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Why Model Language? 

• Design probability model P() such that 

• Spell checker:  

• P(I think there are OK) < P(I think they are OK) 

• Speech recognition:  

• P(lie cured mother) < P(like your mother) 

• Optical character recognition 

• P(thl cat) < P(the cat) 

• Machine translation: “On voit Jon à la télévision” 

• P(In Jon appeared TV) < P(Jon appeared on TV) 

• Many other applications 



Language Model for Speech Recognition 



Language Model for Speech Recognition 



Language Model for Speech Recognition 



Language Model for Speech Recognition 



Basic Probability 

• P(X) is probability that X is true 
• P(baby is a boy) = 0.5 (1/2 of all babies are boys) 

• P(baby is named John) = 0.001 (1 in1000 babies  named John) 

                                          Babies 
Baby boys 

 

John 



Joint probabilities 

• P(X,Y) is probability that X and Y are both true 
 

 P(brown eyes, boy) = (number of all baby boys with 
brown eyes)/(total number of babies) 

 

                                          Babies 
Baby boys 

 

John 
Brown eyes 



Conditional probability 

• P(X|Y) is probability that X is true when we already 
know Y is true 

                                          Babies 
Baby boys 

 

John 



Conditional Probability 
• P(X|Y) = P(X, Y) / P(Y) 

• P(baby is named John | baby is a boy) = 

     

                                          Babies 
Baby boys 

 
John 

P(baby is a boy) 

P(baby is named John, baby is a boy) 
= 002.0

5.0

001.0 

•  P(baby is a boy | baby is named John ) = 1 



Chain Rule 

• From Conditional Probability: 

 P(X,Y) = P(Y|X) P(X) 

• Extend to three events: 

P(X,Y,Z) = P(Y,Z|X)P(X) = P(Z|X,Y)P(Y|X)P(X) 

• Extend to multiple events: 

  P(X1,X2,…,Xn) = P(X1)P(X2|X1)P(X3|X1X2)…P(Xn|X1,…,Xn-1) 

 



Language Modeling 

• Start with vocabulary  
• words vocabulary  V = {a, an, apple,…, zombie} 

• or character vocabulary V = {a, A,…., z, Z,*,…, -} 

• In LM, events are sequences of words (or characters) 

• Example “an apple fell” or “abracadabra!!!+” 

• P(an apple fell) is the probability of the joint event that  
• the first word in a sequence is “an” 

• the second word in a sequence is “apple”  

• the third word in a sequence is “fell” 

• P( fell | an apple ) is probability that the third word in a 
sequence is “fell” given that the previous 2 words are 
“an apple” 



Probabilistic Language Modeling 
• A language model is a probability distribution over 

word or character sequences    

  P(W) = P(w1w2w3w4w5…wk) 

• Want: 

•  P(“And nothing but the truth”)  0.001 

•  P(“And nuts sing on the roof”)  0.000000001 

• Related task: probability of an upcoming word: 

P(w5|w1,w2,w3,w4) 

• A model that computes either of these: 

          P(W)    or    P(wk|w1,w2…wk-1)     

is called a language model 

• Build model P from observed texts (corpora) 

 



Probabilistic Language Modeling 
• Get lots of training text (corpora) 

• Use it to estimate P(w1w2w3w4w5…wk) : 
 

• Naïve idea:  
 
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• where  C(w1w2…wk) is the number of times (count) sentence 
w1w2…wk   appears in training data 

• N is number of sentences in training data  

• Problem: language is infinite, many reasonable English 
sentences do not  appear in training data 

• “A happy new mother first put on a purple polka-dot dress on 
her baby daughter,  and then kissed her tiny left toe. ” 

• Do not want any sentence to have probability 0 

 



Markov Assumption 

• Can we make some simplifying assumptions? 

• Consider  

P(computer | instead of listening to this boring 
lecture, I would like to play on my ) 

• Probability that  “computer” follows  “Instead 
of listening to this boring lecture, I would like 
to play on my” is intuitively almost the same 
as probability that “computer” follows words 
“play on my” 

• Probability of the next word depends most 
strongly on just a few previous words 

     



Shannon Game (1951) 

“I am going to make a collect …” 
 

• Predict next word/character given n-1 previous words/characters 

• Human subjects were shown a few characters of text and were 
asked to guess the next character 

• As context increases, entropy decreases  

• the smaller the entropy => the larger probability of predicting next letter 

• But only a few words is enough to make a good prediction on the 
next word, in most cases 

• Evidence that we only need to look back at n-1 previous words  

Context 0 1 2 3 

Entropy (H) 4.76 4.03 3.21 3.1 



n-grams 

• n-gram model: probability of a word depends only 
on the n-1 previous words (the history) 

P(wk |w1w2…wk-nwk+1-n…wk-1)  P(wk |wk+1-n…wk-1) 

• This called Markov Assumption: only the closest n 
words are relevant 

• Special cases: 

• Unigram (n=1): previous words do not matter 

• Bigram    (n=2): only the previous one word matters 

• Trigram   (n=3): only the previous two words matter 



Example: Trigram Approximation (n = 3) 

• Each word depends only on previous two words  
• three words total with the current one 

• tri means three 

• gram means writing 

 
• P(the|… whole truth and nothing but)   

P(the|nothing but) 
 

• P(truth|… whole truth and nothing but the)   

P(truth|but the) 



Chain Rule 
 

 

• First Decompose using the chain rule: 

     P(and nothing but the truth) =      

x P(but|and nothing)  

x P(the|and nothing but)   

x P(truth|and nothing but the)   

   P(and)   

x P(nothing|and)  

• P(and nothing but the truth)   

           P(and)P(nothing|and) P(but|and nothing)                                                
.      P(the|nothing but) P(truth|but the)     



How Compute Trigram Probabilities? 

• P(w3 | w1 w2)  ? 
• these probabilities are usually called “parameters” 

 

• First rewrite: P(w3 | w1 w2) =  
P(w1 w2 w3) 

P(w1 w2) 
 

• Need to estimate P(w1 w2 w3), P(w1 w2), P(w1), etc. 
• will call these trigram, bigram, unigram, etc 

• Get lots of real text, and approximate based on counts 

 
P(w1 w2w3) =  C(w1 w2 w3 ) 

number of trigrams in text 
 

• where C(w1 w2 w3) is the number of times we saw trigram w1 w2 
w3 in the training text 
 



How Compute Trigram Probabilities? 
• Suppose our text is 

 “and nothing but the truth when nuts and nothing on the roof” 
 

• 12 unigrams, 11 bigrams, 10 trigrams 
 

• Estimate P(but |and nothing) = 
P(and nothing but ) 

P(and nothing) 

P(and nothing but) = 
C(and nothing but ) 

10 
                                    = 

1 

10 

P(and nothing) = 
C(and nothing ) 

11 
                                    = 

2 

11 

P(but |and nothing) =             = 
1/10 

2/11 

11 

20 



How Compute Trigram Probabilities? 

• In practice in a file with N words, we have 

• N unigrams  

• N-1 bigrams 

• N-2 trigrams, etc. 

• N is so large, that dividing by N, or N-1, or N-2 makes no 
difference in practice 
 

5/10,000,006  =almost  5/10,000,005 =almost 5/10,000,004 
 

• Previous example becomes: 

 

P(but |and nothing) =             = 
1/12 

2/12 

1 

2 



How Compute Trigram Probabilities? 

• Calculations simplify: 

P(w3 | w1 w2) =  
C(w1 w2 w3)/N 

C(w1 w2)/N 
                         =  

C(w1 w2 w3) 

C(w1 w2) 

• Side note: this also avoids P > 1 

• Consider training text again 
“and nothing but the truth when nuts and nothing on the roof” 

 

 
• If we used exact arithmetic, i.e. N-2, N-1 

P(truth |but the) =              
C(but the truth) /10  

C(but the) /11  

1/10 

1/11 

11 

10 
=             =              



Computing Trigrams 

P(w3 | w1 w2) =  
C(w1 w2 w3)  

C(w1w2)  

   P(w1 w2 w3) =  
C(w1 w2 w3)  

N 

• where N is number of words in the training text 

• From now on 



Trigrams, continued 

• where N is the number of words in our training text 

 

• P(and nothing but the truth)   

           P(and)P(nothing|and) P(but|and nothing)      

    .      P(the|nothing but) P(truth|but the)     

C(and nothing) 

C(and) 

 

 

 

C(and) =  
 

 

 

      N 

 

 

 

 

    C(and nothing but) 

    C(and nothing) 

 C(nothing but the) 

 C(nothing but) 

    C(but the truth) 

    C(but the) 



Text Generation with n-grams  

• Trained on 40 million words from WSJ (wall street journal) 

• Generate next word according to the n-gram model 

• Unigram:  
• Months the my and issue of year foreign new exchange’s September were 

recession exchange new endorsed a acquire to six executives. 

• Bigram:  
• Last December through the way to preserve the Hudson corporation 

N.B.E.C. Taylor would seem to complete the major central planner one 
point five percent of U.S.E. has already old M. X. corporation of living on 
information such as more frequently fishing to keep her. 

• Trigram:  
• They also point to ninety point six billion dollars from two hundred four 

oh six three percent of the rates of interest stores as Mexico and Brazil on 

market conditions. 



Example with Sentence Start/End 

<s> I am Sam </s> 

<s> Sam I am </s> 

<s> I do not like green eggs and ham </s> 
• Training text: 

• Bigram model:    P(wi|wi-1) = 
    C(wi-1wi) 

    C(wi-1) 

• Some bigram probabilities: 

P(I|<s>) = 2/3 = 0.67  P(Sam|<s>) = 1/3 = 0.33 

P(</s>|Sam) = 1/2 =0.5 P(Sam|am) = 1/2  = 0.5 

P(am|I) = 2/3 = 0.67  P(do|I) = 1/3 = 0.33 

 



Raw Bigram Counts 
• Can construct V-by-V matrix of probabilities/frequencies  

• V = size of the vocabulary we are modeling 

• Used 922 sentences 

 

 

1
st

 w
o

rd
 

2nd word 



Bigram Probabilities 
• Normalize by unigrams to get conditional  P(second|first) : 

 

• Result: 

P(<s> I want chinese food </s>) = P(I|<s>)    

      ×  P(want|I)   

     ×  P(chinese|want)    

     ×  P(food|chinese)    

     ×  P(</s>|food) 

            =  .000031 

P(want|I) 



Practical Issue 

• We do everything in log space 

• to avoid underflow 

• also adding is faster than multiplying 

• instead of P(a)×P(b)×P(c) compute log[P(a)]+ log[P(a)] +log[P(a)] 

• Example, instead of:  
 P(<s> I want chinese food </s>) =P(I|<s>) ×  P(want|I)  ×  P(chinese|want)    

     ×  P(food|chinese)   ×  P(</s>|food) 

            =  .000031 

• we compute: 
 log[P(<s> I want chinese food </s>)] = log[P(I|<s>)] +  log[P(want|I)] +   

              log[P(chinese|want)] + P(food|chinese) 
              + log[P(</s>|food)]  =  -4.501 

            

 



Google N-Gram Release, August 2006 

http://ngrams.googlelabs.com/ 

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html 
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Google Book N-grams 

• http://ngrams.googlelabs.com/ 

http://ngrams.googlelabs.com/


Which n-gram to Use? 

• “the large green ______ .” 

• “mountain”? “tree”? “pill”?  “broccoli”? …   

• “Sue swallowed the large green ______ .” 

• “pill”?  “broccoli”?   

• Knowing that Sue “swallowed” helps narrow down 
possibilities  

• Larger n corresponds to more context, i.e. looking 
back further  

• But we need more data to estimate larger n-grams  
reliably 



Which n-gram to use?   

• example: for a vocabulary of 20,000 words 

• number of bigrams = 400 million (20 0002) 

• number of trigrams = 8 trillion (20 0003) 

• number of four-grams = 1.6 x 1017 (20 0004) 

• number of n-grams is exactly the number of parameters 
to learn 

• Going from n-gram to (n+1)-gram, number of parameters 
to learn grows by a factor of n 

• For reliable estimates, the more parameters we need to 
learn, the more training samples we need 

• But usually training data has fixed size of N words, it does 
not change when we go from n-gram to (n+1)-gram 

 



Unigram vs. Bigram Illustration 
• For reliable estimates, the more parameters we need to learn, the 

more training samples we need  

• Suppose  Vocabulary size is 10,000=104 and we have a text with 
100,000 = 105 words, i.e. 105 training samples 

• For Unigrams 
• Need to estimate unigram counts for each vocabulary word, i.e.  C(‘place’), 

C(‘apple’), etc.  

• Number of parameters (unigram counts) to estimate is 104 

• On average, 105/ 104  = 10 training samples  per parameter, reasonable 

• For Bigrams 
• Need to estimate bigram counts for 10 4* 104 = 108 possible bigrams 

• Number of parameters (bigram counts) to estimate is 108 

• Number of training samples is still 105  (or 105 – 1 to be exact) 

• On average, have 105 /108 =10-3 training samples to fit per parameter 

• Highly insufficient, need much more data 



Reliability vs. Discrimination 

• larger n:   
• greater discrimination: more information about the context of the specific 

instance 

• but less reliability: 

• model is too complex, that is has too many parameters 

• cannot estimate parameters reliably from limited data (data sparseness) 

• too many chances that the history has never been seen before 

• parameter estimates are not reliable because we have not seen 
enough examples 

• smaller n:   
• less discrimination, not enough history to predict next word very well, our 

model is not so good 

• but more reliability: 

• more instances in training data, better statistical estimates of 
parameters 

• Bigrams or trigrams are most often used in practice 
• works well, although there are longer-range dependencies not captured 



Reducing number of Parameters  
• with a 20 000 word vocabulary: 

• bigram needs to store 400 million parameters 

• trigram needs to store 8 trillion parameters 

• using a language model > trigram is impractical 

• to reduce the number of parameters, we can: 
• do stemming (use stems instead of word types) 

• help = helps = helped 

• group words into semantic classes 
• {Monday,Tuesday,Wednesday,Thursday,Friday} = one 

word 

• seen once --> same as unseen 
 

 



Statistical Estimators 
• How do we estimate parameters (probabilities of 

unigrams, bigrams, trigrams)?  

• Maximum Likelihood Estimation (MLE)  

• already saw this, major problems due to data sparseness 

• Smoothing 

• Add-one -- Laplace 

• Add-delta -- Lidstone’s & Jeffreys-Perks’ Laws (ELE) 

• Good-Turing 

• Combining Estimators 

• Simple Linear Interpolation 



Maximum Likelihood Estimation  
• Already saw this 

• Let C(w1...wn) be the frequency of n-gram w1...wn 
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• “Maximum Likelihood” because the parameter values it 
gives lead to highest probability of the training corpus 

• However, interested in good performance on test data 

 

 

 



Data Sparseness Example  
• in a training corpus, we have 10 instances of “come 

across” 

• 8 times, followed by “as” 

• 1 time, followed by “more” 

• 1 time, followed by “a” 
 

10

8

across) C(come

as) across C(come
  across) come |(asPMLE 

 

• so we have:   

•   

• PMLE(more | come across) = 0.1  

• PMLE(a | come across) = 0.1  

• PMLE(X | come across) = 0  where X  “as”, “more”, “a” 
 

 



Common words in Tom Sawyer 

 

but words in NL have an uneven distribution…  



Most Words are Rare 

• most words are rare  

• 3993 (50%) word types appear only 
once 

• they are called happax legomena 
(read only once) 

 

• common words are very common  

• 100 words account for 51% of all 
tokens (of all text) 



Problem with MLE: Data Sparseness   

• Got trigram  “nothing but the” in training corpus, but not 
trigram “and nuts sing” 

• Therefore estimate P(and nuts sing) = 0 

• Any sentence which has “and nuts sing” has probability 0 
• We want P(“and nuts sing”) to be small, but not 0! 

• If a trigram never appears in training corpus, probability of 
sentence containing this trigram is 0 

• MLE assigns a probability of zero to unseen events …  

• Probability of an n-gram involving unseen words will be zero  

• but … most words are rare  

• n-grams involving rare words are even more rare… data 
sparseness 
 



• From [Balh et al 83]  
• training with 1.5 million words  

• 23% of the trigrams from another part of the same 
corpus were previously unseen 

• in Shakespeare’s work  
• out of all possible bigrams, 99.96% were never used  

• So MLE alone is not good enough estimator 
 

Problem with MLE: Data Sparseness   



Discounting or Smoothing 

• MLE alone is unsuitable for NLP because of the 
sparseness of the data  

• We need to allow for possibility of seeing events not 
seen in training 

• Must use a Discounting or Smoothing technique 

• Decrease the probability of previously seen events to 
give a little bit of probability for previously unseen 
events 



Smoothing 

• Smoothing flattens spiky distributions so they generalize better 

 P(w|denied the) 
  2.5 allegations 

  1.5 reports 

  0.5 claims 

  0.5 request 

  2 other 

  7 total 

• Increase P(unseen event) → decrease P(seen event) 

• P(w|denied the) 
  3 allegations 

  2 reports 

  1 claims 

  1 request 

  7 total 



Many smoothing techniques 

• Add-one 

• Add-delta  

• Good-Turing smoothing 

• Many other methods we will not study... 

 



 
Add-one Smoothing (Laplace’s Law 1814) 

 • Give a little bit of  probability space to unseen events 

• Pretend we have seen every n-gram at least once  

• Intuitively appended all possible n-grams to training data  

B  N

1  )w w (w C
  )w w (wP

n1 2
n21Add1

+

+…
=…

• Training data has N n-grams 

•  The “new” size is N+B,where B is # of all possible n-grams 

• If V words in vocabulary, then: 
• B= V*V for bigrams 

• B=V*V*V for trigrams 

• etc. 

• We get:   

real data 
N bigrams 

fake data 
all possible bigrams 



Add-One Example 

B  N

1  )w w (w C
  )w w (wP

n1 2
n21Add1






• Let us use character model 

• Training data = “abraabr” 

• N = 7 

• bigrams = ab,br,ra,aa,ab,br 

• Let V = 256 

• With bigram approximation  (n = 2), B = 2562 

5

22
Add1 106.4

256  7

3

256  7

1  (ab) C
  (ab)P 









 



Add-One Example 

• How well does it work in practice? 

• Works ok if sparsity problem is mild 

• not a lot of missing nGrams 

 

 



Add-One: Example 

 I want to eat Chinese food lunch … Total 

I 8 1087 0 13 0 0 0  N(I)=3437 

want 3 0 786 0 6 8 6  N(want)=1215 

to 3 0 10 860 3 0 12  N(to)=3256 

eat 0 0 2 0 19 2 52  N(eat)=938 

Chinese 2 0 0 0 0 120 1  N(Chinese)=213 

food 19 0 17 0 0 0 0  N(food)=1506 

lunch 4 0 0 0 0 1 0  N(lunch)=459 

…         N=10,000 
 

 

Unsmoothed bigram counts 

 I want to eat Chinese food lunch … Total 

I .0008  .1087 0 .0013 0 0 0   

want .0003 0 .0786 0 .0006 .0008 .0006   

to .0003 0 .001 .086 .0003 0 .0012   

eat 0 0 .0002 0 .0019 .0002 .0052   

Chinese .0002 0 0 0 0 .012 .0001   

food .0019 0 .0017 0 0 0 0   

lunch .0004 0 0 0 0 .0001 0   

…         N=10,000 

 
 

Unsmoothed bigram probabilities 



Add-one: Example  

 I want to eat Chinese food … Total 

I 8   9 1087  
1088 

1 14 1 1  3437   
N(I) + V = 5053 

want 3  4 1 787 1 7 9  N(want) + V = 2831 

to 4 1 11 861 4 1  N(to) + V = 4872 

eat 1 1 23 1 20 3  N(eat) + V = 2554 

Chinese 3 1 1 1 1 121  N(Chinese) + V =1829 

food 20 1 18 1 1 1  N(food) + V = 3122 

…        N= 10,000 
N+V2 = 10,000 +16162 

= 2,621,456  
 

add-one smoothed bigram counts 

 I want to eat Chinese … 

I .0000034 
(9/2621456) 

.00041 .00000038 .0000053 
 

.00000038  

want .0000015 .00000038 .0003 .00000038 .0000027  

to .0000015 .00000038 .000004 .0046 .0000015  

eat .00000038 .00000038 .0000088 .00000038 .0000076  

…       

 

add-one bigram probabilities 



Example Allocation to Unseen Bigrams 

111.33875x10
,75674,674,306  22,000,000

1
  

BN

1 













• Data from the AP from (Church and Gale, 1991) 

• N = 22,000,000 

• V = 273,266 

• B = V2 = 74,674,306,756 

• 74,671,100,000 unseen bigrams 

• Add One probability of unseen bigram: 

 

• Portion of probability mass given to unseen bigrams: 

number of unseen bigrams x P(unseen bigram) = 

  96991033875100010067174 11 ..,,,  



Problem with add-one smoothing 
MLE          want this get this 

• each individual unseen n-gram is given a low probability 

• but there is a huge number of unseen n-grams  

• Instead of giving small portion of probability to unseen events, 
most of the probability space is given to unseen events 

• But how do we know we gave too much space to unseen 
bigrams? Maybe they should have 99% of all probability space? 



Evaluation: How good is our model? 
• Train parameters of our model on a training set 

• Test model performance on data we haven’t seen 

• A test set is an unseen dataset that is different from our 
training set, totally unused 

• An evaluation metric tells us how well our model does on the 
test set 

• compare estimated counts (probability) with actual counts (empirical 
counts) on test data 

• recall that count/N is the probability 

• it’s easy to switch between the two 

• but count gives an easier number to look at, probability is usually tiny 



Evaluation: How good is our model? 
• Compare the actual counts on the test set (empirical 

counts) to counts predicted by the model 

• Ctrain(w1...wn) = count of w1...wn in the training data 

• Ctest(w1...wn) = count of w1...wn in the test data 

• Nr = number of n-grams with count r in training data 

• Let Tr be total number of times all n-grams that 
appeared r-times in training data appear in test data 

  
 





rw...wC:w...w

ntestr

ntrainn

w...wCT
11

1

• Empirical count (averaged) of these n-grams is Tr/Nr 

• Want predicted count close to empirical count Tr/Nr  



Evaluation: Bigrams Example 
• V = {a,b,r} 

• Training data = “abraabr” 

• Training bigrams = ab, br, ra, aa, ab, br 

• Ctrain(ab) = 2, Ctrain(br)=2, Ctrain(ra)=1, Ctrain(aa)=1 

• N0 = 5 (ar, ba, bb, rb, rr), N1 = 2, N2 = 2  

• Test data = “raraabr” 

• Test bigrams = ra, ar, ra, aa, ab, br 

• Ctest(ra) = 2, Ctest(ar) = 1, Ctest(aa) = 1, Ctest(ab) = 1,Ctest(br) = 1 

• T0 = Ctest(ar)= 1, T1 = Ctest(aa)+Ctest(ra)= 3, T2 = Ctest(ab) +Ctest(br)= 2  

• Empirical counts: T0/N0 =1/5, T1/N1 =3/2  and T2/N2 =2/2   
• bigrams that never occur in training, occur, on average,  1/5 times  in test  

• bigrams that occurred once in training, occur, on average,  1.5 times in test  

• bigrams that occurred  twice in training , occur, on average,  once in test  

• Predicted counts are good if  close to the empirical counts 



Counts on Test Data 
• Corpus of 44,000,000 bigram tokens, 22,000,000 for training, 

22,000,000 for testing 
• Data from the AP from (Church and Gale, 1991) 

• To get probability, divide count by 22,000,000 

• Each unseen bigram was given a count of 0.000295 

CMLE Cempirical Cadd-one 

0 0.000027 0.000295 

1 0.448 0.000589 

2 1.25 0.000884 

3 2.24 0.001180 

4 3.23 0.001470 

5 4.21 0.001770 

too high 

too low 

num. of times 
appeared in 

training corpus 

observed count 
in testing corpus 

Add-one count on 
testing corpus 



Add-delta smoothing (Lidstone’s law) 

• instead of adding 1, add some smaller positive value    
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• better than add-one, but still not very good 

• This is called Lidstone’s law 

• most widely used value for  = 0.5, in this case it’s called 

• the Expected Likelihood Estimation (ELE)  

• or the Jeffreys-Perks Law 
 

 

 

 



Add-Delta Example 

• Let us use character model 

• Training data = “abraabr” 

• N = 7 

• trigrams = abr, bra, raa, aab, abr 

• Let V = 256 

• With trigram approximation  (n = 3), B = 2563 
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Smoothing: Good Turing (1953) 

• Suppose we are fishing,  fish species in the sea are: 
• carp, cod, tuna, trout, salmon, eel, shark, tilapia, etc … 

• We caught 10 carp, 3 cod, 2 tuna, 1 trout, 1 salmon, 1 eel 

• How likely is it that the next species is new? 
• roughly 3/18, since 18 fish total, 3 unique species (trout, salmon, eel) 

• Say that there are 20 species of fish that we have not seen yet 
(bass, shark, tilapia,….) 

• Probability of any individual unseen species  is  

2018
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
• P(bass) = P(shark)= P(tilapia) = 

2018

3





Smoothing: Good Turing  

• Let N1 be the number species (n-grams) seen once 

• Use it to estimate for probability of unseen species 

• probability of new species (unseen n-gram) is N1/N 

• Let N0 be the number of unseen species (unseen n-grams) 

• Spreading around the mass equally for unseen n-grams, 
the probability of seeing any individual unseen species 
(unseen n-gram) is  
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Smoothing: Good Turing 

• We caught 10 Carp, 3 Cod, 2 tuna, 1 trout, 1 salmon, 1 eel 

• 20 species  unseen so far 

• How likely is it that next species is new? 3/18 
• The probability of any individual unseen fish is  

2018

3



• What is the new probability of catching a trout? 
• should be smaller than 1/18 to make room for unseen fish 

• continue the in the same direction as with unseen species 

• if we catch another trout, trout will occur with the rate of 2 

• according to our data, what is the probability of fish with rate = count = 2?  

• tuna occurs 2 times, so probability is 2/18 

• now spread the  probability of 2/18 over all species seen once  

• 3 species (trout, salmon, eel) 

• probability of catching a fish which occurred 1 time:  
318
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



Smoothing: Good Turing: General Case  

• Let r be  rate (count) with which n-gram occurs in training data 

• If an n-gram occurs with rate r, computed its probability as 
• r/N, where N is the size of the training data 

•  need to lower all these rates to make room for unseen n-grams 

• The number of n-grams which occur with rate r+1 is smaller than 
the number of grams which occur with rate r 

• Good-Turing Idea: take the portion of probability space occupied 
by n-grams which occur with rate r+1 and divide it among the n-
grams which occur with rate r 

 



Good Turing Formula 
• Nr number of different n-grams in training occuring exactly r times 

• training data =“catch a cow, make a cow sing“ 

• bigrams = “catch a”, “a cow”, “cow make”, “make a”, “cow sing” 

• N1 = 4 and N2 = 1 

• Probability for any n-gram with rate r is estimated from the space 
occupied by n-grams with rate r+1 

• N  is the size of the training data.  Space occupied by n-grams with 
rate r+1 is: 

N
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• Spread it evenly among n-grams with rate r, there are Nr of them: 
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• If n-gram x has rate r, Good Turing estimate is:   
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• If n-gram x that occurs r times:  
r
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• Does not work well for high values of r 

• Nr is not reliable estimate of the number of n-grams that occur 
with rate r 

• In particular, fails for the most frequent r since Nr+1=0 

Fixing Good Turing 

N1 N2 N3 N4 N444 N443 N442 N441 N440 

just bigram 
‘it is’ 

just bigram 
‘he is’ 



 • MLE is reliable for higher values of r 

• choose threshold t, say t = 6 
• best threshold depends on data 

• for r  t, use PMLE(w1…wn) = C(w1…wn)/N 

• for  r < t, use PGT  

• for this range of r,  make sure Nr+1 > 0 

• also make sure 
 

Fixing Good Turing: Solution 1 

N1 N2 N3 N4 N444 N443 N442 N441 N440 

just bigram 
‘it is’ 

just bigram 
‘he is’ 
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=*r• otherwise the new rate                          is larger than old rate r 



 
• Smooth out Nr by fitting a power law function F(r) = arb 

•  with b < -1 

•  Search for the best a and b < -1 to fit observed Nr   

• one line in Matlab 

• Used smoothed Nr instead of actual Nr  

Fixing Good Turing: Solution 2 



Smoothing: Fixing Good Turing  

• Probabilities will not add up to 1, whether using Solution 1 or 
Solution 2 from the previous slide 

• Have to renormalize all probabilities so that they add up to 1 
• could renormalize all n-grams 

• or renormalize only the n-grams with observed rates higher than 0 

• suppose the total space for unseen n-grams is 1/20 

• renormalize the weight of the seen n-grams so that the total is 19/20 



Good Turing vs. Add-One  

CMLE Cempirical Cadd-one CGT 

0 0.000027 0.000295 0.000027 

1 0.448 0.000589 0.446 

2 1.25 0.000884 1.26 

3 2.24 0.001180 2.24 

4 3.23 0.001470 3.24 

5 4.21 0.001770 4.22 



Good-Turing (GT) Example 

• PGT(n-gram occuring r times) =  
r

r
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N
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• Vocabulary is {a,b,c} 

• Possible bigrams: {aa,ab,ba,bb,ac,bc,ca,cb,cc} 

• Corpus: babaacbcacac 
• observed bigrams are {ba, ab, ba, aa, ac, cb, bc, ca, ac, ca, ac} 

• unobserved bigrams: bb,cc 

• Observed bigram counts  
• ab: 1, aa: 1,cb: 1, bc: 1, ba: 2, ca: 2, ac: 3 

• N0=2, N1=4, N2=2, N3=1, N = 12 

• Use Good Turing (GT) probabilities up to and including r = 2 

• GT:  P(bb) = P(cc)= (0+1)×(N1/(N×N0))=4/(12×2) = 1/6 

• GT:  P(ab) = P(aa)=P(cb)=P(bc)= (1+1)×(N2/(N×N1)) = 1/12 

• GT:  P(ba) = P(ca)= (2+1)×(N3/(N×N2)) = 1/8 

• MLE:  P(ac) = 3/12 = 1/4 



• Now renormalize. Before renormalization: 

• P’(bb) = P’(cc) = 1/6 

• P’(ab) = P’(aa) = P’(cb) = P’(bc) = 1/12 

• P’(ba) = P’(ca) = 1/8 

• P’(ac) = 1/4 

• P’(·)  to indicate that the above are not true probabilities, they don’t add up to 1 

• Renormalization 1 

• unseen bigrams should occupy P’(bb) + P’(cc) = 1/3 of space after normalization 

• Weight of seen bigrams ab,aa,cb,bc,ba,ca,ac should be 1 – 1/3 = 2/3 

• P’(ab) + P’(aa) + P’(cb) + P’(bc) + P’(ba) + P’(ca) + P’(ac) = 10/12 = 5/6 

• Solve for y equation:   

• (5/6) × y = 2/3  

•  y = 4/5 

• Multiply the above P’(·) by 4/5, except for the unseen bigrams: 

• P(bb) = P(cc)= 1/6, did not want to change these 

• P(ab) = P(aa) = P(cb) = P(bc)= (1/12)×(4/5) = 1/15  

• P(ba) = P(ca) = (1/8)×(4/5) = 1/10 

• P(ac) =  (1/4)×(4/5) =1/5 

Good-Turing (GT) Example 



• Renormalization 2: 

• Before renormalization: 

• P’(bb) = P’(cc)= 1/6 = P’0 

• P’(ab) = P’(aa) = P’(cb) = P’(bc) = 1/12 = P’1 

• P’(ba) = P’(ca) = 1/8 = P’2 

• P’(ac) = 1/4 =  P’3 

• Simply renormalize all  P’ to add to 1 

• (1) find their sum; (2) Divide each  by the sum 

• Add up based on rates, since ngrams with the same rate have equal probability 

• Let Sr contain all nGrams that were observed r times, Nr is the number of items in Sr  

• S0 =  {bb,cc},  S1 = {ab,aa,cb,bc}, S2 = {ba,ca}, S3 = {ac} 

• sum = P’0N0+P’1N1+P’2N2+P’3N3 = (1/6)×2 + (1/12)×4 + (1/8)×2 + (1/4) = 7/6 

• New probabilities are:  

• P(bb) = P(cc) = (1/6)/(7/6) = 1/7 = P0 

• P(ab) = P(aa) = P(cb) = P(bc) = (1/12)/(7/6) = 1/14 = P1 

• P(ba) = P(ca) = (1/8)/(7/6) = 3/28 = P2 

• P(ac) = (1/4)/(7/6) = 3/14 = P3 

Good-Turing (GT) Example 



Good-Turing (GT) Example 
• Let’s calculate P(abcab) using our model 

• Probabilities, using the first case of normalization: 
• P(bb) = P(cc)= 1/6 

• P(ab) = P(aa) = P(cb) = P(bc)= 1/15  

• P(ba) = P(ca) = 1/10 

• P(ac) =  1/5 

• Also need probabilities for unigrams a,b,c, compute with MLE 
• Corpus = “babaacbcacac” 

• P(a) = 5/12, P(b) = 3/12, P(c)=4/12  

• Recall bigram approximation: 

P(abcab)   P(a) P(b|a) P(c|b) P(a|c) P(b|a) 
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  P(a)   P(b)   P(c)   P(a) 
            P(ab) P(bc) P(ca) P(ab) = P(a)  



Combining Estimators 

• Assume we have never seen the bigrams  

• “journal of”               Punsmoothed(of |journal) = 0  

• “journal from”          Punsmoothed(from |journal) = 0  

• “journal never”         Punsmoothed(never |journal) = 0  

• all models we looked at so far will give the same 
probability to  3 bigrams above 
 

• But intuitively, “journal of” is more probable because 

• “of” is more frequent than “from” & “never”  

• unigram probability P(of) > P(from) > P(never) 



• observation:  

• unigram model suffers less from data sparseness than 
bigram model 

• bigram model suffers less from data sparseness than 
trigram model 

• … 
 

• if we have several models of how the history 
predicts what comes next, we can combine them 
in the hope of producing an even better model 

Combining Estimators 



Simple Linear Interpolation 

• Solve the sparseness in a trigram model by mixing 
with bigram and unigram models 

• Also called:  

• linear interpolation 

• finite mixture models  

• deleted interpolation 

• Combine linearly 

 

 

 

Pli(wn|wn-2,wn-1) = 1P(wn) + 2P(wn|wn-1) + 3P(wn|wn-2wn-1) 

• where 0 i 1 and i i =1 

• i  can be learned on validation data  

• search for i’s which maximize probability of validation data 



Applications of LM  
• Author / Language identification 

• Hypothesis: texts that resemble each other (same 
author, same language) share similar characteristics   

• In English character sequence “ing”  is more probable than 
in French   

• Training phase:  

• pre-classified documents (known language/author) 

• construct the language model for each document class 
separately 

• Testing phase:  

• evaluation of unknown text (comparison with language 
model) 



Example: Language identification 

• bigram of characters  

• characters = 26 letters (case insensitive) 

• possible variations: case sensitivity, 
punctuation, beginning/end of sentence 
marker, … 

 

 
 

 

 



 A B C D … Y Z 

A 0.0014 0.0014 0.0014 0.0014 … 0.0014 0.0014 

B 0.0014 0.0014 0.0014 0.0014 … 0.0014 0.0014 

C 0.0014 0.0014 0.0014 0.0014 … 0.0014 0.0014 

D 0.0042 0.0014 0.0014 0.0014 … 0.0014 0.0014 

E 0.0097 0.0014 0.0014 0.0014 … 0.0014 0.0014 

… … … … … … … 0.0014 

Y 0.0014 0.0014 0.0014 0.0014 … 0.0014 0.0014 

Z 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 

 

 1. Train a language model for English 

2. Train a language model for French 

3. Evaluate probability of a sentence with LM-English and LM-
French 

4. Higher probability  language of the sentence 

Example: Language Identification 



• Can do the same thing for ham/spam emails 

• Construct character based model for ham/spam 
separately 

• use all 256 characters 

• punctuation is important 

• For new email, evaluate its character sequence using 
spam character model and ham character model 

• Highest probability model wins 

• This is approach was the best one on our assignment 1 
data, as presented in a workshop where the data 
comes from 

 

Spam/Ham Classification 


