CS4442/9542b
Artificial Intelligence II
prof. Olga Veksler

Lecture 3

Machine Learning
K Nearest Neighbor Classifier

Today

e kNN classifier - the simplest classifier on
earth

e matlab implementation of kNN

k-Nearest Neighbors

classify an unknown example with the most
common class among k closest examples

“tell me who your neighbors are, and I’ll tell you

who you are”

Example:
k=3

2 sea bass, 1
salmon

Classify as sea
bass

length

A

\>

>
lightness

KNN: Multiple Classes

e FEasytoimplement for multiple classes
e Examplefork=5
e 3 fish species: salmon, sea bass, eel

® 3seabass, 1 eel, 1 salmon = classify as sea bass

length B S 55
D

lightness

kKNN: How to Choose k?

e In theory, if infinite number of samples
available, the larger is k, the better is
classification

e But the caveat is that all k neighbors have to be
close
e Possible when infinite # samples available
e |[mpossible in practice since # samples is finite

kKNN: How to Choose k?

e Rule of thumb is k = sgrt(n), n is number of
examples

. interesting theoretical properties

e |n practice, k=1 is often used for efficiency, but can
be sensitive to “noise”

noisy sample

]
m
) .
every example in the blue every example in the blue
shaded area will be shaded area will be classified

misclassified as the blue class correctly as the red class

kKNN: How to Choose k?

larger k may improve performance, but too large k destroys
locality, i.e. end up looking at samples that are not neighbors

cross-validation (study later) may be used to choose k

1-NN 5-NN 20-NN

ot 1 oaf _ 1 08t i‘- .=

nEr 3 ;‘-_ ~3 39 3, 1 0ef 5 j: '-'=-‘--‘==£__3 3; 3 1 o6} . : . 5.‘3 35

Y 4R S SR » 22 SR L T o

| £ 27 *1' 33‘] i Y lé 1\1.“-' ai'] o3 ; ?1 E“%si‘
ol --.,1;5 1?]1“ -3 | ol 3 6 1?;1?‘1 y, ¥3 | ol 5 1}111“%553 3
) 3 A2t N2 23 * Rt I N 1 Ul A

0.z2F -_:._3:2- 2 112?.' g % 1 QzF i 2 ¥ 1:‘2_2_.‘-..3§ 0'2"22'.-' 32 * 11 22 -43-“%

oaf ‘5122 52 __f 1 a4} R 2 ?,nfr aaf 3-2....“_'&?;‘3'!

P [o weE P

o K ST . B3 .. ‘/_,,.:' fn? 93

-1 03 a 05 1
Hy

picture from R. Gutierrez-Osuna

kKNN: How Well does it Work?

KNN is simple and intuitive, but does it work?

Theoretically, the best error rate is the Bayes rate E*

e Bayes error rate is the best (smallest) error rate a classifier can have, for
a given problem, but we do not study it in this course

Assume we have an unlimited number of samples
kNN leads to an error rate greater than E*

But even for k=1, as n — o9, it can be shown that
kNN error rate is smaller than 2E*

As we increase k, the upper bound on the error gets
better, that is the error rate (as n — o) for the kNN
rule is smaller than cE*,with smaller ¢ for larger k

If we have lots of samples, kNN works well

e \/oronoi tesselation is useful for visualization

decision boundary

kNN Selection of Distance

e So far we assumed we use Euclidian Distance
to find the nearest neighbor:

D(a,b) = \/Z (a, —b,) = Ja-b

e Euclidean distance treats each feature as
equally important

e However some features (dimensions) may be
much more discriminative than other
features

KNN Distance Selection: Extreme Example

e feature 1 gives the correct class: 1 or 2
e feature 2 gives irrelevant number from 100 to 200
e dataset: [1 150]
[2 110]
e classify [1 100]
1 1

D | (1-17 +(100-150) =50
(_100_ _150) \/)

D(_ = 2_) JA=2) +(100-110) =10.5
1100 110 '

e [1 100] is misclassified!
e The denser the samples, the less of this problem
e But we rarely have samples dense enough

kNN Distance Selection: Extreme Example

1809 ‘ | ‘ | ‘

®
160

140" ®
®
1200

% 42 14 16 18 2
e Decision boundary isin red, and is really wrong because

e feature 1 is discriminative, but it’s scale is small

e feature 2 gives no class information but its scale is large, it
dominates distance calculation

kKNN: Feature Normalization

Notice that 2 features are on different scales:

First feature takes values between 1 or 2

Second feature takes values between 100 to 200
Idea: normalize features to be on the same scale
Different normalization approaches

Linearly scale the range of each feature to be, say, in

range [0,1]
min
_ J old J old

f new f max min

old old

kKNN: Feature Normalization

Linearly scale to 0 mean variance 1:

If Zis a random variable of mean m and variance &7,
then (Z- m)/6 has mean 0 and variance 1

For each feature f let the new rescaled feature be

fo= Joa —H
O

C is a matrix with all samples stored as rows, in Matlab
can normalize all features simultaneously:

=(C-repmat(mean(C),size(C,1),1))*diag(1./std(C))

Cnew

Let us apply this normalization to previous example

1.5

0.5-

1.5

KNN: Selection of Distance

e Feature normalization does not help in high dimensional
spaces if most features are irrelevant

D(a,b):\/zkl(ak—bk)2 =\/Z(ai—bi)2+zj:(aj_bj)2

discriminative noisy
features features

e |f the number of useful features is smaller than the
number of noisy features, Euclidean distance is
dominated by noise

KNN: Feature Weighting

e Scale each feature by its importance for classification

D(a,b) = \/Z

e Can use our prior knowledge about which features are
more important

e Can learn the weights w, using cross-validation (to be
covered later)

KNN: Computational Complexity

Basic kNN algorithm stores all examples

Suppose we have n examples each of dimension d
O(d) to compute distance to one example

O(nd) to find one nearest neighbor

O(knd) to find k closest examples examples

Thus total complexity is O(knd)

Very expensive for a large number of samples

But we need a large number of samples for KNN to
work well!

Reducing Complexity: editing 1NN

e |f all Voronoi neighbors have the same class, a sample is
useless, remove it

e Number of samples decreases
e Decision boundary does not change

Reducing Complexity: Partial Distance

e Have current k closes samples

e Abort distance computation if partial distance is already
greater than the full distance to the current k closest

samples

e Advantages:
e complexity decreases
e we are guaranteed to find closes neighbor(s)

e Disadvantages:

e how much complexity decreases depends on our luck
and data layout

classl =

class2 =

ONUTw
00 (5 © 00

e \Want to classify newSample = [4 7]

KNN in Matlab without Loops

numClassl =size(Classl,1); | . E 4
numClass2 = size(Class2,1); classl=|3 7
totalSamples = numClassl+numClass2; B 4_
combinedSamples = [Class1;Class2];
trueClass = [zeros(numClass1,1)+1;zeros(numClass2,1)+2;];
testMatrix = repmat(newSample,totalSamples,1); 3 g |
absDiff = abs(combinedSamples-testMatrix); 5 g
absDiff = absDiff.A2; class2=|5 15
dist = sum(absDiff,2);

() 6 8
[Y,1] = sort(dist); = -
neighborsind = I(1:k);
neighbors = trueClass(neighborsind);

newSamle = [4 7]

classl = find(neighbors == 1);
class2 = find(neighbors == 2);
joint = [size(classl,1);size(class2,1)]; K

3

[value class] = max(joint);

KNN in Matlab

2 4
numClassl =size(Classl,1); class1=13 7
numClass2 = size(Class2,1); 5 4]
totalSamples = numClassl+numClass2; —
combinedSamples = [Class1;Class2]; dassy—|> 9
trueClass = [zeros(numClass1,1)+1;zeros(numClass2,1)+2;]; (75 180

newSample = [4 7]

numcClassl =3
numcClass2 =4
totalSamples = 7

combinedSamples = trueClass =

ANN WO WN
S PN ENRNEN

NN

KNN in Matlab

testMatrix = repmat(newSample,totalSamples,1); _
absDiff = abs(combinedSamples-testMatrix); BEWSAmpie [4 7]
absDiff = absDiff.A2;
dist = sum(absDiff,2);
- = = = 2 4
4 7 2 3 3 7
4 7 1 0 _ 5 4
|4 7 . 1 3 combinedSamples=|3 8
testMatrix=|4 7 absDiff =1 1 5 9
4 7 1 2 / 10
4 7 3 3 6 8
4 7| 2 1)
49 137 ;
/9 10 /
absDiff =| 1 1 dist=| 2 trueClass = 2
1 4 5 2
9 9 18 P,
4 1 | 5 | - -

KNN in Matlab

[Y,1] = sort(dist); 13
neighborsind = 1(1:k); 1
neighbors = trueClass(neighborsind); 10
dist=| 2
5
18
1 (2| ==
2 4 SE
5 5 1
Y=|5 =7 1
10 3 trueClass =| 2
13 1 2
18 6 2
- 2
2 1
neighborsind =| 4 neighbors =| 2
5 2 k=3

KNN in Matlab

classl = find(neighbors == 1);
class2 = find(neighbors == 2);
joint = [size(class1,1);size(class2,1)];

[value class] = max(joint);

1
neighbors = {2}

class1=|1] 2
class2 = g}
joint = [;}

class =2

e http://videolectures.net/aaai07 bosch knnc/

kNN Summary

e Advantages

e Can be applied to the data from any distribution

e for example, data does not have to be separable with a linear
boundary

e Very simple and intuitive
e Good classification if the number of samples is large enough

e Disadvantages
e Choosing k may be tricky

e Test stage is computationally expensive
e No training stage, all the work is done during the test stage

e This is actually the opposite of what we want. Usually we can afford
training step to take a long time, but we want fast test step

e Need large number of samples for accuracy

