

,,

,,

,,

,,

,, []

[]

[]

[]

[]

[]129187

116146

102544

026532

015422

0055442

,,,,

,,,,

,,,,

,,,,

,,,,

,,,,

feature vectors
for color and
coordinates based
clustering

Criterion Functions for Clustering

� Have samples (or points) x1,…,xn

� Suppose partitioned samples into k subsets D1,…,Dk

1D

2D

3D

� Can define a criterion function J(D1,…,Dk) which

measures the quality of a partitioning D1,…,Dk

� Then the clustering problem is a well defined

problem

� the optimal clustering is the partition which optimizes the

criterion function

� There are approximately kn/k! distinct partitions

Iterative Optimization Algorithms

� Now have both proximity measure and criterion function, need
algorithm to find the optimal clustering

� Exhaustive search is impossible, since there are
approximately kn/k! possible partitions

� Usually some iterative algorithm is used
� Find a reasonable initial partition

� Repeat: move samples from one group to another s.t. the objective function J is

improved

J = 777,777

move

samples to
improve J

J =666,666

K-means Clustering

� for a different objective function, we need a different
optimization algorithm, of course

� Iterative clustering algorithm

� Want to optimize the JSSE objective function

∑∑∑∑ ∑∑∑∑
==== ∈∈∈∈

−−−−====
k

i Dx
iSSE

i

xJ
1

2|||| µµµµ

� k-means is probably the most famous clustering

algorithm

� it has a smart way of moving from current partitioning to

the next one

� Fix number of clusters to k

K-means Clustering

1. Initialize
� pick k cluster centers arbitrary
� assign each example to closest

center

x

xx

x

x x

x

x x

2. compute sample

means for each cluster

3. reassign all samples to the

closest mean

4. if clusters changed at step 3, go to step 2

k = 3

K-means Clustering

2. compute sample means for each cluster

3. reassign all samples to the closest mean

� Consider steps 2 and 3 of the algorithm

µµµµ1
µµµµ2

∑∑∑∑ ∑∑∑∑
==== ∈∈∈∈

−−−−====
k

i Dx

iSSE

i

xJ
1

2|||| µµµµ

= sum of

µµµµ1
µµµµ2

If we represent clusters
by their old means, the

error has gotten smaller

K-means Clustering

3. reassign all samples to the closest mean

µµµµ1
µµµµ2

If we represent clusters

by their old means, the
error has gotten smaller

� However we represent clusters by their new means, and

mean is always the smallest representation of a cluster

∑∑∑∑
∈∈∈∈

−−−−
∂∂∂∂

∂∂∂∂

iDx

zx
z

2||||
2

1 (((())))∑∑∑∑
∈∈∈∈

++++−−−−
∂∂∂∂

∂∂∂∂
====

iDx

t zzxx
z

22 ||||2||||
2

1 (((())))∑∑∑∑
∈∈∈∈

++++−−−−====
iDx

zx 0====

∑∑∑∑
∈∈∈∈

====⇒⇒⇒⇒

iDxi

x
n

z
1

K-means Clustering

� We just proved that by doing steps 2 and 3, the objective
function goes down

� in two step, we found a “smart “ move which decreases the
objective function

� Thus the algorithm converges after a finite number of
iterations of steps 2 and 3

� However the algorithm is not guaranteed to find a global
minimum

µµµµ1

µµµµ2

x

x

2-means gets stuck here global minimum of JSSE

K-means clustering Example

feature vectors
for color based
clustering

� k = 2 and initial cluster centers are at pixels (0,0) and (1,2)

(2,4,5) (6,8,8) (3,5,6)

(7,9,5) (1,4,6) (7,8,9)

� distance between (6,8,8) and (2,4,5) is

(((()))) (((()))) (((()))) 41584826
222

====−−−−++++−−−−++++−−−−

� distance between (6,8,8) and (7,8,9) is

(((()))) (((()))) (((()))) 2988876
222

====−−−−++++−−−−++++−−−−

� Therefore sample (6,8,8) is assigned to
the same cluster as (7,8,9)

� Repeat for the other 5 samples

[]

[]

[]

[]

[]

[]9,8,7

6,4,1

5,9,7

6,5,3

8,8,6

5,4,2

K-means clustering Example

feature vectors
for color based
clustering

[]

[]

[]

[]

[]

[]9,8,7

6,4,1

5,9,7

6,5,3

8,8,6

5,4,2

� k = 2 and initial cluster centers are at pixels (0,0) and (1,2)

(2,4,5) (6,8,8) (3,5,6)

(7,9,5) (1,4,6) (7,8,9)

after 1st iteration:

(2,4,5) (6,8,8) (3,5,6)

(7,9,5) (1,4,6) (7,8,9)

after 1st iteration new means are:

() () () ()6653342
3

653641542
.,.,

,,,,,,
=

++

() () () ()337338666
3

987886597
.,.,.

,,,,,,
=

++

K-means clustering Example

� k = 2 and initial cluster centers are at pixels (0,0) and (1,2)

after 1st iteration new means are:

() () () ()6653342
3

653641542
.,.,

,,,,,,
=

++

() () () ()337338666
3

987886597
.,.,.

,,,,,,
=

++

� samples (2,4,5), (1,4,6), (7,8,9) are closest to mean (2,4.33,5.66)

� samples (7,9,5), (6,8,8) and (7,8,9) are closest to the mean
(6.66,8.33,7.33)

� Therefore no change after second iteration, k-means converges

(2,4,5) (6,8,8) (3,5,6)

(7,9,5) (1,4,6) (7,8,9)

after 1st iteration:

K-means clustering Example

feature vectors
for color and
coordinates based
clustering

� k = 2 and initial cluster centers are at pixels (0,0) and (1,2)

(2,4,5) (6,8,8) (3,5,6)

(7,9,5) (1,4,6) (7,8,9)

� The procedure is identical to the color-
only based clustering, except samples

are 5-dimensional now

[]

[]

[]

[]

[]

[]1,2,9,8,7

1,1,6,4,1

1,0,5,9,7

0,2,6,5,3

0,1,8,8,6

0,0,5,4,2

K-means Clustering

� Finding the optimum of JSSE is NP-hard

� In practice, k-means clustering performs usually

well

� It is very efficient

� Its solution can be used as a starting point for

other clustering algorithms

� Still 100’s of papers on variants and improvements

of k-means clustering every year

K-Means Example 1

K-Means Example 2

K-Means Example 3

Histogram-Based Segmentation

Segmentation by Histogram Processing
� Given image with N colors, choose K

� Each of the K colors defines a region

– not necessarily contiguous

� Performed by computing color histogram, looking for modes

� This is what happens when you downsample image color
range, for instance in Photoshop

Histogram-based Segmentation

Select threshold

Create binary image:
� I(x,y) < T ⇒ O(x,y) = 0

� I(x,y) > T ⇒ O(x,y) = 1

Ex: bright object on dark background:

TT

Gray value

Number of pixels

Histogram

How do we select a Threshold?

Automatic thresholding
� P-tile method

� Mode method

� Peakiness detection

� Mean-shift

P-Tile Method

If the size and brightness range of the object is

approximately known, pick T s.t. the area under the

histogram corresponds to the size of the object:

TT

Mode Method

� Model each region as “constant” + noise

� Usually noise is modeled as N(0,σi):

Example: Image with 3 regions

Ideal histogram:Ideal histogram:

µµ11 µµ33µµ22

Add noise:Add noise:

µµ11 µµ33µµ22

The valleys areThe valleys are
good places for good places for
thresholdingthresholding toto
separate regions.separate regions.

Finding Modes in a Histogram

How Many Modes Are There?
� Easy to see, hard to compute

� Not a trivial problem

“Peakiness” Detection Algorithm

Find the two HIGHEST LOCAL MAXIMA at a

MINIMUM DISTANCE APART: gi and gj

Find lowest point between them: gk

Measure “peakiness”:

� min(H(gi),H(gj))/H(gk)

Find (gi,gj,gk) with highest peakiness
ggii

ggjjggkk

Mean Shift [Comaniciu & Meer]

Iterative Mode Search
1. Initialize random seed, and fixed window

2. Calculate center of gravity of the window (the “mean”)

3. Translate the search window to the mean

4. Repeat Step 2 until convergence

initial seed

Mean Shift [Comaniciu & Meer]

Iterative Mode Search
1. Initialize random seed, and fixed window

2. Calculate center of gravity of the window (the “mean”)

3. Translate the search window to the mean

4. Repeat Step 2 until convergence

mean in red window

Mean Shift [Comaniciu & Meer]

Iterative Mode Search
1. Initialize random seed, and fixed window

2. Calculate center of gravity of the window (the “mean”)

3. Translate the search window to the mean

4. Repeat Step 2 until convergence

blue window centered at the mean in red window

Mean Shift [Comaniciu & Meer]

Iterative Mode Search
1. Initialize random seed, and fixed window

2. Calculate center of gravity of the window (the “mean”)

3. Translate the search window to the mean

4. Repeat Step 2 until convergence

final mode found at convergence, final window position

Algorithm MEAN SHIFT to find histogram PEAK

1. Choose a window size
� for example 5

2. Choose the initial location of the search window

3. Compute the mean location in the search window

4. Center the window at the location computed in 3

5. Repeat steps 3 and 4 until convergence

Algorithm MEAN SHIFT for Image Segmentation

� Find image histogram, choose window size

� Choose initial location of search window:
� Randomly select a number M of image pixels

� Find the average value in a 3x3 window for each of these pixels

� Set the center of the window to the value with largest histogram
count

� Apply mean shift to find the window peak

� Remove pixels in the window from the image and
the histogram

� Say peak was at intensity 44 and window size is 5

� Pixels with intensities between [39,49] become one group

� Remove these pixels from further consideration

� Repeat steps 2 to 4 until no pixels are left

Algorithm MEAN SHIFT

� Previous slides assumed features are gray pixel values

� Feature vectors are one dimensional

� Can do the same thing for color images

� Feature vectors are 3 dimensional

� Can also include the (x,y) pixel coordinates

� Feature vectors are 5 dimensional

� In all these cases, taking a window around feature vector y
corresponds to taking all feature vectors x s.t.

rxy
2

≤−

� New window center is shifted from y to

∑ ∈Sx
x

n

1

� Where S is the set of all feature vectors x s.t. ,
and n is the size of S

rxy
2

≤−

Mean Shift Segmentation: Examples

More Examples: http://www.caip.rutgers.edu/~comanici/segm_images.html

Mean Shift Segmentation: More Examples

Mean Shift Segmentation: More Examples

Strengths :

� Does not assume any prior shape

(e.g. elliptical) on data clusters

� Can handle arbitrary feature

spaces

� Only ONE parameter to choose

� h the window size

Weaknesses :

� The window size is not trivial

� Inappropriate window size can

cause modes to be merged (giving too

few segments) or generate additional

“shallow” modes (giving too many

segments)

� there are adaptive window

size extentions

Mean Shift: Strengths & Weaknesses

