Lecture 7
Machine Learning
Validation
and
Cross-Validation
Outline

- Performance evaluation and model selection methods
 - validation
 - cross-validation
 - k-fold
 - Leave-one-out
Regression

- In this lecture, it’s convenient to show examples in the context of regression.
- In regression, labels y^i are continuous.
- Classification/regression are solved very similarly.
- Everything we have done so far transfers to regression with very minor changes.
- Error: sum of distances from examples to the fitted model.
Training/Test Data Split

- Talked about splitting data in training/test sets
 - training data is used to fit parameters
 - test data is used to assess how classifier generalizes to new data
- What if classifier has “non-tunable” parameters?
 - a parameter is “non-tunable” if tuning (or training) it on the training data leads to overfitting
- Examples:
 - k in kNN classifier
 - number of hidden units in MNN
 - number of hidden layers in MNN
 - etc...
Example of Overfitting

- Want to fit a polynomial machine $f(x, w)$
- Instead of fixing polynomial degree, make it parameter d
 - learning machine $f(x, w, d)$
- Consider just three choices for d
 - degree 1
 - degree 2
 - degree 3
- Training error is a bad measure to choose d
 - degree 3 is the best according to the training error, but overfits the data
What about test error? Seems appropriate
- degree 2 is the best model according to the test error
- Except what do we report as the test error now?
- Test error should be computed on data that was not used for training at all
- Here used “test” data for training, i.e. choosing model
Validation data

- Same question when choosing among several classifiers
 - our polynomial degree example can be looked at as choosing among 3 classifiers (degree 1, 2, or 3)
- Solution: split the labeled data into three parts

<table>
<thead>
<tr>
<th>labeled data</th>
<th>Training ≈60%</th>
<th>Validation ≈20%</th>
<th>Test ≈20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train tunable parameters w</td>
<td>train other parameters, or to select classifier</td>
<td>use only to assess final performance</td>
<td></td>
</tr>
</tbody>
</table>
Training/Validation

labeled data

Training
≈60%

Training error:
computed on training examples

Validation
≈20%

Validation error:
computed on validation examples

Test
≈20%

Test error:
computed on test examples
Training/Validation/Test Data

- **Training Data**
- **Validation Data**
 - $d = 2$ is chosen
- **Test Data**
 - 1.3 test error computed for $d = 2$
Choosing Parameters: Example

- Need to choose number of hidden units for a MNN
 - The more hidden units, the better can fit training data
 - But at some point we overfit the data
Diagnosing Underfitting/Overfitting

Underfitting
• large training error
• large validation error

Just Right
• small training error
• small validation error

Overfitting
• small training error
• large validation error
Fixing Underfitting/Overfitting

• Fixing Underfitting
 • getting more training examples will not help
 • get more features
 • try more complex classifier
 • if using MNN, try more hidden units

• Fixing Overfitting
 • getting more training examples might help
 • try smaller set of features
 • Try less complex classifier
 • If using MNN, try less hidden units
Train/Test/Validation Method

• Good news
 • Very simple

• Bad news:
 • Wastes data
 • in general, the more data we have, the better are the estimated parameters
 • we estimate parameters on 40% less data, since 20% removed for test and 20% for validation data
 • If we have a small dataset our test (validation) set might just be lucky or unlucky

• Cross Validation is a method for performance evaluation that wastes less data
Small Dataset

Linear Model:
Mean Squared Error = 2.4

Quadratic Model:
Mean Squared Error = 0.9

Join the dots Model:
Mean Squared Error = 2.2
LOOCV (Leave-one-out Cross Validation)

For $k=1$ to R

1. Let (x^k,y^k) be the k example
LOOCV (Leave-one-out Cross Validation)

For $k=1$ to n

1. Let (x^k, y^k) be the kth example

2. Temporarily remove (x^k, y^k) from the dataset
LOOCV (Leave-one-out Cross Validation)

For $k=1$ to n

1. Let (x^k, y^k) be the kth example

2. Temporarily remove (x^k, y^k) from the dataset

3. Train on the remaining $n-1$ examples
LOOCV (Leave-one-out Cross Validation)

For $k=1$ to n

1. Let (x^k, y^k) be the kth example

2. Temporarily remove (x^k, y^k) from the dataset

3. Train on the remaining $n-1$ examples

4. Note your error on (x^k, y^k)
LOOCV (Leave-one-out Cross Validation)

For $k = 1$ to n

1. Let (x^k, y^k) be the kth example
2. Temporarily remove (x^k, y^k) from the dataset
3. Train on the remaining $n-1$ examples
4. Note your error on (x^k, y^k)

When you’ve done all points, report the mean error
LOOCV (Leave-one-out Cross Validation)

\[\text{MSE}_{\text{LOOCV}} = 2.12 \]
LOOCV for Quadratic Regression

$\text{MSE}_{\text{LOOCV}} = 0.962$
LOOCV for Join The Dots

\[\text{MSE}_{\text{LOOCV}} = 3.33 \]
Which kind of Cross Validation?

<table>
<thead>
<tr>
<th></th>
<th>Downside</th>
<th>Upside</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test-set</td>
<td>may give unreliable estimate of future performance</td>
<td>cheap</td>
</tr>
<tr>
<td>Leave-one-out</td>
<td>expensive</td>
<td>doesn’t waste data</td>
</tr>
</tbody>
</table>
Randomly break the dataset into k partitions in this example we’ll have $k=3$ partitions colored Red Green and Blue.)
• Randomly break the dataset into k partitions
• in example have $k=3$ partitions colored red green and blue
• For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
K-Fold Cross Validation

- Randomly break the dataset into k partitions
- In example have $k=3$ partitions colored red, green, and blue
- For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points
• Randomly break the dataset into k partitions
• in example have k=3 partitions colored red green and blue
• For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
• For the green partition: train on all points not in green partition. Find test-set sum of errors on green points
• For the red partition: train on all points not in red partition. Find the test-set sum of errors on red points
K-Fold Cross Validation

- Randomly break the dataset into k partitions
- in example have k=3 partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points
- For the red partition: train on all points not in red partition. Find the test-set sum of errors on red points
- Report the mean error

Linear Regression

$\text{MSE}_{3\text{FOLD}} = 2.05$
K-Fold Cross Validation

- Randomly break the dataset into k partitions
- in example have k=3 partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points
- For the red partition: train on all points not in red partition. Find the test-set sum of errors on red points
- Report the mean error

Quadratic Regression
\[\text{MSE}_{3\text{FOLD}} = 1.11 \]
Joint-the-dots MSE$_{3\text{FOLD}}$ = 2.93

- Randomly break the dataset into k partitions
- in example have $k=3$ partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points
- For the red partition: train on all points not in red partition. Find the test-set sum of errors on red points
- Report the mean error
<table>
<thead>
<tr>
<th>Which kind of Cross Validation?</th>
<th>Downside</th>
<th>Upside</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test-set</td>
<td>may give unreliable estimate of future performance</td>
<td>cheap</td>
</tr>
<tr>
<td>Leave-one-out</td>
<td>expensive</td>
<td>doesn’t waste data</td>
</tr>
<tr>
<td>10-fold</td>
<td>wastes 10% of the data, 10 times more expensive than test set</td>
<td>only wastes 10%, only 10 times more expensive instead of (n) times</td>
</tr>
<tr>
<td>3-fold</td>
<td>wastes more data than 10-fold, more expensive than test set</td>
<td>slightly better than test-set</td>
</tr>
<tr>
<td>N-fold</td>
<td>Identical to Leave-one-out</td>
<td></td>
</tr>
</tbody>
</table>
CV-based Model Selection

- We’re trying to decide which algorithm to use.
- We train each machine and make a table...

<table>
<thead>
<tr>
<th>f_i</th>
<th>Training Error</th>
<th>10-FOLD-CV Error</th>
<th>Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_3</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>f_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: Choosing “k” for a k-nearest-neighbor regression.

Step 1: Compute LOOCV error for six different model classes:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Training Error</th>
<th>10-fold-CV Error</th>
<th>Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>k=1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k=2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k=3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k=4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k=5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k=6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 2: Choose model that gave best CV score

Train it with all the data, and that’s the final model you’ll use
CV-based Model Selection

• Why stop at $k=6$?
 • No good reason, except it looked like things were getting worse as K was increasing

• Are we guaranteed that a local optimum of K vs LOOCV will be the global optimum?
 • No, in fact the relationship can be very bumpy

• What should we do if we are depressed at the expense of doing LOOCV for $k = 1$ through 1000?
 • Try: $k=1, 2, 4, 8, 16, 32, 64, \ldots, 1024$
 • Then do hillclimbing from an initial guess at k