Lecture 3

Machine Learning

K Nearest Neighbor Classifier
• kNN classifier - the simplest classifier on earth
• matlab implementation of kNN
k-Nearest Neighbors

• classify an unknown example with the most common class among k closest examples
 • “tell me who your neighbors are, and I’ll tell you who you are”

• Example:
 • $k = 3$
 • 2 sea bass, 1 salmon
 • Classify as sea bass
kNN: Multiple Classes

- Easy to implement for multiple classes
- Example for $k = 5$
 - 3 fish species: salmon, sea bass, eel
 - 3 sea bass, 1 eel, 1 salmon \Rightarrow classify as sea bass
In theory, if infinite number of samples available, the larger is k, the better is classification.

But the caveat is that all k neighbors have to be close.

- Possible when infinite # samples available
- Impossible in practice since # samples is finite
kNN: How to Choose k?

- Rule of thumb is $k = \sqrt{n}$, n is number of examples
- Interesting theoretical properties
- In practice, $k = 1$ is often used for efficiency, but can be sensitive to “noise”

1 NN
- noisy sample
- every example in the blue shaded area will be misclassified as the blue class

3 NN
- every example in the blue shaded area will be classified correctly as the red class
kNN: How to Choose k?

- larger k may improve performance, but too large k destroys *locality*, i.e. end up looking at samples that are not neighbors
- cross-validation (study later) may be used to choose k

picture from R. Gutierrez-Osuna
kNN: How Well does it Work?

- kNN is simple and intuitive, but does it work?
- Theoretically, the best error rate is the Bayes rate E^*
 - Bayes error rate is the best (smallest) error rate a classifier can have, for a given problem, but we do not study it in this course
- Assume we have an unlimited number of samples
- kNN leads to an error rate greater than E^*
- But even for $k = 1$, as $n \to \infty$, it can be shown that kNN error rate is smaller than $2E^*$
- As we increase k, the upper bound on the error gets better, that is the error rate (as $n \to \infty$) for the kNN rule is smaller than cE^*, with smaller c for larger k
- If we have lots of samples, kNN works well
1NN Visualization

- Voronoi tessellation is useful for visualization

decision boundary
kNN Selection of Distance

- So far we assumed we use Euclidian Distance to find the nearest neighbor:

\[D(a, b) = \sqrt{\sum_k (a_k - b_k)^2} = \sqrt{a \cdot b} \]

- Euclidean distance treats each feature as equally important

- However some features (dimensions) may be much more discriminative than other features
kNN Distance Selection: Extreme Example

- feature 1 gives the correct class: 1 or 2
- feature 2 gives irrelevant number from 100 to 200
- dataset: \([1 \ 150]\)
 \([2 \ 110]\)
- classify \([1 \ 100]\)

\[
D(\begin{bmatrix} 1 \\ 100 \end{bmatrix}, \begin{bmatrix} 1 \\ 150 \end{bmatrix}) = \sqrt{(1-1)^2 + (100-150)^2} = 50
\]

\[
D(\begin{bmatrix} 1 \\ 100 \end{bmatrix}, \begin{bmatrix} 2 \\ 110 \end{bmatrix}) = \sqrt{(1-2)^2 + (100-110)^2} = 10.5
\]

- \([1 \ 100]\) is misclassified!
- The denser the samples, the less of this problem
- But we rarely have samples dense enough
• Decision boundary is in red, and is really wrong because
 • feature 1 is discriminative, but it’s scale is small
 • feature 2 gives no class information but its scale is large, it dominates distance calculation
kNN: Feature Normalization

- Notice that 2 features are on different scales:
 - First feature takes values between 1 or 2
 - Second feature takes values between 100 to 200
- **Idea:** normalize features to be on the same scale
- Different normalization approaches
- Linearly scale the range of each feature to be, say, in range \([0,1]\)

\[
\begin{align*}
 f_{\text{new}} &= \frac{f_{\text{old}} - f_{\text{old}}^{\text{min}}}{f_{\text{old}}^{\text{max}} - f_{\text{old}}^{\text{min}}} \\
 & \text{(Equation for feature normalization)}
\end{align*}
\]
kNN: Feature Normalization

• Linearly scale to 0 mean variance 1:
 • If Z is a random variable of mean m and variance σ^2, then $(Z - m)/\sigma$ has mean 0 and variance 1
 • For each feature f let the new rescaled feature be
 $$f_{\text{new}} = \frac{f_{\text{old}} - \mu}{\sigma}$$

• C is a matrix with all samples stored as rows, in Matlab can normalize all features simultaneously:
 $$C_{\text{new}} = (C - \text{repmat}(\text{mean}(C),\text{size}(C,1),1)) \ast \text{diag}(1./\text{std}(C))$$

• Let us apply this normalization to previous example
kNN: Feature Normalization
kNN: Selection of Distance

- Feature normalization does not help in high dimensional spaces if most features are irrelevant

\[D(a, b) = \sqrt{\sum_k (a_k - b_k)^2} = \sqrt{\sum_i (a_i - b_i)^2 + \sum_j (a_j - b_j)^2} \]

- If the number of useful features is smaller than the number of noisy features, Euclidean distance is dominated by noise
kNN: Feature Weighting

• Scale each feature by its importance for classification

\[D(a,b) = \sqrt{\sum_k w_k (a_k - b_k)^2} \]

• Can use our prior knowledge about which features are more important

• Can learn the weights \(w_k \) using cross-validation (to be covered later)
• Basic kNN algorithm stores all examples
• Suppose we have \(n \) examples each of dimension \(d \)
• \(O(d) \) to compute distance to one example
• \(O(nd) \) to find distances to all examples
• \(O(knd) \) to find \(k \) closest examples examples
 • \(O(nd) + O(kn) \) if careful
• Thus total complexity is \(O(knd) \)
• Very expensive for a large number of samples
• But we need a large number of samples for kNN to work well!
Reducing Complexity: editing 1NN

• If all Voronoi neighbors have the same class, a sample is useless, remove it

• Number of samples decreases
• Decision boundary does not change
Reducing Complexity: Partial Distance

- Have current k closes samples
- Abort distance computation if partial distance is already greater than the full distance to the current k closest samples

Advantages:
- complexity decreases
- we are guaranteed to find closes neighbor(s)

Disadvantages:
- how much complexity decreases depends on our luck and data layout
kNN in Matlab

class1 = \[
\begin{bmatrix}
2 & 4 \\
3 & 7 \\
5 & 4 \\
\end{bmatrix}
\]

class2 = \[
\begin{bmatrix}
3 & 8 \\
5 & 9 \\
7 & 10 \\
6 & 8 \\
\end{bmatrix}
\]

- Want to classify newSample = [4 7]
kNN in Matlab without Loops

```
numClass1  = size(Class1,1);
numClass2  = size(Class2,1);
totalSamples = numClass1+numClass2;

combinedSamples = [Class1;Class2];
trueClass = [zeros(numClass1,1)+1;zeros(numClass2,1)+2;];

testMatrix = repmat(newSample,totalSamples,1);
absDiff      = abs(combinedSamples-testMatrix);
absDiff      = absDiff.^2;
dist         = sum(absDiff,2);

[Y,I]         = sort(dist);
neighborsInd = I(1:k);
neighbors    = trueClass(neighborsInd);

class1   = find(neighbors == 1);
class2   = find(neighbors == 2);
joint    = [size(class1,1);size(class2,1)];

[value class] = max(joint);
```

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

kNN in Matlab without Loops

```
[newSample] = [4   7]

k = 3
```
kNN in Matlab

\[
\text{numClass1} = \text{size(Class1,1)}; \\
\text{numClass2} = \text{size(Class2,1)}; \\
\text{totalSamples} = \text{numClass1} + \text{numClass2}; \\
\text{combinedSamples} = [\text{Class1}; \text{Class2}]; \\
\text{trueClass} = [\text{zeros(numClass1,1)} + 1; \text{zeros(numClass2,1)} + 2];
\]

\[
\begin{bmatrix}
2 & 4 \\
3 & 7 \\
5 & 4 \\
3 & 8 \\
5 & 9 \\
7 & 10 \\
6 & 8
\end{bmatrix}
=
\begin{bmatrix}
1 \\
1 \\
1 \\
2 \\
2 \\
2 \\
2
\end{bmatrix}
\]

\[
\text{class1} =
\begin{bmatrix}
2 & 4 \\
3 & 7 \\
5 & 4
\end{bmatrix}
\]

\[
\text{class2} =
\begin{bmatrix}
3 & 8 \\
5 & 9 \\
7 & 10 \\
6 & 8
\end{bmatrix}
\]

\[
\text{newSample} = [4 \hspace{1cm} 7]
\]
kNN in Matlab

testMatrix = repmat(newSample,totalSamples,1);
absDiff = abs(combinedSamples-testMatrix);
absDiff = absDiff.^2;
dist = sum(absDiff,2);

\[
\begin{bmatrix}
4 & 7 \\
4 & 7 \\
4 & 7 \\
4 & 7 \\
4 & 7 \\
\end{bmatrix}
\quad \begin{bmatrix}
2 & 3 \\
1 & 0 \\
1 & 3 \\
1 & 1 \\
3 & 3 \\
2 & 1 \\
\end{bmatrix}
\]

testMatrix
absDiff

\[
\begin{bmatrix}
2 & 4 \\
3 & 7 \\
5 & 4 \\
3 & 8 \\
5 & 9 \\
7 & 10 \\
6 & 8 \\
\end{bmatrix}
\]

combinedSamples

\[
\begin{bmatrix}
1 \\
1 \\
1 \\
2 \\
2 \\
2 \\
2 \\
\end{bmatrix}
\]

tureClass

newSample = [4 7]
kNN in Matlab

\[
[Y,I] = \text{sort}(\text{dist});
\]

\[
\text{neighborsInd} = I(1:k);
\]

\[
\text{neighbors} = \text{trueClass}(\text{neighborsInd});
\]

\[
\begin{bmatrix}
1 \\
2 \\
5 \\
5 \\
10 \\
13 \\
18 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
2 \\
4 \\
5 \\
7 \\
3 \\
1 \\
6 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
13 \\
1 \\
10 \\
5 \\
18 \\
5 \\
\end{bmatrix}
\]

\[
\text{neighborsInd} = \begin{bmatrix}
2 \\
4 \\
5 \\
\end{bmatrix}
\]

\[
\text{neighbors} = \begin{bmatrix}
1 \\
2 \\
2 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 \\
1 \\
1 \\
\end{bmatrix}
\]

\[
\text{trueClass} = \begin{bmatrix}
2 \\
2 \\
2 \\
\end{bmatrix}
\]

\[k = 3\]
class1 = find(neighbors == 1);
class2 = find(neighbors == 2);
joint = [size(class1,1);size(class2,1)];

[value class] = max(joint);

\[
\begin{bmatrix}
1 \\
2 \\
2
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 \\
2 \\
2
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 \\
2
\end{bmatrix}
\]

\[
\begin{bmatrix}
2 \\
3
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 \\
2
\end{bmatrix}
\]

class = 2
kNN in Matlab
Video

• http://videolectures.net/aaai07_bosch_knn/
kNN Summary

- **Advantages**
 - Can be applied to the data from any distribution
 - for example, data does not have to be separable with a linear boundary
 - Very simple and intuitive
 - Good classification if the number of samples is large enough

- **Disadvantages**
 - Choosing k may be tricky
 - Test stage is computationally expensive
 - No training stage, all the work is done during the test stage
 - This is actually the opposite of what we want. Usually we can afford training step to take a long time, but we want fast test step
 - Need large number of samples for accuracy