Lecture 16

Computer Vision

Stereo
Outline

• Cues for 3D reconstruction
• Stereo Cues
• Stereo Reconstruction
 1) camera calibration and rectification
 • an easier, mostly solved problem
 2) stereo correspondence
 • a harder problem
2D Images

• World is 3D
• In 2D images, depth (the third coordinate) is largely lost
 • includes human retina
• Depth is inherently ambiguous from a single view
Street Pavement Art

- Viewed from the “right” side
Street Pavement Art

• Viewed from the “wrong” side
Babies and Animals Perceive Depth

• Yet we perceive the world in 3D

The Visual Cliff, by William Vandivert, 1960
3D Shape from Images

• What image cues provide 3D information?
• Cues from a single image
• Cues from multiple images
 • Motion cues
 • Stereo cues
• Can we use these cues in a computer vision system?
Single Image 3D Cues: Shading

- Pixels covered by shadow are perceived to be further away
Single Image 3D Cues: Linear Perspective

- The further away are parallel lines, the closer they come together
Single Image 3D Cues: Relative Size

- If objects have the same size, those further away appear smaller
Single Image 3D Cues: Texture

- Further away texture appears finer (smaller scale)
Single Image 3D Cues: Known Size

- Ducks are smaller than elephants, duck is closer
Illusions: Linear Perspective + Relative Size
Illusions: Linear Perspective + Relative Size
Illusions: Ames Room
Cues from Multiple Image: Motion Parallax

- Closer objects appear to move more than further away objects

http://psych.hanover.edu/KRANTZ/MotionParallax/MotionParallax.html
• $X = \text{shading, texture, motion, ...}$

• We will focus on **stereo**
 • depth perception from two **stereo images**
Why Two Eyes? Cylopes?
Why Two Eyes?

- Charles Wheatstone first explained stereopsis in 1838

3D Scene
Why Two Eyes?

- **Disparity** d is the difference in x coordinates of corresponding points.
Stereoscopes

- Wheatstone invented the first stereoscope
Anaglyph Images

- Encodes left and right image into a single picture
 - left eye image is transferred to the red channel
 - right eye image to the green+blue = cyan channel
- **Red** filter lets through only the left image
- **Cyan** filter lets through only the right eye image
- Brain fuses into 3D
- Similar technology for 3D movies
- Works for most of us
What is Needed for Stereopsis?

• Need monocular cues for stereopsis? Need object cues? Answered by Julesz in 1960

• Image with no monocular cues and no recognizable objects: random dots
Need Object Recognition for Stereopsis?

- Answered by Julesz in 1960
- Make a copy of it
Need Object Recognition for Stereopsis?

- Answered by Julesz in 1960
- Select a square
Need Object Recognition for Stereopsis?

- Answered by Julesz in 1960
- Copy square the right image, shifting by d to the left
 - random dot stereogram
Need Object Recognition for Stereopsis?

- Answered by Julesz in 1960
- Random dot stereogram
- Humans perceive square floating in front of background
3D Shape from Stereo

- Use two cameras instead of two eyes
Stereo System

- Unlike eyes, usually stereo cameras are not on the same plane
 - better numerical stability
Depth by triangulation
- given two corresponding points in the left and right image
- cast the rays through the optical camera centers
- ray intersection is the corresponding 3D world point P
- depth of P is based on camera positions and parameters

Triangulation ideas can be traced to ancient Greece
What is needed for Triangulation

1. Distance between cameras, camera focal length
 - Solved through **camera calibration**, essentially a solved problem
 - We will not talk about it
 - Code available on the web
 - OpenCV http://www.intel.com/research/mrl/research/opencv/
 - Zhengyou Zhang http://research.microsoft.com/~zhang/Calib/

2. Pairs of corresponding pixels in left and right images
 - Called **stereo correspondence problem**, still much researched
Formula: Depth from Disparity

- Top down view on geometry (slice through XZ plane)
 - from camera calibration, know the distance between camera optical centers called baseline B, and camera focal length f
Formula: Depth from Disparity

- Height to base ratio of triangle C_lPC_r: \[\frac{Z}{B} \]
Formula: Depth from Disparity

- Height to base ratio of triangle $x_l P x_r$: \[\frac{Z - f}{B - x_l + x_r} \]
- x_l is positive, x_r is negative
Formula: Depth from Disparity

\[\frac{Z}{B} = \frac{Z - f}{B - x_l + x_r} \]

- \(C_l PC_r \) and \(\Delta x_l \) \(P \) \(x_r \) are similar:
Formula: Depth from Disparity

- Rewriting: \(Z = \frac{B \cdot f}{x_l - x_r} \)
- \(x_l - x_r \) is the disparity

\[
Z = \frac{B \cdot f}{x_l - x_r}
\]

P = (X,Y,Z)

\(P \) is a point in 3D space. The objective is to find the depth \(Z \) of this point from the disparity between the points in the left and right images. The formula relates the disparity to the baseline \(B \) and the focal length \(f \) of the camera.
Stereo Correspondence: Epipolar Lines

• Which pairs of pixels correspond to the same scene element?

- Epipolar constraint
 - Given a left image pixel, the corresponding pixel in the right image must lie on a line called the **epipolar** line
 - reduces correspondence to 1D search along **conjugate** epipolar lines
Stereo Rectification

- Epipolar lines can be computed from camera calibration

- Usually they are not horizontal

- Can **rectify** stereo pair to make epipolar lines horizontal
Stereo Correspondence

- From now on assume stereo pair is rectified
- How to solve the correspondence problem?
- Corresponding pixels should be similar in intensity
 - or color, or something else
Difficulties in Stereo Correspondence

• Image noise
 • corresponding pixels have similar, but not exactly the same intensities

• Matching each pixel individually is unreliable
Difficulties in Stereo Correspondence

- regions with (almost) constant intensity

- Matching each pixel individually is unreliable
Window Matching Correspondence

- Use a window (patch) of pixels
 - more likely to have enough intensity variation to form a distinguishable pattern
 - also more robust to noise
Window Matching Correspondence

- Use a window (patch) of pixels
 - more likely to have enough intensity variation to form a distinguishable pattern
 - also more robust to noise
Window Matching: Basic Algorithm

- for each epipolar line
 - for each pixel p on the left line
 - compare window around p with same window shifted to many right window locations on corresponding epipolar line
 - pick location corresponding to the best matching window
Which Locations to Try?

- Disparity cannot be negative
- Maximum possible disparity is limited by the camera setup
 - assume we know \text{maxDisp}
- Disparity can range from 0 to \text{maxDisp}
 - consider only \((x,y), (x-1,y),...,(x-\text{maxDisp},y)\) in the right image
Window Matching Cost

- How to define the best matching window?
- Define window cost
 - sum of squared differences (SSD)
 - or sum of absolute differences (SAD)
 - many other possibilities
- Pick window of best (smallest) cost
SSD Window Cost

Left Image

<table>
<thead>
<tr>
<th>3</th>
<th>5</th>
<th>4</th>
<th>4</th>
<th>2</th>
<th>4</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>46</td>
<td>46</td>
<td>44</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>56</td>
<td>56</td>
<td>46</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Right Image

<table>
<thead>
<tr>
<th>3</th>
<th>5</th>
<th>4</th>
<th>4</th>
<th>2</th>
<th>4</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>46</td>
<td>46</td>
<td>46</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>48</td>
<td>46</td>
<td>44</td>
<td>6</td>
<td>4</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>47</td>
<td>47</td>
<td>47</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>58</td>
<td>56</td>
<td>46</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

\[
(46 - 44)^2 + (46 - 6)^2 + (44 - 4)^2 + (47 - 47)^2 + (47 - 7)^2 + (47 - 4)^2 + (56 - 46)^2 + (56 - 5)^2 + (46 - 6)^2 = 12454
\]
Algorithm with SSD Window Cost

<table>
<thead>
<tr>
<th>left image</th>
<th>right image</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 5 4 4 2 4 2</td>
<td></td>
</tr>
<tr>
<td>7 4 1 4 4 2 6</td>
<td></td>
</tr>
<tr>
<td>2 7 46 46 46 6 7</td>
<td></td>
</tr>
<tr>
<td>5 9 46 46 44 9 7</td>
<td></td>
</tr>
<tr>
<td>4 7 47 47 47 2 4</td>
<td></td>
</tr>
<tr>
<td>4 7 56 56 46 6 7</td>
<td></td>
</tr>
<tr>
<td>3 4 4 1 4 3 2</td>
<td></td>
</tr>
<tr>
<td>3 5 4 4 2 4 2</td>
<td></td>
</tr>
<tr>
<td>7 4 1 4 4 2 6</td>
<td></td>
</tr>
<tr>
<td>46 46 46 3 6 6 7</td>
<td></td>
</tr>
<tr>
<td>48 46 44 6 4 9 7</td>
<td></td>
</tr>
<tr>
<td>47 47 47 7 4 2 4</td>
<td></td>
</tr>
<tr>
<td>58 56 46 5 6 6 7</td>
<td></td>
</tr>
<tr>
<td>3 4 4 1 4 3 2</td>
<td></td>
</tr>
</tbody>
</table>

\[(46 - 44)^2 + (46 - 6)^2 + (44 - 4)^2 + (47 - 47)^2 + (47 - 7)^2 + (47 - 4)^2 + (56 - 46)^2 + (56 - 5)^2 + (46 - 6)^2 = 12454\]

- This shift corresponds to disparity 0
Algorithm with SSD Window Cost

<table>
<thead>
<tr>
<th>left image</th>
<th>right image</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 5 4 4 2 4 2</td>
<td>3 5 4 4 2 4 2</td>
</tr>
<tr>
<td>7 4 1 4 4 2 6</td>
<td>7 4 1 4 4 2 6</td>
</tr>
<tr>
<td>2 7 46 46 46 6 7</td>
<td>46 46 46 3 6 6 7</td>
</tr>
<tr>
<td>5 9 46 46 44 9 7</td>
<td>48 46 44 6 4 9 7</td>
</tr>
<tr>
<td>4 7 47 47 47 2 4</td>
<td>47 47 47 7 4 2 4</td>
</tr>
<tr>
<td>4 7 56 56 46 6 7</td>
<td>58 56 46 5 6 6 7</td>
</tr>
<tr>
<td>3 4 4 1 4 3 2</td>
<td>3 4 4 1 4 3 2</td>
</tr>
</tbody>
</table>

\[
(46 - 46)^2 + (46 - 44)^2 + (44 - 6)^2 + (47 - 47)^2 + (47 - 7)^2 + (47 - 7)^2 + (56 - 56)^2 + (56 - 46)^2 + (46 - 5)^2 = 6425
\]

- This shift corresponds to disparity 1
Algorithm with SSD Window Cost

(left image)

(right image)

\[
(46 - 48)^2 + (46 - 46)^2 + (44 - 44)^2 + \\
(47 - 47)^2 + (47 - 47)^2 + (47 - 47)^2 + \\
(56 - 58)^2 + (56 - 56)^2 + (46 - 46)^2 = 8
\]

- This shift corresponds to disparity 2
Algorithm with SSD Window Cost

<table>
<thead>
<tr>
<th>left image</th>
<th>right image</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 5 4 4 2 4 2</td>
<td>3 5 4 4 2 4 2</td>
</tr>
<tr>
<td>7 4 1 4 4 2 6</td>
<td>7 4 1 4 4 2 6</td>
</tr>
<tr>
<td>2 7 46 46 46 6 7</td>
<td>46 46 46 3 6 6 7</td>
</tr>
<tr>
<td>5 9 46 46 44 9 7</td>
<td>48 46 44 6 4 9 7</td>
</tr>
<tr>
<td>4 7 47 47 47 2 4</td>
<td>47 47 47 7 4 2 4</td>
</tr>
<tr>
<td>4 7 56 56 46 6 7</td>
<td>58 56 46 5 6 6 7</td>
</tr>
<tr>
<td>3 4 4 1 4 3 2</td>
<td>3 4 4 1 4 3 2</td>
</tr>
</tbody>
</table>

- Best SSD window cost is **8** at disparity **2**
- Red pixel is assigned disparity **2**
- Repeat this for all image pixels
Correspondence with SSD Matching

- Unique best cost location
Compare to One Pixel “Window”

- No unique best cost location
SSD is fragile to outliers

SSD cost = $80^2 = 6400$

SAD (Sum of Absolute Differences) is more robust

SAD cost = 80 \checkmark best

SAD cost = 232
Window Matching Efficiency

• Suppose
 • image has n pixels
 • matching window is 11 by 11

• Need $11 \cdot 11 = 121$ additions and multiplications to compute one window cost

• Multiply that by number of locations to check ($\text{maxDisp} + 1$)

• Multiply that by n image pixels

• $121 \cdot n \cdot (\text{maxDisp} + 1)$

• Tooooo sloooow
 • gets worse for larger windows

• Can get cost down to $n \cdot (\text{maxDisp} + 1)$ with integral images
Speedups: Integral Image

- Given image $f(x,y)$, the integral image $I(x,y)$ is the sum of values in $f(x,y)$ to the left and above (x,y), including (x,y)

\[f(x,y) \quad I(x,y) \]

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>15</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>30</td>
<td>55</td>
<td>75</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>95</td>
</tr>
</tbody>
</table>

- Example: $I(2,2) = 0 + 0 + 0 + 0 + 5 + 0 + 5 + 5 = 15$
Speedups: Integral Image

- Given image $f(x,y)$, the integral image $I(x,y)$ is the sum of values in $f(x,y)$ to the left and above (x,y), including (x,y)

\[
\begin{array}{cccc}
0 & 0 & 0 & 5 \\
0 & 0 & 5 & 5 \\
0 & 5 & 5 & 5 \\
5 & 5 & 5 & 0 \\
5 & 5 & 10 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & 0 & 0 & 5 \\
0 & 0 & 5 & 5 \\
0 & 5 & 15 & 25 \\
5 & 15 & 30 & 50 \\
10 & 25 & 50 & 75 \\
\end{array}
\]

- Example: $I(4,1) = 0 + 0 + 0 + 5 + 5 + 0 + 0 + 5 + 5 + 5 = 25$
Efficiently Computing Integral Image

- Suppose computed integral image up to location \((x,y)\)

\[I(x,y) = f(x,y)\]

\[
\begin{array}{cccc}
0 & 0 & 0 & 5 & 5 \\
0 & 0 & 5 & 5 & 5 \\
0 & 5 & 5 & 5 & 10 \\
5 & 5 & 5 & 10 & 0 \\
5 & 5 & 10 & 0 & 0 \\
\end{array}
\]

\(f(x,y) \) \hspace{1cm} \(I(x,y) \)

\(+\)
Efficiently Computing Integral Image

- Suppose computed integral image up to location \((x, y)\)

\[
l(x,y) = f(x,y) + l(x-1,y)
\]

\[
\begin{array}{cccccc}
0 & 0 & 0 & 5 & 5 & 0 \\
0 & 0 & 5 & 5 & 5 & 0 \\
0 & 5 & 5 & 5 & 10 & 0 \\
5 & 5 & 5 & 10 & 0 & 5 \\
5 & 5 & 10 & 0 & 0 & 5 \\
\end{array}
\]

\[
\begin{array}{cccccc}
+ & + & + & + & + & + \\
+ & + & + & + & + & + \\
+ & + & + & + & + & + \\
+ & + & + & + & + & + \\
+ & + & + & + & + & + \\
\end{array}
\]

\(f(x,y)\) \hspace{1cm} \(l(x,y)\)
Efficiently Computing Integral Image

- Suppose computed integral image up to location \((x,y)\)

\[
I(x,y) = f(x,y) + I(x-1,y) + I(x,y-1)
\]

\[
\begin{array}{cccc}
0 & 0 & 0 & 5 & 5 \\
0 & 0 & 5 & 5 & 5 \\
0 & 5 & 5 & 5 & 10 \\
5 & 5 & 5 & 10 & 0 \\
5 & 5 & 10 & 0 & 0 \\
\end{array}
\quad
\begin{array}{c}
+ \\
+ \\
+ \\
+ \\
+ \\
\end{array}
\quad
\begin{array}{c}
++ \\
++ \\
++ \\
++ \\
++ \\
\end{array}
\]

\(f(x,y)\) \hspace{2cm} I(x,y)\]
Efficiently Computing Integral Image

- Suppose computed integral image up to location \((x,y)\)

\[
I(x,y) = f(x,y) + I(x-1,y) + I(x,y-1) - I(x-1,y-1)
\]

\[
\begin{array}{cccccc}
0 & 0 & 0 & 5 & 5 \\
0 & 0 & 5 & 5 & 5 \\
0 & 5 & 5 & 5 & 10 \\
5 & 5 & 5 & 10 & 0 \\
5 & 5 & 10 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
+ & + & + \\
+ & + & + \\
+ & + & + \\
+ & + & + \\
+ & + & + \\
\end{array}
\]

\[
f(x,y) \\
I(x,y)
\]
• Convenient order of computation
 1. first row
 2. first column
 3. the rest in row-wise fashion

\[
\begin{array}{|c|c|c|c|c|}
\hline
1 & 2 & 3 & 4 & 5 \\
6 & 10 & 11 & 12 & 13 \\
7 & 14 & 15 & 16 & 17 \\
8 & 18 & 19 & 20 & 21 \\
9 & 22 & 23 & 24 & 25 \\
\hline
\end{array}
\]

\[I(x,y)\]
Using Integral Image

- After computed integral image, sum over any rectangular window is computed with four operations
- Top left corner \((x_1, y_1)\) and bottom right corner \((x_2, y_2)\)

\[I(x_2, y_2) \]

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[f(x, y) \] \hspace{2cm} \[I(x, y) \]
Using Integral Image

- After computed integral image, sum over any rectangular window is computed with four operations
- Top left corner \((x_1, y_1)\) and bottom right corner \((x_2, y_2)\)

\[
l(x_2, y_2) - l(x_1 - 1, y_2)\]

\[
f(x, y) \quad l(x, y)
\]

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-+</td>
<td>-+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Using Integral Image

- After computed integral image, sum over any rectangular window is computed with four operations
- Top left corner \((x_1, y_1)\) and bottom right corner \((x_2, y_2)\)

\[
l(x_2, y_2) - l(x_1 - 1, y_2) - l(x_2, y_1 - 1)
\]

\[
\begin{array}{cccc}
0 & 0 & 0 & 5 & 5 \\
0 & 0 & 5 & 5 & 5 \\
0 & 5 & 5 & 5 & 10 \\
5 & 5 & 5 & 10 & 0 \\
5 & 5 & 10 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
- & - & - & - & - \\
- & - & - & - & - \\
- & - & - & - & - \\
- & - & - & - & - \\
- & - & - & - & - \\
\end{array}
\]

\[
f(x, y)
\]

\[
l(x, y)
\]
Using Integral Image

• After computed integral image, sum over any rectangular window is computed with four operations

• Top left corner \((x_1, y_1)\) and bottom right corner \((x_2, y_2)\)

\[
l(x_2, y_2) - l(x_1-1, y_2) - l(x_2, y_1-1) + l(x_1-1, y_1-1)
\]

\[
\begin{array}{cccc}
0 & 0 & 0 & 5 & 5 \\
0 & 0 & 5 & 5 & 5 \\
0 & 5 & 5 & 5 & 10 \\
0 & 5 & 5 & 10 & 0 \\
5 & 5 & 10 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
+ & - & + & - \\
- & + & + & + \\
+ & - & + & - \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
\end{array}
\]

\[
f(x,y)
\]

\[
l(x,y)
\]
Using Integral Image

- After computed integral image, sum over any rectangular window is computed with four operations
- Top left corner \((x_1, y_1)\) and bottom right corner \((x_2, y_2)\)

\[
I(x_2, y_2) - I(x_1-1, y_2) - I(x_2, y_1-1) + I(x_1-1, y_1-1)
\]

\[
\begin{array}{cccc}
0 & 0 & 0 & 5 & 5 \\
0 & 0 & 5 & 5 & 5 \\
0 & 5 & 5 & 5 & 10 \\
5 & 5 & 5 & 10 & 0 \\
5 & 5 & 10 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & 0 & 0 & 5 & 10 \\
0 & 0 & 5 & 15 & 25 \\
0 & 5 & 15 & 30 & 50 \\
5 & 15 & 30 & 55 & 75 \\
10 & 25 & 50 & 75 & 95 \\
\end{array}
\]

- Example: \(5 + 5 + 10 + 5 + 10 + 0 = 75 - 15 - 25 + 0 = 35\)
Integral Image for Window Matching

- Assume SAD (sum of absolute differences) cost
- Need to find SAD for every pixel and every disparity in a window

<table>
<thead>
<tr>
<th>left image</th>
<th>right image</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 5 4 4 2 4 2</td>
<td>3 5 4 4 2 4 2</td>
</tr>
<tr>
<td>7 4 1 4 4 2 6</td>
<td>7 4 1 4 4 2 6</td>
</tr>
<tr>
<td>2 7 46 46 46 6 7</td>
<td>46 46 46 3 6 6 7</td>
</tr>
<tr>
<td>5 9 46 46 44 9 7</td>
<td>48 46 44 6 4 9 7</td>
</tr>
<tr>
<td>4 7 47 47 47 2 4</td>
<td>47 47 47 7 4 2 4</td>
</tr>
<tr>
<td>4 7 56 56 46 6 7</td>
<td>58 56 46 5 6 6 7</td>
</tr>
<tr>
<td>3 4 4 1 4 3 2</td>
<td>3 4 4 1 4 3 2</td>
</tr>
</tbody>
</table>

- **left image:**
 - SAD for green box: 186
 - SAD for red box: 256

- **right image:**
 - SAD for purple box: 186
 - SAD for blue box: 256
Integral Image for Window Matching

- for each pixel p
 - for every disparity d
 - compute cost between window around p in the left image and the same window shifted by d in the right image
 - pick d corresponding to the best matching window

![Integral Image for Window Matching](image-url)
Integral Image for Window Matching

- For each disparity d need to compute window cost for all pixels, eventually
- For example, pick disparity $d = 1$

<table>
<thead>
<tr>
<th>left image</th>
<th>right image</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 5 4 4 2 4 2</td>
<td>3 5 4 4 2 4 2</td>
</tr>
<tr>
<td>7 4 1 4 4 2 6</td>
<td>7 4 1 4 4 2 6</td>
</tr>
<tr>
<td>2 7 46 46 46 6 7</td>
<td>46 46 46 3 6 6 7</td>
</tr>
<tr>
<td>5 9 46 46 44 9 7</td>
<td>48 46 44 6 4 9 7</td>
</tr>
<tr>
<td>4 7 47 47 47 2 4</td>
<td>47 47 47 7 4 2 4</td>
</tr>
<tr>
<td>4 7 56 56 46 6 7</td>
<td>58 56 46 5 6 6 7</td>
</tr>
<tr>
<td>3 4 4 1 4 3 2</td>
<td>3 4 4 1 4 3 2</td>
</tr>
</tbody>
</table>
Integral Image for Window Matching

• Old inefficient algorithm:
 • for each pixel p
 • for every disparity d
 • compute cost between window around p in the left image and the same window shifted by d in the right image
 • pick d corresponding to the best matching window

• New efficient algorithm:
 • for each disparity d
 • for every pixel p
 • compute cost between window around p in the left image and the same window shifted by d in the right image
 • pick d corresponding to the best matching window

use integral image

swap
Integral Image for Window Matching

- Suppose current disparity is $d = 1$

<table>
<thead>
<tr>
<th>left image</th>
<th>right image</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 5 4 4 2 4 2</td>
<td>3 5 4 4 4 2 4 2</td>
</tr>
<tr>
<td>7 4 1 4 4 2 6</td>
<td>7 4 1 4 4 2 6</td>
</tr>
<tr>
<td>2 7 46 46 46 6 7</td>
<td>46 46 46 3 6 6 7</td>
</tr>
<tr>
<td>5 9 46 46 44 9 7</td>
<td>48 46 44 6 4 9 7</td>
</tr>
<tr>
<td>4 7 47 47 47 2 4</td>
<td>47 47 47 7 4 2 4</td>
</tr>
<tr>
<td>4 7 56 56 46 6 7</td>
<td>58 56 46 5 6 6 7</td>
</tr>
<tr>
<td>3 4 4 1 4 3 2</td>
<td>3 4 4 1 4 3 2</td>
</tr>
</tbody>
</table>

- Overlay left and right image at disparity 1
- Compute AD (absolute difference) between every overlaid pair of pixels
- Compute SAD in a window for every pixel
Integral Image for Window Matching

- current disparity is \(d = 1 \)
Integral Image for Window Matching

- current disparity is \(d = 1 \)
- Pad AD image with zeros

AD image for disparity 1
Integral Image for Window Matching

- current disparity is $d = 1$

<table>
<thead>
<tr>
<th>left image</th>
<th>right image</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 5 4 4 2 4 2</td>
<td>3 5 4 4 2 4 2</td>
</tr>
<tr>
<td>7 4 4 4 2 6</td>
<td>7 4 1 4 2 6</td>
</tr>
<tr>
<td>2 7 46 46 46 6 7</td>
<td>46 46 46 3 6 6 7</td>
</tr>
<tr>
<td>5 9 46 46 44 9 7</td>
<td>48 46 44 6 4 9 7</td>
</tr>
<tr>
<td>4 7 47 47 47 2 4</td>
<td>47 47 47 7 4 2 4</td>
</tr>
<tr>
<td>4 7 56 56 46 6 7</td>
<td>58 56 46 5 6 6 7</td>
</tr>
<tr>
<td>3 4 4 1 4 3 2</td>
<td>3 4 4 1 4 3 2</td>
</tr>
</tbody>
</table>

AD image for disparity 1

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 2 1 0 2 2 2</td>
<td>0 3 3 3 0 2 0</td>
<td></td>
</tr>
<tr>
<td>0 39 0 0 43 0 0</td>
<td>0 39 0 2 38 5 0</td>
<td></td>
</tr>
<tr>
<td>0 40 0 0 40 2 0</td>
<td>0 51 0 10 41 0 0</td>
<td></td>
</tr>
<tr>
<td>0 1 0 3 3 1 0</td>
<td>0 1 0 3 3 1 0</td>
<td></td>
</tr>
</tbody>
</table>
Integral Image for Window Matching

- current disparity is \(d = 1 \)

<table>
<thead>
<tr>
<th>left image</th>
<th>right image</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 5 4 4 2 4 2</td>
<td>3 5 4 4 2 4 2</td>
</tr>
<tr>
<td>7 4 1 4 4 2 6</td>
<td>7 4 1 4 4 2 6</td>
</tr>
<tr>
<td>2 7 46 46 46 6 7</td>
<td>46 46 46 3 6 6 7</td>
</tr>
<tr>
<td>5 9 46 46 44 9 7</td>
<td>48 46 44 6 4 9 7</td>
</tr>
<tr>
<td>4 7 47 47 47 2 4</td>
<td>47 47 47 7 4 2 4</td>
</tr>
<tr>
<td>4 7 56 56 46 6 7</td>
<td>58 56 46 5 6 6 7</td>
</tr>
<tr>
<td>3 4 4 1 4 3 2</td>
<td>3 4 4 1 4 3 2</td>
</tr>
</tbody>
</table>

AD image for disparity 1

| 0 2 1 0 2 2 2 |
|-------|-------|-------|-------|-------|-------|
| 0 3 3 3 0 2 0 |
| 0 39 0 0 43 0 0 |
| 0 39 0 2 38 5 0 |
| 0 40 0 0 40 2 0 |
| 0 51 0 10 41 0 0 |
| 0 1 0 3 3 1 0 |
Current disparity is $d = 1$
- Current disparity is 1
- For each window pixel, have to compute window sums in AD image
- Apply integral image to AD image
for every pixel p do
 bestDisparity[p] = 0
 bestWindCost[p] = HUGE

for disparity $d = 0, 1, \ldots, \text{maxD}$ do
 overlay images at disparity d
 compute AD image for disparity d
 compute Integral image from AD image

for every pixel p do
 currentCost = window cost at pixel p, computed from integral image
 if currentCost < bestWindCost[p]
 bestWindCost[p] = currentCost
 bestDisparity[p] = d

return bestDisparity
Effect of Window size

left image
right image
true disparities
bright means larger disparity

3x3 window
7x7 window
15x15 window
Effect of Window size: Low Texture Area

- windows of size 3x3 and 7x7 are too small to have a distinct pattern
 - no clearly best disparity
- window of size 15x15 is large enough to have a distinct pattern
 - 7 is clearly the best disparity
- window has to be large enough
Effect of Window size: Near Discontinuities

- central pixel (the one we are matching) is the lamp
- windows of size 3x3 and 7x7 contain mostly the lamp
- window of size 15x15 contains mostly the wall
 - we match the wall instead of the lamp!
- window must be **small enough** to contain mostly the same object as the central pixel
Effect of Window size

• No single window size is ‘perfect’ for the image
• Smaller window
 • works better around object boundaries
 • noisy results in low texture areas
• Larger window
 • better results in low texture areas
 • does not preserve object boundaries well
• Adaptive window algorithms exist [Veksler’2001]
Better Stereo Algorithms

State of the art method
[Boykov, Veksler, Zabih, 2001]

- Formulate stereo as energy minimization
- Recall binary object/background segmentation problem
Better Stereo Algorithms

• Stereo is multi-label segmentation problem
 • region 0 = label 0 “likes” disparity 0
 • region 1 = label 1 “likes” disparity 1
 • ...
 • region maxDisp = label maxDisp “likes” disparity maxDisp
Stereo with Graph Cuts

- Energy Function
 - Data Term: assign each pixel disparity label it likes
 - Smoothness Term: count number of label (disparity) discontinuities

- Solved with Graph Cuts: iteratively cuts out regions corresponding to disparities
- NP-hard with more than 2 labels, but computes a good approximation

AD 5 data term for label 5
AD 8 data term for label 8
AD 10 data term for label 10
AD 14 data term for label 14
Stereo with Graph Cuts

• Start with everything as label (disparity) 0
Stereo with Graph Cuts

- “Cut out” label (disparity) 1
Stereo with Graph Cuts

• “Cut out” label (disparity) 2
Stereo with Graph Cuts

- “Cut out” label (disparity) 3
Stereo with Graph Cuts

- “Cut out” label (disparity) 4
Stereo with Graph Cuts

- “Cut out” label (disparity) 5
Stereo with Graph Cuts

- “Cut out” label (disparity) 6
Multiple Artificial Eyes

- Two eyes better than one \rightarrow three eyes better than two \rightarrow four eyes better than three \rightarrow ... \rightarrow the more, the better
Common Folk New that Already
• Project “structured” light patterns onto the object
 • Simplifies correspondence problem
 • Need one camera and one projector
Stereo with Structured Light

- Triangulate between camera and projector
Kinect: Structured Infrared Light

Laser Scanning

- Optical triangulation
 - Project a single stripe of laser light
 - Scan it across the surface of the object
 - This is a very precise version of structured light scanning

Digital Michelangelo Project
Levoy et al.
http://graphics.stanford.edu/projects/mich/
Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.
Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.
Numerous Applications

• Autonomous navigation

Nomad robot searches for meteorites in Antartica
http://www.frc.ri.cmu.edu/projects/meteorobot/index.html
Novel View Synthesis

input image (1 of 2)
depth map
[Szeliski & Kang ‘95]
3D rendering
Applications: Video View Interpolation

http://research.microsoft.com/users/larryz/videoviewinterpolation.htm
Stereo Correspondence

• Steps:
 • Calibrate cameras
 • Rectify images
 • Stereo correspondence
 • Apply depth/disparity formula
• Stereo correspondence is still heavily researched
• The simple window matching algorithm we studied is heavily used in practice due to speed and simplicity
• Popular Benchmark
 http://www.middlebury.edu/stereo