
CS4442/9542b

Artificial Intelligence II

prof. Olga Veksler

Lecture 3

Machine Learning

K Nearest Neighbor Classifier

Today

• kNN classifier - the simplest classifier on

earth

• matlab implementation of kNN

k-Nearest Neighbors

• classify an unknown example with the most

common class among k closest examples

• “tell me who your neighbors are, and I’ll tell you

who you are”

• Example:

• k = 3

• 2 sea bass, 1

salmon

• Classify as sea

bass lightness

length

kNN: Multiple Classes

• Easy to implement for multiple classes

• Example for k = 5

• 3 fish species: salmon, sea bass, eel

lightness

length

• 3 sea bass, 1 eel, 1 salmon ⇒⇒⇒⇒ classify as sea bass

• In theory, if infinite number of samples

available, the larger is k, the better is

classification

• But the caveat is that all k neighbors have to be

close

• Possible when infinite # samples available

• Impossible in practice since # samples is finite

kNN: How to Choose k?

kNN: How to Choose k?
• Rule of thumb is k = sqrt(n), n is number of

examples

• interesting theoretical properties

• In practice, k = 1 is often used for efficiency, but can

be sensitive to “noise”

noisy sample

1 NN

every example in the blue

shaded area will be

misclassified as the blue class

3 NN

every example in the blue

shaded area will be classified

correctly as the red class

kNN: How to Choose k?
• larger k may improve performance, but too large k destroys

locality, i.e. end up looking at samples that are not neighbors

• cross-validation (study later) may be used to choose k

picture from R. Gutierrez-Osuna

• kNN is simple and intuitive, but does it work?

• Theoretically, the best error rate is the Bayes rate E*
• Bayes error rate is the best (smallest) error rate a classifier can have, for

a given problem, but we do not study it in this course

• Assume we have an unlimited number of samples

• kNN leads to an error rate greater than E*

• But even for k =1, as n → ∞, it can be shown that
kNN error rate is smaller than 2E*

• As we increase k, the upper bound on the error gets
better, that is the error rate (as n → ∞) for the kNN
rule is smaller than cE*,with smaller c for larger k

• If we have lots of samples, kNN works well

kNN: How Well does it Work?

1NN Visualization

• Voronoi tesselation is useful for visualization

decision boundary

() bababaD
k

kk ⋅=−= ∑ 2
),(

kNN Selection of Distance

• So far we assumed we use Euclidian Distance

to find the nearest neighbor:

• Euclidean distance treats each feature as

equally important

• However some features (dimensions) may be

much more discriminative than other

features

() () 5015010011)
150

1
,

100

1
(

22
=−+−=
















D

() () 5.1011010021)
110

2
,

100

1
(

22
=−+−=
















D

kNN Distance Selection: Extreme Example

• feature 1 gives the correct class: 1 or 2

• feature 2 gives irrelevant number from 100 to 200

• dataset: [1 150]

[2 110]

• classify [1 100]

• [1 100] is misclassified!

• The denser the samples, the less of this problem

• But we rarely have samples dense enough

1 1.2 1.4 1.6 1.8 2
100

120

140

160

180

• Decision boundary is in red, and is really wrong because

• feature 1 is discriminative, but it’s scale is small

• feature 2 gives no class information but its scale is large, it

dominates distance calculation

kNN Distance Selection: Extreme Example

minmax

min

oldold

oldold
new

ff

ff
f

−

−
=

kNN: Feature Normalization

• Notice that 2 features are on different scales:

• First feature takes values between 1 or 2

• Second feature takes values between 100 to 200

• Idea: normalize features to be on the same scale

• Different normalization approaches

• Linearly scale the range of each feature to be, say, in

range [0,1]

kNN: Feature Normalization

• Linearly scale to 0 mean variance 1:

• If Z is a random variable of mean m and variance ϬϬϬϬ2,

then (Z - m)/ϬϬϬϬ has mean 0 and variance 1

• For each feature f let the new rescaled feature be

• C is a matrix with all samples stored as rows, in Matlab

can normalize all features simultaneously:

Cnew=(C-repmat(mean(C),size(C,1),1))*diag(1./std(C))

• Let us apply this normalization to previous example

σ

µ−
= old

new

f
f

-1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

kNN: Feature Normalization

() () ()∑∑∑ −+−=−=
j

jj

i

ii

k

kk babababaD
222

),(

discriminative
features

noisy
features

kNN: Selection of Distance

• Feature normalization does not help in high dimensional

spaces if most features are irrelevant

• If the number of useful features is smaller than the

number of noisy features, Euclidean distance is

dominated by noise

()∑ −=
k

kkk bawbaD
2

),(

kNN: Feature Weighting

• Scale each feature by its importance for classification

• Can use our prior knowledge about which features are

more important

• Can learn the weights wk using cross-validation (to be

covered later)

kNN: Computational Complexity

• Basic kNN algorithm stores all examples

• Suppose we have n examples each of dimension d

• O(d) to compute distance to one example

• O(nd) to find one nearest neighbor

• O(knd) to find k closest examples examples

• Thus total complexity is O(knd)

• Very expensive for a large number of samples

• But we need a large number of samples for kNN to
work well!

remove

Reducing Complexity: editing 1NN

• If all Voronoi neighbors have the same class, a sample is

useless, remove it

• Number of samples decreases

• Decision boundary does not change

Reducing Complexity: Partial Distance

• Have current k closes samples

• Abort distance computation if partial distance is already

greater than the full distance to the current k closest

samples

• Advantages:

• complexity decreases

• we are guaranteed to find closes neighbor(s)

• Disadvantages:

• how much complexity decreases depends on our luck

and data layout












=

45
73
42

1class
















=

86
107
95
83

2class

kNN in Matlab

• Want to classify newSample = [4 7]

numClass1 = size(Class1,1);

numClass2 = size(Class2,1);

totalSamples = numClass1+numClass2;

combinedSamples = [Class1;Class2];

trueClass = [zeros(numClass1,1)+1;zeros(numClass2,1)+2;];

testMatrix = repmat(newSample,totalSamples,1);

absDiff = abs(combinedSamples-testMatrix);

absDiff = absDiff.^2;

dist = sum(absDiff,2);

[Y,I] = sort(dist);

neighborsInd = I(1:k);

neighbors = trueClass(neighborsInd);

class1 = find(neighbors == 1);

class2 = find(neighbors == 2);

joint = [size(class1,1);size(class2,1)];

[value class] = max(joint);

[]74=newSamle

3k =

kNN in Matlab without Loops












=

45
73
42

1class
















=

86
107
95
83

2class

numClass1 = size(Class1,1);

numClass2 = size(Class2,1);

totalSamples = numClass1+numClass2;

combinedSamples = [Class1;Class2];

trueClass = [zeros(numClass1,1)+1;zeros(numClass2,1)+2;];












=

45
73
42

1class
















=

86
107
95
83

2class

[]74=newSample

numClass1 = 3

numClass2 = 4

totalSamples = 7























=

86
107
95
83
45
73
42

mplescombinedSa





















=

2
2
2
2
1
1
1

trueClass

kNN in Matlab

testMatrix = repmat(newSample,totalSamples,1);

absDiff = abs(combinedSamples-testMatrix);

absDiff = absDiff.^2;

dist = sum(absDiff,2);

[]74=newSample





















=

74
74
74
74
74
74
74

testMatrix























=

86
107
95
83
45
73
42

mplescombinedSa























=

12
33
21
11
31
01
32

absDiff























=

14
99
41
11
91
01
94

absDiff























=

5
18
5
2

10
1

13

dist





















=

2
2
2
2
1
1
1

trueClass

kNN in Matlab

[Y,I] = sort(dist);

neighborsInd = I(1:k);

neighbors = trueClass(neighborsInd);























=

5
18
5
2

10
1

13

dist























=

18
13
10
5
5
2
1

Y





















=

6
1
3
7
5
4
2

I












=

5
4
2

ndneighborsI
3k =











=

2
2
1

neighbors





















=

2
2
2
2
1
1
1

trueClass

kNN in Matlab

class1 = find(neighbors == 1);

class2 = find(neighbors == 2);

joint = [size(class1,1);size(class2,1)];

[value class] = max(joint);












=

2
2
1

neighbors
[]11class =





= 3
22class





= 2
1intjo

2class =

kNN in Matlab












=

2
2
1

neighbors

kNN in Matlab

Video

• http://videolectures.net/aaai07_bosch_knnc/

• Advantages

• Can be applied to the data from any distribution

• for example, data does not have to be separable with a linear
boundary

• Very simple and intuitive

• Good classification if the number of samples is large enough

• Disadvantages

• Choosing k may be tricky

• Test stage is computationally expensive

• No training stage, all the work is done during the test stage

• This is actually the opposite of what we want. Usually we can afford
training step to take a long time, but we want fast test step

• Need large number of samples for accuracy

kNN Summary

