CS4442/9542b
Artificial Intelligence II
prof. Olga Veksler

Lecture 5
Machine Learning

Boosting
Boosting: Motivation

• Hard to design accurate classifier which generalizes well

• Easy to find many rule of thumb or weak classifiers
 • a classifier is weak if it is slightly better than random guessing
 • example: if an email has word “money” classify it as spam, otherwise classify it as not spam
 • likely to be better than random guessing

• Can we combine several weak classifiers to produce an accurate classifier?
 • Question people have been working on since 1980’s
 • Ada-Boost (1996) was the first practical boosting algorithm
Ada Boost

- Assume 2-class problem, with labels +1 and -1
 - y^i in {-1,1}
- Ada boost produces a discriminant function:
 $$g(x) = \sum_{t=1}^{T} \alpha_t h_t(x) = \alpha_1 h_1(x) + \alpha_2 h_2(x) + ... \alpha_T h_T(x)$$

- Where $h_t(x)$ is a weak classifier, for example:
 $$h_t(x) = \begin{cases}
 -1 & \text{if email has word “money”} \\
 1 & \text{if email does not have word “money”}
 \end{cases}$$

- The final classifier is the sign of the discriminant function
 $$f_{\text{final}}(x) = \text{sign}[g(x)]$$
Idea Behind Ada Boost

• Algorithm is iterative
• Maintains distribution of weights over the training examples
• Initially weights are equal
• Main Idea: at successive iterations, the weight of misclassified examples is increased
• This forces the algorithm to concentrate on examples that have not been classified correctly so far
Idea Behind Ada Boost

- Examples of high weight are shown more often at later rounds
- Face/nonface classification problem:

Round 1

<table>
<thead>
<tr>
<th>Example</th>
<th>Round 1 Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/7</td>
</tr>
</tbody>
</table>

Best weak classifier: ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗

Change weights: 1/16 1/4 1/16 1/16 1/4 1/16 1/4

Round 2

<table>
<thead>
<tr>
<th>Example</th>
<th>Round 2 Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/8</td>
</tr>
<tr>
<td></td>
<td>1/32</td>
</tr>
<tr>
<td></td>
<td>11/32</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>1/8</td>
</tr>
<tr>
<td></td>
<td>1/32</td>
</tr>
<tr>
<td></td>
<td>1/32</td>
</tr>
</tbody>
</table>

Best weak classifier: ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓

Change weights: 1/8 1/32 11/32 1/2 1/8 1/32 1/32
Idea Behind Ada Boost

Round 3

• out of all available weak classifiers, we choose the one that works best on the data we have at round 3
• we assume there is always a weak classifier better than random (better than 50% error)
• image is half of the data given to the classifier
• chosen weak classifier has to classify this image correctly
More Comments on Ada Boost

- Ada boost is very simple to implement, provided you have an implementation of a “weak learner”
- Will work as long as the “basic” classifier $h_t(x)$ is at least slightly better than random
 - will work if the error rate of $h_t(x)$ is less than 0.5
 - 0.5 is the error rate of a random guessing for a 2-class problem
- Can be applied to boost any classifier, not necessarily weak
 - but there may be no benefits in boosting a “strong” classifier
Ada Boost for 2 Classes

Initialization step: for each example \(x \), set
\[
D(x) = \frac{1}{N},
\]
where \(N \) is the number of examples

Iteration step (for \(t = 1 \ldots T \)):

1. Find best weak classifier \(h_t(x) \) using weights \(D(x) \)
2. Compute the error rate \(\varepsilon_t \) as
\[
\varepsilon_t = \sum_{i=1}^{N} D(x^i) \cdot I[y^i \neq h_t(x^i)]
\]
3. Compute weight \(\alpha_t \) of classifier \(h_t \)
\[
\alpha_t = \log \left(\frac{(1- \varepsilon_t) / \varepsilon_t} \right)
\]
4. For each \(x^i \), \(D(x^i) = D(x^i) \cdot \exp(\alpha_t \cdot I[y^i \neq h_t(x^i)]) \)
5. Normalize \(D(x^i) \) so that
\[
\sum_{i=1}^{N} D(x^i) = 1
\]

\[
f_{\text{final}}(x) = \text{sign} \left[\sum \alpha_t h_t(x) \right]
\]
Ada Boost: Step 1

1. Find best weak classifier $h_t(x)$ using weights $D(x)$
 • some classifiers accept weighted samples, but most don’t
 • if classifier does not take weighted samples, sample from the training samples according to the distribution $D(x)$

 ![Re-sampled examples](image1)

 1/16 1/4 1/16 1/16 1/4 1/16 1/4

 • Draw k samples, each x with probability equal to $D(x)$:

 ![Re-sampled examples](image2)

 re-sampled examples
1. Find best weak classifier $h_t(x)$ using weights $D(x)$

- Give to the classifier the re-sampled examples:

- To find the best weak classifier, go through all weak classifiers, and find the one that gives the smallest error on the re-sampled examples

<table>
<thead>
<tr>
<th>weak classifiers</th>
<th>$h_1(x)$</th>
<th>$h_2(x)$</th>
<th>$h_3(x)$</th>
<th>\ldots</th>
<th>$h_m(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>errors</td>
<td>0.46</td>
<td>0.36</td>
<td>0.16</td>
<td></td>
<td>0.43</td>
</tr>
</tbody>
</table>

the best classifier $h_t(x)$ to choose at iteration t
2. Compute ε_t the error rate as

$$\varepsilon_t = \sum_{i=1}^{N} D(x^i) \cdot I[y^i \neq h_t(x^i)] = \begin{cases} 1 & \text{if } y^i \neq h_t(x^i) \\ 0 & \text{otherwise} \end{cases}$$

- ε_t is the weight of all misclassified examples added
- the error rate is computed over original examples, not the re-sampled examples
- If a weak classifier is better than random, then $\varepsilon_t < \frac{1}{2}$
3. compute weight α_t of classifier h_t

$$\alpha_t = \log \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right)$$

In example from previous slide:

$$\varepsilon_t = \frac{5}{16} \implies \alpha_t = \log \left(\frac{1 - \frac{5}{16}}{\frac{5}{16}} \right) = \log \frac{11}{5} \approx 0.8$$

- Recall that $\varepsilon_t < \frac{1}{2}$
- Thus $(1 - \varepsilon_t)/\varepsilon_t > 1 \implies \alpha_t > 0$
- The smaller is ε_t, the larger is α_t, and thus the more importance (weight) classifier $h_t(x)$

$$\text{final}(x) = \text{sign} \left[\sum \alpha_t h_t(x) \right]$$
4. For each \mathbf{x}^i, $D(\mathbf{x}^i) = D(\mathbf{x}^i) \cdot \exp(\alpha_t \cdot I[y^i \neq h_t(\mathbf{x}^i)])$

from previous slide $\alpha_t = 0.8$

- weight of misclassified examples is increased
5. Normalize $D(x^i)$ so that $\sum D(x^i) = 1$

from previous slide:

$$1/16 \quad 1/4 \quad 1/16 \quad 0.14 \quad 0.56 \quad 1/16 \quad 1/4$$

- after normalization

$$0.05 \quad 0.18 \quad 0.05 \quad 0.10 \quad 0.40 \quad 0.05 \quad 0.18$$

- In Matlab, if D is weights vector, normalize with

$$D = D./\text{sum}(D)$$
AdaBoost Example

- Initialization: all examples have equal weights

From “A Tutorial on Boosting” by Yoav Freund and Rob Schapire
AdaBoost Example

ROUND 1

\[h_1(x) = \text{sign}(3 - x_1) \]
AdaBoost Example

ROUND 2

$h_2(x) = \text{sign}(7 - x_1)$
AdaBoost Example

ROUND 3

\[h_3(x) = \text{sign}(x_2 - 4) \]

\[\varepsilon_3 = 0.14 \]

\[\alpha_3 = 0.92 \]
AdaBoost Example

\[f_{\text{final}}(x) = \begin{cases}
+1 & \text{if } \text{sign}(0.42x_1 + 0.65x_2 + 0.92) > 0 \\
-1 & \text{otherwise}
\end{cases} \]

- note non-linear decision boundary
AdaBoost Comments

• Can show that training error drops exponentially fast

\[
\text{Err}_{\text{train}} \leq \exp\left(-2 \sum_t \gamma_t^2\right)
\]

• Here \(\gamma_t = \varepsilon_t - 1/2 \), where \(\varepsilon_t \) is classification error at round \(t \)
• Example: let errors for the first four rounds be, 0.3, 0.14, 0.06, 0.03, 0.01 respectively. Then

\[
\text{Err}_{\text{train}} \leq \exp\left[-2\left(0.2^2 + 0.36^2 + 0.44^2 + 0.47^2 + 0.49^2\right)\right]
\]

\(\approx 0.19 \)
AdaBoost Comments

- We are really interested in the generalization properties of $f_{\text{FINAL}}(x)$, not the training error.
- AdaBoost was shown to have excellent generalization properties in practice:
 - the more rounds, the more complex is the final classifier, so overfitting is expected as the training proceeds.
 - but in the beginning researchers observed no overfitting of the data.
 - It turns out it does overfit data eventually, if you run it really long.
- It can be shown that boosting increases the margins of training examples, as iterations proceed:
 - larger margins help better generalization.
 - margins continue to increase even when training error reaches zero.
 - helps to explain empirically observed phenomena: test error continues to drop even after training error reaches zero.
AdaBoost Example

- zero training error
- larger margins helps better generalization

new (test) example

keep training

- zero training error
 Margin Distribution

<table>
<thead>
<tr>
<th>Iteration number</th>
<th>5</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>training error</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>test error</td>
<td>8.4</td>
<td>3.3</td>
<td>3.1</td>
</tr>
<tr>
<td>%margins ≤ 0.5</td>
<td>7.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Minimum margin</td>
<td>0.14</td>
<td>0.52</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Practical Advantages of AdaBoost

- Can construct arbitrarily complex decision regions
- Fast
- Simple
- Has only one parameter to tune, T
- Flexible: can be combined with any classifier
- Provably effective (assuming weak learner)
 - Shift in mind set: goal now is merely to find hypotheses that are better than random guessing
Caveats

• AdaBoost can fail if
 • weak hypothesis too complex (overfitting)
 • weak hypothesis too weak ($\gamma_t \rightarrow 0$ too quickly),
 • underfitting
• empirically, AdaBoost seems especially susceptible to noise
 • noise is the data with wrong labels
Applications

• Face Detection

• Object Detection

http://www.youtube.com/watch?v=2_0SmxvDbKs