CS442/542b: Artificial Intelligence Il
Prof. Olga Veksler

Lecture 16: Computer Vision
Motion

Slides are from Steve Seitz (UW), David Jacobs (UMD)

Outline

= Motion Estimation
= Motion Field
= Optical Flow Field

= Methods for Optical Flow estimation
1. Discrete Search

2. Lukas-Kanade Approach to Optical Flow
= QOptical Flow Constraint Equation
= Aperture Problem
= Pyramid Approach

Why estimate motion?

= | ots of uses
= Track object(s)
= Correct for camera jitter (stabilization)
= Align images (mosaics)
= 3D shape reconstruction
= Special effects

Optical Flow and Motion Field

= Qptical flow is the apparent motion of brightness patterns
between 2 (or several) frames in an image sequence
= Usually represent optical flow by a 2 dimensional vector (u,v)

++++++

LLLLLLLLLL

nnnnnnnnnnnn

[e

111111111111111
...............

1111111111111111

................
llllllllllllllll

a d F L R oW oemede—— o owr i

Rubik's cube rotating to the - Terzil >
right on a turntable R o Lo

Optical Flow and Motion Field

Optical flow is the apparent motion of brightness
patterns between 2 (or several) frames in an image
sequence

Why does brightness change between frames?

Assuming that illumination does not change:

= changes are due to the RELATIVE MOTION between
the scene and the camera

= There are 3 possibilities:
= Camera still, moving scene
= Moving camera, still scene
= Moving camera, moving scene

Optical Flow is what we can estimate from image
sequences

Motion Field (MF)

= The actual relative motion between 3D scene and
the camera is 3 dimensional

= motion will have horizontal (x), vertical (y), and depth
(z) components, in general

= We can project these 3D motions onto the image
plane

= What we get is a 2 dimensional motion field

= Motion field is the projection of the actual 3D
motion in the scene onto the image plane

= Motion Field is what we actually need to estimate
for applications

Examples of Motion Fields

E*Iff"
:12.‘:_5*51.;}:1 /,/{)
Tl g)j
/f;*';\‘\:i \\
R

(a) Translation perpendicular to a surface. (b) Rotation about axis
perpendicular to image plane. (c) Translation parallel to a surface at a
constant distance. (d) Translation parallel to an obstacle in front of a
more distant background.

Optical Flow vs. Motion Field

= QOptical Flow is the apperent motion of brightness patterns
= We equate Optical Flow Field with Motion Field
= Frequently works, but not always

(a) A smooth sphere is rotating
under constant illumination.
Thus the optical flow field is
zero, but the motion field is
not

(b) A fixed sphere is illuminated
by a moving source—the
shading of the image

(b) changes. Thus the motion

field is zero, but the optical

flow field is not

Optical Flow vs. Motion Field

= Famous lllusions
= QOptical flow and motion fields do not coincide

Optical Flow vs. Motion Field

= Motion field and Optical Flow are very different

7 AXis

')

é—%%
===

. e
- = =

—
—_ = —=
— —E

]

Optical flow

Hilhielt

=
o33

from Gary Bradski and Sebastian Thrun

Discrete Search for Optical Flow

W ()
H(x,y) I(z,y)

= Given window W in H, find best matching window in /

= Minimize SSD (sum squared difference) or SAD (sum of absolute
differences) of pixels in window

= just like window matching for stereo, except the set of locations to
search over in the second image is different

min(u,v){ > I(a:—l—u,y—l—v)H(:c,y)2}

(z,y)eW
= search over a specified range of (u,v) values
= this (u,v) range defines the search range
= can use integral image technique for fast search

Computing Optical Flow: Brightness
Constancy Equation

= Can we estimate optical flow without the
search over all possible locations?

= Yes! If the motion is small...

= Let P be a moving point in 3D
= At time t, P has coordinates (X(1), Y(1),Z(1))

= Let p=(x(f),y(l)) be the coordinates of its image
attime t

= Let I(x(1),y(1),f) be the brightness at p at time .
= Brightness Constancy Assumption:

= As P moves over time, I(x(1),y(t),f) remains
constant

Computing Optical Flow: Brightness
Constancy Equation

x(1),y(1),f] = constant

Taking derivative with respect to time:

dI[x(t), y(t)t]
dt

4

ol ox . 1 9y _ dl _ o
ox ot dy ot dt

Computing Optical Flow: Brightness
Constancy Equation

1 equation with 2 unknowns

ol ox = ol oy ol
.y
ox ot | oy ot ot
o

Let v/ = %_)I((Frame spatial gradient)

Y |
X"

[‘ﬂ - g_; (optical flow)

| dt |
ol
It:a_t

(derivative across frames)

Computing Optical Flow: Brightness

Constancy Equation

ol ox , 9l oY , 9l
=0
ox ot T oy ot ot

= Written using dot product notation:

i
1o+ =0
{Iy V|
= Where | have used more compact notation:

ﬂ:lx ﬂ:I
X ay y

Computing Optical Flow: Brightness
Constancy Equation

1 equation with 2 unknowns: [ﬂ . [U} +1,.=0

Y

= [ntuitively, what does this constraint

mean?

= The component of the
flow in the gradient
direction is determined

= Recall that gradient
points in the direction
perpendicular to the edge

= The component of the
flow parallel to an edge is

any point on the red
line is a solution to the
equation above

unknown ‘ \

Aperture problem

true motion is in the
direction of the red

Aperture problem

Computing Optical Flow: Brightness
Constancy Equation

= How to get more equations for a pixel?

= Basic idea: impose additional constraints
= most common is to assume that the flow field is smooth locally

= one method: pretend the pixel’s neighbors have the same (u,v)
= |f we use a 5x5 window, that gives us 25 equations per pixel!

1,(p,)+VI(p,): Bﬂ 0

1(p,) 1,(p,)

It(1)
e.) 1e2)|]| i)
1(pa) 1y(ps) 1(ps)

matrix A vector d vector b
25x2 2x1 25x1

Computing Optical Flow: Brightness
Constancy Equation

= |, and |, are computed just as before (recall
lectures on filtering)
= For example, can use Sobel operator

1071 11271
2lo2 0lo|o
1]0]1 1]-2]-1
Sr Sy

ool
|

= Note that 1/8 factor is now mandatory, unlike in edge
detection, since we want the actual gradient value

Computing Optical Flow: Brightness

Constancy Equation
= |, is the derivative between the frames
1211121 1122 | 123 | 122 | 123 121 121|122 | 123 | 20 | 20
1211121 | 122 | 123 | 122 | 123 1211121 | 122 {123 | 22 | 22
1221123 | 124 | 123 | 124 | 123 122 | 123 | 124 | 123 | 24 | 21
120 | 122 | 122 | 123 [122] 123 120 | 122 [122 (123 | 22 | 22
1211121 |1 124 | 123 | 124 | 123 121|121 | 124 | 123 | 24 | 23
125120 | 124 | 123 | 124 | 123 125120 | 124 | 123 | 24 | 24
I°: frame at time = 5 1°: frame at time = 5

= Simplest approximation to l(p) =I*'(p)-I(p)

= For example for pixel with coordinates (4,3) above
.(4,3) =22 - 122 = -100

Lukas-Kanade flow

/X(,D1) /y(P1) _lt(p1)_
L(p.) 1,(p,) M _ _| 1(p,)
; : % :
1 (pss) 1(P2s) (s) |
matrix A vector d vector b
25x2 2x1 25x1

= Problem: now we have more equations than unknowns
= Where have we seen this before?

= Can’t find the exact solution d, but can solve Least Squares
Problem:

A d=b —— minimize ||Ad — b||?
25x2 2x1 25x1

Lukas-Kanade flow

A d=b —— minimize ||Ad—b|?
25x2 2x1 25x1

= Solution: solve least squares problem

= minimum least squares solution given by solution (in d) of:

(AT A) d= ATD

2X2 2x1 2x1

S & | V- &0

AT A Alp

= The summations are over all pixels in the K x K window
= This technique was first proposed by Lucas & Kanade (1981)

= Note: solution is at sub-pixel precision, that is you can get answer like
u= 0.7 and v =-0.33

= Contrast this with discrete search: to find answer at sub-pixel precision,
you have to search at sub-pixel precision (usually)

Conditions for solvability

= Optimal (u, v) satisfies Lucas-Kanade equation

S & | - &0

AT A Alp

= When is this solvable?
= ATA should be invertible
= ATA entries should not be too small (noise)
= ATA should be well-conditioned
= A,/ A, should not be too large (A, = larger eigenvalue)

= The eigenvectors of ATA relate to edge direction and
magnitude

— gradients very large or very small
— large A,, small A,

Low texture region

S vi(vn?!
— gradients have small magnitude
—small A,, small A,

High textured region

S vi(vn! =

— gradients are different, large magnitudeé ’
—large A,, large A,

Observation

= This is a two image problem BUT

= Can measure sensitivity by just looking at one of the
images!

= This tells us which pixels are easy to track, which are
hard

= very useful for feature tracking

Errors in Lucas-Kanade

= What are the potential causes of errors in this
procedure?

= Suppose ATA is easily invertible
= Suppose there is not much noise in the image

= When our assumptions are violated
= Brightness constancy is not satisfied
= The motion is not small
= A point does not move like its neighbors
= window size Is too large
= what is the ideal window size?

Iterative Refinement

= [terative Lucas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-
Kanade equations
2. Warp H towards | using the estimated flow field
- use image warping techniques
3. Repeat until convergence

Optical Flow Results

[ucas-Kanade
without pyramids

Fails in areas of large
OO

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Revisiting the small motion assumption

= |s this motion small enough?

= Probably not—it’'s much larger than one pixel How
might we solve this problem?

Reduce the resolution!

20 40 B0 50 100 120 140 160 10 20 30 40 50 &0 70 J:v) a0

Coarse-to-fine optical flow estimation

u=1.25 pixels

u=2.5 pixels

u=>5 pixels

Gaussian pyramid of image H Gaussian pyramid of image I

Coarse-to-fine optical flow estimation

Gaussian pyramid of image H Gaussian pyramid of image I

Image warping

= Given a coordinate transform (x’,y’) = h(x,y) and a
source image f(x,y), how do we compute a
transformed image g(x’,y’) = (T(x,y))?

Forward warping

= Send each pixel f(x,y) to its corresponding
location

(x,y’) = T(x,y) in the second image

Q: what if pixel lands “between” two pixels?

Forward warping

T
i L

Y fy) ey

= Send each pixel f(x,y) to its corresponding
location

(x,y’) = T(x,y) in the second image

Q: what if pixel lands “between” two pixels?

A: distribute color among neighboring pixels (x',y’)
— Known as “splatting”

Optical Flow Results

[.ucas-Kanade with Pyramids

- - |_"‘-"'\.|_..__
- - B e R
§ o i"’“

B o o e L R
Pt T ——— —
o e i e e

T e p——
- o v T

"-u.""-__________

s TRe s I8 b e B hh r lae ke | ke m R o AL O, PRI o e s =ET
HEEHEE R HE Imrmmemmames EEEEEE R R HEEL -] L

* From Khurram Hassan-Shafigue CAP5415 Computer Vision 2003

Motion tracking

= Suppose we have more than two images
= How to track a point through all of the images?

= |n principle, we could estimate motion between each pair of
consecutive frames

= Given point in first frame, follow arrows to trace out it’s path

= Problem: DRIFT

= small errors will tend to grow and grow over time—the point will drift
way off course
= Feature Tracking

= Choose only the points (“features”) that are easily tracked

= How to find these features?

= windows where »_ VI(VI)' hastwo large
eigenvalues

= (Called the Harris Corner Detector

Feature Detection

]
O o 0
0]
O s o
o
o o
l . DDGD
o R Cwa o
X e -
Ehte A - 0
O
()

Tracking features

= Feature tracking

= Compute optical flow for that feature for each
consecutive H, |

= When will this go wrong?
= Qcclusions—feature may disappear
= need mechanism for deleting, adding new features
= Changes in shape, orientation
= allow the feature to deform
= Changes in color
= Large motions
= will pyramid techniques work for feature tracking?

Tracking Over Many Frames

= Feature tracking with m frames

1. Select features in first frame
2. Given feature in frame i, compute position in i+1
3. Select more features if needed
4. 1=1+1
5. Ifi<m, go to step 2
= [ssues

= Discrete search vs. Lucas Kanade?
= depends on expected magnitude of motion
= discrete search is more flexible
= Compare feature in frame i to i+1 or frame 1 to i+1?
= affects tendency to drift..
= How big should search window be?
= too small: lost features. Too large: slow

