
Name:

CS4442/9542: Artificial Intelligence II
Winter 2013: Quiz 2 Solution

Instructions:
Show all the work you do. Use the back of the page, if necessary. Calculators are allowed, laptops, cell

phones, or any other communication devices are not allowed. This is an open notes exam. However, the
sample quiz solution is not allowed.

1. (10%) Suppose our corpus is the following text:

I liked Herman. Herman was a hippopotamus. And Herman thought about his friend the Mouse. I
thought it made a lot of sense, for Herman the hippo to jump our fence. Now, Herman followed me
to my house, where he stayed about the pool, and made no noise, like a mouse.

Ignore punctuation, capitalization (i.e. “To” and “to” should be treated as the same word) and treat
the corpus as one continuous sentence.

(a) (5%) Using unigram model, which of the following sentences is more likely under ML estimation
and why? You do not have to compute the exact probabilities of each sentence, but may do so,
if you wish.

• Herman liked to jump

• I liked the pool

Solution:

C(Herman) = 5, C(liked) = 1, C(to) = 2, C(jump) = 1.
C(I) = 2, C(liked) = 1, C(the) = 3, C(pool) = 1.

The combined unigram counts for the first sentence are higher, so the probability of the first
sentence is higher.

(b) (5%) Now use the bigram model. Which of the following two sentences are more likely under
the ML estimation and why? Again, you do not have to compute the exact probabilities.

• Herman was a pool mouse

• I thought Herman was our mouse

Solution:

The bigram “a pool” is missing in the training set, so probability of the first sentence is zero.
The bigram “was our” is missing from the training set, so the probability of the second sentence
is zero. So none of them is likely. I actually messed up this quesion, I meant to make only one
of the sentences to be zero probability.

1

2. (30%) Our corpus is the following text:

Herman was a mouse. Herman lives in a house with a mouse.

Assume the vocabulary size V = 10. Use a bigram model and Good-Turing method for estimating the
probability of the unseen bigrams. Ignore punctuation. For the observed bigrams, use probabilities
based on ML estimation. You do not have to renormalize the numbers to get the true probabilities,
but if you want to, you may do so. What is the probability of the following bigrams. In your answer,
you can leave expressions not calculated out completely, that is something like 2/30− 1/6 is fine.

• mouse was

• Herman lives

• a mouse

Solution: Let us count the bigram first:

C(Herman was) = 1, C(was a) = 1, C(a mouse) = 2, C(mouse Herman) = 1, C(Herman lives) = 1,
C(lives in) = 1, C(in a) = 1, C(a house) = 1, C(house with) =1, C(with 1) = 1.

From the above counts, N1 = 9 and N2 = 1. There are total of 102 bigrams possible, but only 10
are observed. So N0 = 102 − 10 = 90. Remember that we take the training data set size to be the
number of words, so N = 12.

We estimate probability of unseen bigrams according to Good-Turing. The bigram “mouse was” is
unobserved, so

PGT (mouse was) = (0 + 1)
N1

N ·N0

=
9

12 · 90
=

1

120

The other two bigrams are observed, so we use ML estimation for them.

P (Herman lives) =
C(Herman lives)

N
=

1

12

P (a mouse) =
C(a mouse)

N
=

2

12
=

1

6

2

3. (30%)

Suppose we have a sentence To play pay, and possible POS tags are as follows:

To: PREP CONJ Play: NOUN VERB pay: NOUN VERB

Also, the log-likelihoods are as follows:

L(to|PREP) = 2 L(play|NOUN) = 1 L(pay|NOUN)= 4
L(to|CONJ) = 1 L(play|VERB) = 2 L(pay|VERB) = 2

L(VERB|PREP) = 10 L(NOUN|NOUN) = 13
L(NOUN|PREP) = 2 L(VERB | NOUN) = 2
L(VERB|CONJ) = 10 L(NOUN|VERB) = 1
L(NOUN|CONJ) = 2 L(VERB|VERB) = 7

(a) (20%) For the given sentence, build the graph for solving the POS tagging problem via dynamic
programming, like the one used in lecture notes. Show all the connections and the weight of all
connections and nodes.

Solution:

(b) (10%) Tag the sentence. You can do it by observation or by running dynamic programming. If
you do it by observation, justify with a couple of words. If you do dynamic programming, show
all the details.

Solution: It can be easilty done by observation for this graph, but I will run the full DP
algorithm:

Initialization:
C(to,prep) = 2, P(to,prep) = null; C(to,conj)= 1, P(to,conj) = null

Iteration 1:

C(play,noun) = 1+ min{C(to, prep) + 2, C(to, conj) + 2}= 3, P(play,noun) = (to,conj)
C(play,verb) = 2+ min{C(to, prep) + 10, C(to, conj) + 10}= 11, P(play,verb) = (to,conj)

Iteration 2:

C(pay,noun) = 4+ min{C(play, noun) + 13, C(play, verb) + 1}= 12, P(pay,noun) = (play,verb)
C(pay,verb) = 2+ min{C(play, noun) + 2, C(play, verb) + 7}= 5, P(pay,verb) = (play,noun)

The smallest cost path is 5, going through (pay,verb). Tracing back from (pay,verb) through
the parent array “P” the tagging is “conj noun verb”

3

4. (30%)

(a) (20%)

Suppose inverted index has 3 terms and 3 documents, and the term/document counts are as
follows:

doc1 =

[
term1 term2 term3

3 1 2

]
, doc2 =

[
term1 term2 term3

4 3 1

]
,

doc3 =

[
term1 term2 term3

1 2 1

]
.

Use term counts for the weights. User query is “term1 term2”, i.e. it has one occurrence
of term1, and one occurrence of term2. Using the cosine similarity, rank all the documents
according to their similarity to the query, where rank 1 means the highest similarity, and rank
3 means the lowest similarity. Show all work.

Solution:

Let us first normalize the documents:

d1 = [
3√
14

;
1√
14

;
2√
14

]

d2 = [
4√
26

;
3√
26

;
1√
26

]

d3 = [
1√
6
;

2√
6
;

1√
6
]

The query is q = [1 1 0]. Normalizing it for length (it is actually not necessary for relative
ranking, but still let’s do it):

q = [
1√
2
;

1√
2
; 0]

Now, cosign similarity is:

cos(d1, q) = d1 · q =
3√
14

· 1√
2
+

1√
14

· 1√
2
=

4√
28

≈ 0.76

cos(d2, q) = d1 · q =
4√
26

· 1√
2
+

3√
26

· 1√
2
=

7√
52

≈ 0.97

cos(d3, q) = d1 · q =
1√
6
· 1√

2
+

2√
6
· 1√

2
=

3√
12

≈ 0.89

Therefore the ranking is d2, d3, d1.

4

(b) (10%) Suppose inverted index has 3 terms and 3 documents, and the term/document counts
are as follows:

doc1 =

[
term1 term2 term3

100 10 1000

]
, doc2 =

[
term1 term2 term3

10 0 100

]
,

doc3 =

[
term1 term2 term3

10000 10 0

]
.

Suppose you decide to use tfxidf term weighting.

• What is the weight for term 2 in document 2?

• What is the weight for term 3 in document 2?

You don’t have to work out the expressions completely, you can leave answer in the format
40
3
log(4/5).

Solution:

In case tftd = 0, the weight of term t in document d is defined as 0. Otherwise, it is defined as:

wtd = (1 + log tftd × log (N/dft)

Since the count of term 2 in document 2 is 0, w22 = 0.

The count of term 3 in document 2 is 100. The document frequencyof term 3 is 2. The total
number of documents is 3. Therefore,

w32 = (1 + log 100× log (3/2) = 3 log (3/2)

5

