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K Nearest Neighbor Classifier



Today

• kNN classifier - the simplest classifier on 

earth

• matlab implementation of kNN



k-Nearest Neighbors

• classify an unknown example with the most 

common class among k closest examples

• “tell me who your neighbors are, and I’ll tell you 

who  you are”

• Example:

• k = 3

• 2 sea bass, 1 

salmon

• Classify as sea 

bass lightness

length



kNN: Multiple Classes

• Easy to implement for multiple classes

• Example for k = 5

• 3 fish species:  salmon, sea bass, eel 

lightness

length

• 3 sea bass, 1 eel, 1 salmon ⇒⇒⇒⇒ classify as sea bass



• In theory, if infinite number of samples 

available, the larger is k, the better is 

classification 

• But the caveat is that all k neighbors have to be 

close 

• Possible when infinite # samples available

• Impossible in practice since # samples is finite

kNN: How to Choose k?



kNN: How to Choose k?
• Rule of thumb is k = sqrt(n), n is number of 

examples

• interesting theoretical properties

• In practice, k = 1 is often used for efficiency, but can 

be sensitive to “noise”

noisy sample

1 NN

every example in the blue 

shaded  area will be 

misclassified as the blue class

3 NN

every example in the blue 

shaded  area will be classified 

correctly as the red class



kNN: How to Choose k?
• larger k may improve performance, but too large k destroys 

locality, i.e. end up looking at samples that are not neighbors 

• cross-validation (study later) may be used to choose k

picture from R. Gutierrez-Osuna



• kNN is simple and intuitive, but does it work?

• Theoretically, the best error rate is the Bayes rate E*
• Bayes error rate is the best (smallest) error rate a classifier can have, for 

a given problem, but we do not study it in this course

• Assume we have an unlimited number of samples

• kNN leads to an error rate greater than E*

• But even for k =1,  as  n → ∞, it can be shown that 
kNN error rate is smaller than 2E*

• As we increase k, the upper bound on the error gets 
better, that is the error rate (as  n → ∞) for the kNN
rule is smaller than cE*,with smaller c for larger k

• If we have lots of samples, kNN works well

kNN: How Well does it Work?



1NN Visualization

• Voronoi tesselation is useful for visualization

decision boundary
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kNN Selection of Distance

• So far we assumed we use Euclidian Distance 

to find the nearest neighbor:

• Euclidean distance treats each feature as 

equally important

• However some features (dimensions) may be 

much more discriminative than other 

features 
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kNN Distance Selection: Extreme Example

• feature 1 gives the correct class: 1 or 2

• feature 2 gives irrelevant number from 100 to 200

• dataset: [1  150] 

[2  110]

• classify   [1  100]

• [1  100] is misclassified!

• The denser the samples, the less of this problem

• But we rarely have samples dense enough



1 1.2 1.4 1.6 1.8 2
100

120

140

160

180

• Decision boundary is in red, and is really wrong because

• feature 1 is discriminative, but it’s scale is small

• feature 2 gives no class information but its scale is large, it 

dominates distance calculation 

kNN Distance Selection: Extreme Example
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kNN: Feature Normalization

• Notice that 2 features are on different scales:

• First feature takes values between 1 or 2

• Second feature takes values between 100 to 200

• Idea: normalize features to be on the same scale

• Different normalization approaches

• Linearly scale the range of each feature to be, say, in 

range  [0,1]



kNN: Feature Normalization

• Linearly scale to 0 mean variance 1:

• If Z is a random variable of mean m and variance ϬϬϬϬ2, 

then (Z - m)/ϬϬϬϬ has mean 0 and variance 1

• For each feature f  let the new rescaled feature be                                 

• C is a matrix with all samples stored as rows, in Matlab

can normalize all features simultaneously:

Cnew=(C-repmat(mean(C),size(C,1),1))*diag(1./std(C))

• Let us apply this normalization to previous example

σ

µ−
= old

new

f
f
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kNN: Feature Normalization
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discriminative  
features

noisy 
features

kNN: Selection of Distance

• Feature normalization does not help in high dimensional 

spaces if most features are irrelevant

• If the number of useful features is smaller than the 

number of  noisy features, Euclidean distance is 

dominated by noise
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kNN: Feature Weighting

• Scale each feature by its importance for classification

• Can use our prior knowledge about which features are 

more important

• Can learn the weights wk using cross-validation (to be 

covered later)



kNN: Computational Complexity

• Basic kNN algorithm stores all examples

• Suppose we have n examples each of dimension d

• O(d) to compute distance to one example 

• O(nd) to find one nearest neighbor

• O(knd) to  find k closest examples examples

• Thus total complexity is O(knd) 

• Very expensive for a large number of samples

• But we need a large number of samples for kNN to 
work well!



remove

Reducing Complexity: editing 1NN

• If all Voronoi neighbors have the same class, a sample is 

useless, remove it

• Number of samples decreases

• Decision boundary does not change



Reducing Complexity: Partial Distance

• Have current k closes samples

• Abort distance computation if partial distance is already 

greater than the full distance to the current k closest 

samples

• Advantages: 

• complexity decreases

• we are guaranteed to find closes neighbor(s)

• Disadvantages:

• how much complexity decreases depends on our luck 

and data layout
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kNN in Matlab

• Want to classify newSample = [4 7]



numClass1      = size(Class1,1);

numClass2      = size(Class2,1);

totalSamples = numClass1+numClass2;

combinedSamples = [Class1;Class2];

trueClass = [zeros(numClass1,1)+1;zeros(numClass2,1)+2;];

testMatrix = repmat(newSample,totalSamples,1);

absDiff = abs(combinedSamples-testMatrix);

absDiff = absDiff.^2;

dist             = sum(absDiff,2);

[Y,I]                   = sort(dist);

neighborsInd = I(1:k);

neighbors        = trueClass(neighborsInd);

class1   = find(neighbors == 1);

class2   = find(neighbors == 2);

joint     = [size(class1,1);size(class2,1)];

[value class] = max(joint);

[ ]74=newSamle

3k =

kNN in Matlab without Loops
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numClass1     = size(Class1,1);

numClass2     = size(Class2,1);

totalSamples = numClass1+numClass2;

combinedSamples = [Class1;Class2];

trueClass = [zeros(numClass1,1)+1;zeros(numClass2,1)+2;];
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[ ]74=newSample

numClass1   = 3

numClass2   = 4

totalSamples = 7
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kNN in Matlab



testMatrix = repmat(newSample,totalSamples,1);

absDiff = abs(combinedSamples-testMatrix);

absDiff = absDiff.^2;

dist             = sum(absDiff,2);

[ ]74=newSample
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kNN in Matlab



[Y,I]                   =  sort(dist);

neighborsInd =  I(1:k);

neighbors        =  trueClass(neighborsInd);
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kNN in Matlab



class1  = find(neighbors == 1);

class2  = find(neighbors == 2);

joint    = [size(class1,1);size(class2,1)];

[value class] = max(joint);
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kNN in Matlab
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Video

• http://videolectures.net/aaai07_bosch_knnc/



• Advantages

• Can be applied to the data from any distribution

• for example, data does not have to be separable with a linear 
boundary

• Very simple and intuitive

• Good classification if the number of samples is large enough

• Disadvantages

• Choosing k may be tricky

• Test stage is computationally expensive

• No training stage, all the work is done during the test stage

• This is actually the opposite of what we want. Usually we can afford 
training step to take a long time, but we want fast test step

• Need large number of samples for accuracy

kNN Summary


