Lecture 16

Natural Language Processing

Part of Speech Tagging

Many slides from: Joshua Goodman, L. Kosseim, D. Klein, D. Jurafsky, M. Hearst, K. McCoy, Y. Halevi, C. Manning, M. Poesio
• What is POS and POS tagging
 • POS = part of speech
• Why we need POS tagging
• Different Approaches to POS
 1. rule-based tagging
 2. statistical tagging
What is a Part of Speech?

- Words that behave alike
 - appear in similar contexts
 - perform similar functions in sentences
 - undergo similar transformations
- Terminology
 - **POS** (part-of-speech tag)
 - also called
 - grammatical tag
 - grammatical category
 - syntactic word class
Substitution Test

• Two words belong to the same part of speech if replacing one with another does not change the grammaticality of a sentence

The \{sad, big, green, ...\} dog is barking.
• Perhaps started with Aristotle (384–322 BCE)
• From Dionysius Thrax of Alexandria (c. 100 BCE) the idea that is still with us
 • 8 main parts of speech
• Those 8 are not exactly the ones taught today
 • **Thrax**: noun, verb, article, adverb, preposition, conjunction, participle, pronoun
 • **School grammar**: noun, verb, adjective, adverb, preposition, conjunction, pronoun, interjection
How Many POS are there?

• A basic set:
 • N(oun), V(erb), Adj(ective), Adv(erb), Prep(osition), Det(erator), Aux(iliary), Part(icle), Conj(unction)

• A simple division: open/content vs. closed/function
 • Open: N, V, Adj, Adv
 • new members are added frequently
 • Closed: Prep, Det, Aux, Part, Conj, Num
 • new members are added rarely

• Many subclasses, e.g.
 • eats/V ⇒ eat/VB, eat/VBP, eats/VBZ, ate/VBD, eaten/VBN, eating/VBG, ...
POS tagging

• Goal: assign POS tag (noun, verb, ...) to text

 The/AT girl/NN put/VBD chairs/NNS on/IN the/AT table/NN.

• What set of parts of speech do we use?
 • various standard tagsets to choose from, some have a lot more tags than others
 • choice of tagset is based on application
 • accurate tagging possible with even large tagsets
Why do POS Tagging?

- Word sense disambiguation (semantics)
 - limits the range of meanings: *deal* as noun vs. *deal* as verb
- Speech recognition and synthesis
 - how to recognize/pronounce a word:
 - *content/noun* vs. *content/adj*
- Stemming: which morphological affixes word can take
 - adverb - *ly* = noun: *friendly* - *ly* = friend
 - cannot apply to adjectives, example: *sly*
- Partial parsing/chunking
 - to find noun phrases/verb phrases
- Information extraction
 - helps identify useful terms and relationships between them
Common Tagged Datasets

- 45 tags in Penn Treebank
- 62 tags in CLAWS with BNC corpus
- 79 tags in Church (1991)
- 87 tags in Brown corpus
- 147 tags in C7 tagset
- 258 tags in Tzoukermann and Radev (1995)
Penn Treebank

• First syntactically annotated corpus
• 1 million words from Wall Street Journal
• Part of speech tags and syntax trees
• 45 tags total

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>preposition or subordinating conjunct.</td>
</tr>
<tr>
<td>JJ</td>
<td>adjective or numeral, ordinal</td>
</tr>
<tr>
<td>JJR</td>
<td>adjective, comparative</td>
</tr>
<tr>
<td>NN</td>
<td>noun, common, singular or mass</td>
</tr>
<tr>
<td>NNP</td>
<td>noun, proper, singular</td>
</tr>
<tr>
<td>NNS</td>
<td>noun, common, plural</td>
</tr>
<tr>
<td>TO</td>
<td>"to" as preposition or infinitive marker</td>
</tr>
<tr>
<td>VB</td>
<td>verb, base form</td>
</tr>
<tr>
<td>VBD</td>
<td>verb, past tense</td>
</tr>
<tr>
<td>VBG</td>
<td>verb, present participle or gerund</td>
</tr>
<tr>
<td>VBN</td>
<td>verb, past participle</td>
</tr>
<tr>
<td>VBP</td>
<td>verb, present tense, not 3rd p. singular</td>
</tr>
<tr>
<td>VBZ</td>
<td>verb, present tense, 3rd p. singular</td>
</tr>
</tbody>
</table>

...
<table>
<thead>
<tr>
<th>Tag</th>
<th>Form Type</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBP</td>
<td>base present</td>
<td>take</td>
</tr>
<tr>
<td>VB</td>
<td>infinitive</td>
<td>take</td>
</tr>
<tr>
<td>VBD</td>
<td>past</td>
<td>took</td>
</tr>
<tr>
<td>VBG</td>
<td>present participle</td>
<td>taking</td>
</tr>
<tr>
<td>VBN</td>
<td>past participle</td>
<td>taken</td>
</tr>
<tr>
<td>VBZ</td>
<td>present 3sg</td>
<td>takes</td>
</tr>
<tr>
<td>MD</td>
<td>modal</td>
<td>can, would</td>
</tr>
</tbody>
</table>
The entire Penn Treebank tagset

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
<th>Example</th>
<th>Tag</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>Coordin. Conjunction</td>
<td>and, but, or</td>
<td>SYM</td>
<td>Symbol</td>
<td>+, %, &</td>
</tr>
<tr>
<td>CD</td>
<td>Cardinal number</td>
<td>one, two, three</td>
<td>TO</td>
<td>“to”</td>
<td>to</td>
</tr>
<tr>
<td>DT</td>
<td>Determiner</td>
<td>a, the</td>
<td>UH</td>
<td>Interjection</td>
<td>ah, oops</td>
</tr>
<tr>
<td>EX</td>
<td>Existential ‘there’</td>
<td>there</td>
<td>VB</td>
<td>Verb, base form</td>
<td>eat</td>
</tr>
<tr>
<td>FW</td>
<td>Foreign word</td>
<td>mea culpa</td>
<td>VBD</td>
<td>Verb, past tense</td>
<td>ate</td>
</tr>
<tr>
<td>IN</td>
<td>Preposition/sub-conj</td>
<td>of, in, by</td>
<td>VBG</td>
<td>Verb, gerund</td>
<td>eating</td>
</tr>
<tr>
<td>JJ</td>
<td>Adjective</td>
<td>yellow</td>
<td>VBN</td>
<td>Verb, past participle</td>
<td>eaten</td>
</tr>
<tr>
<td>JJR</td>
<td>Adj., comparative</td>
<td>bigger</td>
<td>VBP</td>
<td>Verb, non-3sg pres</td>
<td>eat</td>
</tr>
<tr>
<td>JJS</td>
<td>Adj., superlative</td>
<td>wildest</td>
<td>VBZ</td>
<td>Verb, 3sg pres</td>
<td>eats</td>
</tr>
<tr>
<td>LS</td>
<td>List item marker</td>
<td>1, 2, One</td>
<td>WDT</td>
<td>Wh-determiner</td>
<td>which, that</td>
</tr>
<tr>
<td>MD</td>
<td>Modal</td>
<td>can, should</td>
<td>WP</td>
<td>Wh-pronoun</td>
<td>what, who</td>
</tr>
<tr>
<td>NN</td>
<td>Noun, sing. or mass</td>
<td>llama</td>
<td>WP$</td>
<td>Possessive wh-*</td>
<td>whose</td>
</tr>
<tr>
<td>NNS</td>
<td>Noun, plural</td>
<td>llamas</td>
<td>WRB</td>
<td>Wh-adverb</td>
<td>how, where</td>
</tr>
<tr>
<td>NNP</td>
<td>Proper noun, singular</td>
<td>IBM</td>
<td>$</td>
<td>Dollar sign</td>
<td>$</td>
</tr>
<tr>
<td>NNPS</td>
<td>Proper noun, plural</td>
<td>Carolininas</td>
<td>#</td>
<td>Pound sign</td>
<td>#</td>
</tr>
<tr>
<td>PDT</td>
<td>Predeterminer</td>
<td>all, both</td>
<td>“</td>
<td>Left quote</td>
<td>(‘ or “)</td>
</tr>
<tr>
<td>POS</td>
<td>Possessive ending</td>
<td>’s</td>
<td>”</td>
<td>Right quote</td>
<td>(’ or ”)</td>
</tr>
<tr>
<td>PP</td>
<td>Personal pronoun</td>
<td>I, you, he</td>
<td>(</td>
<td>Left parenthesis</td>
<td>([, (, {, <)</td>
</tr>
<tr>
<td>PP$</td>
<td>Possessive pronoun</td>
<td>your, one’s</td>
<td>)</td>
<td>Right parenthesis</td>
<td>(],), }, >)</td>
</tr>
<tr>
<td>RB</td>
<td>Adverb</td>
<td>quickly, never</td>
<td>,</td>
<td>Comma</td>
<td>,</td>
</tr>
<tr>
<td>RBR</td>
<td>Adverb, comparative</td>
<td>faster</td>
<td>.</td>
<td>Sentence-final punc</td>
<td>(., !, ?)</td>
</tr>
<tr>
<td>RBS</td>
<td>Adverb, superlative</td>
<td>fastest</td>
<td>:</td>
<td>Mid-sentence punc</td>
<td>(: ; ... – ~)</td>
</tr>
</tbody>
</table>
Terminology

• Given text

The cat decided to jump on the couch to play with another cat

• Terminology

• Word type
 • Distinct words in the text (vocabulary)
 • text above has 10 word types
 • the, cat, decided, to, jump, on, couch, play, with, another

• Word token
 • any word occurring in the text
 • text above has 13 word tokens
Distribution of Tags

• POS follow typical frequency-based behavior
 • most word types have only one part of speech
 • of the rest, most have two
 • only a small number of word types have lots of parts of speech
 • but these occur with high frequency
Most Word Types not Ambiguous but

<table>
<thead>
<tr>
<th>num. word types</th>
<th>Unambiguous (1 tag)</th>
<th>35 340</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambiguous (>1 tag)</td>
<td>4 100</td>
<td></td>
</tr>
<tr>
<td>2 tags</td>
<td>3760</td>
<td></td>
</tr>
<tr>
<td>3 tags</td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>4 tags</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>5 tags</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>6 tags</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7 tags</td>
<td>1 "still"</td>
<td></td>
</tr>
</tbody>
</table>

- but most word types are rare
- Brown corpus (Francis&Kucera, 1982):
 - 11.5% **word types** are ambiguous (>1 tag)
 - 40% **word tokens** are ambiguous (>1 tag)
1. Book/VB that/DT flight/NN
 • book can also be NN
 • Can I read a book on this flight?

2. Does/VBZ that/DT flight/NN serve/VB dinner/NN?
 • that can also be a complementizer
 • My travel agent said that there would be a meal on this flight.
Potential Sources of Disambiguation

1. Lexical information:
 - look up all possible POS for a word in a dictionary
 - “table”: {noun, verb} but not a {adj, prep,...}
 - “rose”: {noun, adj, verb} but not {prep, ...}

2. Syntagmatic information:
 - some tag sequences are more probable than others:
 - DET + N occur frequently but DET+V never occurs
 - ART+ADJ+N is more probable than ART+ADJ+VB
 - Can find the syntagmatic information
 - by talking to the experts
 - or, better, from training corpora
Syntagmatic Information from Corpus

- For a is a sequence of tags t_1, t_2, \ldots, t_k compute
 \[P(t_1, t_2, \ldots, t_k) \]
 - tells us how likely this tag sequence is
 - similar to computing probability of a sequence of words $P(w)$
 - make the same approximation as before
 \[P(t_n | t_1, t_2, \ldots, t_{n-1}) = P(t_n | t_{n-k} \ldots t_{n-1}) \]
 - for computational efficiency, our assumption is
 \[P(t_n | t_1, t_2, \ldots, t_{n-1}) = P(t_n | t_{n-1}) \]
POS Tagging Techniques

1. rule-based tagging
 • uses hand-written rules

2. statistical tagging
 • uses probabilities computed from training corpus
 • Charniak
 • Markov Model based
Rule-based POS Tagging

• Step 1: assign each word with all possible tags
 • use dictionary

• Step 2: use if-then rules to identify the correct tag in context (disambiguation rules)
• **ART-V rule:**
 tag ART (article) cannot be followed by a tag V (verb)

 ...*the book*...

 • the: \{ART\}
 • book: \{N, V\} --> \{N\}

• **N-IP rule:**
 tag N (noun) cannot be followed by tag IP (interrogative pronoun)

 ...*man who* ...

 • man: \{N\}
 • who: \{RP, IP\} --> \{RP\} relative pronoun
Rule-based Tagger

- using only syntagmatic patterns
 - Green & Rubin (1971)
 - accuracy of 77%
- In addition
 - very time consuming to come up with the rules
 - need an expert in English to come up with the rules
Statistical POS Tagger: Charniak 1993

- Simplest statistical tagger
- From corpus, calculate most probable tag for each word
- that is the one maximizing
 \[
 \frac{\text{count(word has tag } t\text{)}}{\text{count(word)}}
 \]
- Equivalent to maximizing
 \[
 \text{count(word has tag } t\text{)}
 \]
- Charniak tagger assigns most probable POS tag to a word
- Given a word to tag,
 1. for each possible tag \(t \) for this word, compute
 \[
 \text{count(word has tag } t\text{)}
 \]
 2. choose tag \(t \) that maximizes the above
Statistical POS Tagger: Charniak 1993

• Accuracy of 90%
 • contrast with 77% accuracy of the rule-based tagger!
 • evidence of power of statistical over rule-based methods
 • MUCH better than rule based, but not very good...
 • 1 mistake every 10 words
 • funny fact: every word will have only one POS assigned to it
 • book will always be assigned the noun tag

• This tagger is used mostly as baseline for evaluation

• How do we improve it?
 • take the context of the surrounding words into account
 • some sequence of tags are much more likely than others
- Tag sentence of words \(w_{1,n} = w_1 \ w_2 \ \ldots \ \ w_n \)
- Denote tag sequence as \(t_{1,n} = t_1 \ t_2 \ \ldots \ \ t_n \)
 - \(t_i \) is a tag for word \(w_i \)
- Find the best tagging \(t_{1,n} \) out of all possible taggings
- How to define what is the best tagging?
- Use statistical principle, maximize:

\[
P(t_{1,n} \mid w_{1,n})
\]
Markov Model Tagger

• The best tagging is the one that maximizes

\[P(t_{1,n} \mid w_{1,n}) \]

• Hard to estimate directly

• Using Bayes law

\[P(t_{1,n} \mid w_{1,n}) = \frac{P(w_{1,n} \mid t_{1,n})P(t_{1,n})}{P(w_{1,n})} \]

• Bottom does not effect maximization,
 • constant over all possible taggings \(t_{1,n} \)

• Find tagging that maximizes

\[P(w_{1,n} \mid t_{1,n})P(t_{1,n}) \]
Markov Model Tagger: First Assumption

\[P(w_{1,n} \mid t_{1,n})P(t_{1,n}) \]

- We will make two simplifying assumptions
- First simplifying assumption:
 1. given its tag, probability of word is independent of tags of other words in a sentence:

\[P(w_{1,n} \mid t_{1,n}) = \prod_{i=1}^{n} P(w_i \mid t_i) \]

- \(P(\text{book} \mid \text{verb}) \) is independent of what are the tags of other words in the sentence
- Reasonable assumption. For example, if the next tag is \textit{adverb}, does not change much about \(P(\text{book} \mid \text{verb}) \)
Markov Model Tagger: First Assumption

\[
P(w_{1,n} \mid t_{1,n}) = \prod_{i=1}^{n} P(w_i \mid t_i) = P(w_1 \mid t_1) P(w_2 \mid t_2) \ldots P(w_n \mid t_n)
\]

- \(P(w_i \mid t_i)\) estimated from tagged corpus:

\[
\frac{C(w_i \text{ has tag } t_i)}{C(t_i)}
\]

- example: \(P(\text{book} \mid \text{verb})\) is count of how many times \text{book} has tag \text{verb} divided by how many times tag \text{verb} occurs in corpus

- \(P(\text{book} \mid \text{verb}) > P(\text{book} \mid \text{noun})\)
 - there are many more nouns than verbs
 - say 1,000 verbs and 10,000 nouns
2. Each tag depends only on one previous tag:

\[
P(t_{1:n}) = \prod_{i=1}^{n} P(t_i | t_{i-1}) = P(t_1 | t_0) P(t_2 | t_1) \ldots P(t_n | t_{n-1})
\]

- this is **Markov** assumption we saw in language modeling
- estimate as in language modeling:

\[
P(t_i | t_{i-1}) = \frac{C(t_{i-1} t_i)}{C(t_{i-1})}
\]

- \(P(t_1 | t_0) \) stands for \(P(t_1) \), estimated by \(P(t_1) = \frac{C(t_1)}{N} \)
Markov Model Tagger

- Using these 2 assumptions, find tagging that maximizes
 \[
 \prod_{i=1}^{n} P(w_i | t_i)P(t_i | t_{i-1})
 \] (1)

- Naïve algorithm: given sentence \(w_{1,n}\) go over all possible tag assignments \(t_{1,n}\) and compute (1)

- Choose final tagging \(t_{1,n}\) which maximizes (1)
 - efficiency: for each word try only tags given by the dictionary
 - example: for fly, possible tags are noun, verb and also adjective (meaning keen or artful, mainly in England)
• Naïve algorithm: given sentence $w_{1,n}$ go over all possible tag assignments $t_{1,n}$
• 40% words have more than 1 tag
• too many tag assignments to try
• if 2 tags per word, then 2^n possible assignments
• exhaustive search is exponential
Side note: Markov tagger becomes Charniak’s tagger if tags are assumed independent, i.e.

\[P(t_i | t_{i-1}) = P(t_i) \]

\[
\prod_{i=1}^{n} P(w_i | t_i) P(t_i | t_{i-1}) = \prod_{i=1}^{n} P(w_i | t_i) P(t_i) \\
= \prod_{i=1}^{n} \frac{P(w_i, t_i)}{P(t_i)} P(t_i) \\
= \prod_{i=1}^{n} P(w_i, t_i)
\]
Markov Model Tagger

\[
\prod_{i=1}^{n} P(w_i | t_i)P(t_i | t_{i-1})
\]

word 1

ADJ

NOUN

VERB

word 2

ADJ

NOUN

word 3

PREP

NOUN

......

word n

PREP

NOUN

VERB

DETER
Markov Model Tagger: DP

- Use DP (dynamic programming) to significantly speed up
 - also called Viterbi algorithm
- If \(k \) tags per word and \(n \) words, can find best tagging in \(O(k^2n) \)
- To avoid floating point underflows, take logarithms

\[
\log \left[\prod_{i=1}^{n} P(w_i | t_i)P(t_i | t_{i-1}) \right] = \sum_{i=1}^{n} (\log P(w_i | t_i) + \log P(t_i | t_{i-1}))
\]

how likely word \(w_i \) is for tag \(t_i \)
how likely tag \(t_i \) to follow tag \(t_{i-1} \)
• Turn maximizing:

\[\sum_{i=1}^{n} \log P(w_i \mid t_i) + \sum_{i=1}^{n} \log P(t_i \mid t_{i-1}) \]

• Into equivalent minimizing

\[-\sum_{i=1}^{n} \log P(w_i \mid t_i) - \sum_{i=1}^{n} \log P(t_i \mid t_{i-1}) \]
• Find a sequence of tags $\mathbf{t}_1, \mathbf{t}_2, \ldots, \mathbf{t}_n$ to minimize:

$$
\sum_{i=1}^{n} -\log P(w_i | t_i) + \sum_{i=1}^{n} -\log P(t_i | t_{i-1})
$$

• In the new notation, find tags $\mathbf{t}_1, \mathbf{t}_2, \ldots, \mathbf{t}_n$ to minimize:

$$
\sum_{i=1}^{n} L(w_i | t_i) + \sum_{i=1}^{n} L(t_i | t_{i-1})
$$
Markov Model Tagger: DP

\[\sum_{i=1}^{n} L(w_i | t_i) + \sum_{i=1}^{n} L(t_i | t_{i-1}) \]

![Diagram of Markov Model Tagger with labeled transitions]

- word 1
 - ADJ
 - NOUN
 - VERB

- word 2
 - ADJ
 - NOUN
 - PREP
 - VERB

- word 3
 - PREP
 - VERB

- ...

L(w_i | t_i) and L(t_i | t_{i-1}) represent the likelihood of transitioning from one word tag to another.
Markov Model Tagger: DP

- Change notation just for the first word:

\[
L(w_1 | t_1) = -\log [P(w_1 | t_1)] - \log [P(t_1 | t_0)]
\]

\[
\sum_{i=1}^{n} L(w_i | t_i) + \sum_{i=1}^{n} L(t_i | t_{i-1}) \Rightarrow \sum_{i=1}^{n} L(w_i | t_i) + \sum_{i=2}^{n} L(t_i | t_{i-1})
\]
Markov Model Tagger: DP

- Each node has cost $L(w_i | t_i)$
- Each edge has cost $L(t_i | t_{i-1})$

Cost of a path:

$$\sum_{i=1}^{n} L(w_i | t_i) + \sum_{i=2}^{n} L(t_i | t_{i-1})$$

Diagram:

- Node 1 (ADJ): $L(w_1 | ADJ)$
- Node 2 (NOUN): $L(w_1 | NOUN)$
- Node 3 (VERB): $L(w_1 | VERB)$
- Node 4 (ADJ): $L(w_2 | ADJ)$
- Node 5 (NOUN): $L(w_2 | NOUN)$
- Node 6 (VERB): $L(w_2 | VERB)$
- Node 7 (PREP): $L(w_3 | PREP)$
• Find minimum cost path that starts at some node corresponding to word 1 and ends at some node corresponding to word n
Markov Model Tagger: Main Step of DP

- Main Step: for every node at word w_i, find smallest cost path that leads into it, starting at any node at word w_1.

For w_2, compute best path that ends here and here.
- First compute the best path that ends at any node for w_1
- Then compute the best path that ends at any node for w_2
-
- Finally compute the best path that ends at any node for w_n
- The best path overall is smallest cost path that end at w_n

```
word 1        word 2        • • • •        word n

ADJ          ADJ          •          PREP

NOUN        NOUN

VERB
```

Compute the best path that ends here and here. Cheapest of these two is the final answer
Markov Model Tagger: DP Variables

- For word w_i tag t node is (w_i, t)

 - $C(w_i, t)$ cost of best path that starts at any (w_1, t) and ends at (w_i, t)
 - $P(w_i, t)$ is parent of node (w_i, t) on this path
 - After all $C(w_i, t)$ computed, min of $C(w_n, t)$ over all t gives best path
Markov Model Tagger: DP Initialization

- First compute the best path that ends at any node for w_1
 - trivial, since the path has just one node
- For all tags of the first word t:
 \[
 C(w_1,t) = L(w_1 | t) \\
P(w_1,t) = \text{null}
 \]

Word 1

- ADJ
 \[L(w_1 | \text{ADJ})\]
- NOUN
 \[L(w_1 | \text{NOUN})\]
- VERB
 \[L(w_1 | \text{VERB})\]
Markov Model Tagger: DP Iteration

- Computed $C(w_i, t)$ and $P(w_i, t)$ for all tags t and $i < k$

```
word 1  · · ·  word k-1  · · ·  word n

ADJ
NOUN
VERB
ADJ
NOUN
PREP
NOUN
VERB
ADV
```

all the best paths are computed
• Now compute $C(w_k, t)$ and $P(w_k, t)$ for k
• Consider node (w_k, ADJ)

The best path from w_1 to (w_k, ADJ) goes through either
1. (w_{k-1}, ADJ): then it follows best path from w_1 to (w_{k-1}, ADJ)
2. (w_{k-1}, NOUN): then it follows best path from w_1 to (w_{k-1}, NOUN)
• because a sub-path of the best path is a best path itself
C(w_k, ADJ) is the smaller of two quantities:

1. \(C(w_{k-1}, \text{ADJ}) + L(\text{ADJ}|\text{ADJ}) + L(w_k|\text{ADJ}) \)
 - then \(P(w_k, \text{ADJ}) = (w_{k-1}, \text{ADJ}) \)

2. \(C(w_{k-1}, \text{NOUN}) + L(\text{ADJ}|\text{NOUN}) + L(w_k|\text{ADJ}) \)
 - then \(P(w_k, \text{ADJ}) = (w_{k-1}, \text{NOUN}) \)
In general, \(C(w_k, t) \) is computed as follows:

\[
C(w_k, t) = \min_{t' \in T(w_{k-1})} \left\{ C(w_{k-1}, t') + L(t | t') \right\} + L(w_k | t)
\]

- cost of best path from first word to node (word k-1, t’)
- cost of going through node (w_k, t)
- search over all tags t’ for word k-1
- cost of going between nodes (w_{k-1}, t’) and (w_k, t)

\[
P(w_k, t) = (w_{k-1}, t^*) \text{ where } t^* \text{ is the tag for word } w_{k-1}
\]

minimizing the expression above
Markov Model Tagger: DP Termination

- After computed all $C(w_i, t)$ best cost path is found as the minimum of $C(w_n, t)$ over all tags t
- Parents on the path traced back using $P(w_i, t)$

Final tagging is: VERB NOUN ... ADJ VERB
MMT Example

L(book | ADJ) = 10 L(that | PRON) = 2
L(book | VERB) = 1 L(that | CONJ) = 4
L(book | NOUN) = 2 L(flight | NOUN) = 2
L(flight | VERB) = 1

book

ADJ L(PRON | VERB) = 3
VERB L(CONJ | VERB) = 4
NOUN L(PRON | NOUN) = 2
 L(CONJ | NOUN) = 1
 L(PRON | ADJ) = 1
 L(CONJ | ADJ) = 2

that

PRON L(NOUN | PRON) = 1
CONJ L(VERB | PRON) = 10

flight

NOUN L(VERB | CONJ) = 2
MMT Example

- **Iteration 1:**
 - \(C(\text{book}, \text{ADJ}) = 10, \ P(\text{book}, \text{ADJ}) = \text{null} \)
 - \(C(\text{book}, \text{VERB}) = 1, \ P(\text{book}, \text{VERB}) = \text{null} \)
 - \(C(\text{book}, \text{NOUN}) = 2, \ P(\text{book}, \text{NOUN}) = \text{null} \)
MMT Example

- $L(\text{PRON}|\text{ADJ}) = 1$
- $L(\text{PRON}|\text{VERB}) = 3$
- $L(\text{PRON}|\text{NOUN}) = 2$
- $L(\text{that}|\text{PRON}) = 2$
- $L(\text{that}|\text{CONJ}) = 4

Iteration 2:

- $C(\text{book,adj}) + L(\text{pron|adj}) + L(\text{that|pron}) = 13$
- $C(\text{book,verb}) + L(\text{pron|verb}) + L(\text{that|pron}) = 6$
- $C(\text{book,noun}) + L(\text{pron|noun}) + L(\text{that|pron}) = 7$

- $C(\text{book,ADJ}) = 10$, $P(\text{book,ADJ}) = \text{null}$
- $C(\text{book,VERB}) = 1$, $P(\text{book,VERB}) = \text{null}$
- $C(\text{book,NOUN}) = 2$, $P(\text{book,NOUN}) = \text{null}$

- $C(\text{that, PRON}) = 6$, $P(\text{that,PRON}) = (\text{book,VERB})$
Iteration 2:

- $C(\text{that}, \text{CONJ}) = 8$, $P(\text{that}, \text{CONJ}) = (\text{book}, \text{NOUN})$
• **Iteration 3:**
 - \(C(\text{flight}, \text{NOUN}) = 9, P(\text{flight}, \text{NOUN}) = (\text{that}, \text{PRON}) \)
• Iteration 3:
 • $C(\text{flight, VERB}) = 11$, $P(\text{flight, VERB}) = (\text{that, CONJ})$
Final Tagging: Book<verb> that <pron> flight<noun>
• Tags(w_i) is the set of all possible tags for w_i

 for each $t \in \text{Tags}(w_1)$ do
 $C(w_1, t) = L(w_1 \mid t)$, $P(w_1, t) = \text{null}$
 for $i \leftarrow 2$ to n do
 for each $t \in \text{Tag}(w_i)$ do
 $C(w_i, t) = -\infty$
 for each $t' \in \text{Tag}(w_{i-1})$ do
 nextCost = $C(w_{i-1}, t') + L(t \mid t') + L(w_i \mid t)$
 if nextCost < $\text{cost}(w_i, t)$ do
 $C(w_i, t) = \text{nextCost}$
 $P(w_i, t) = t'$
Simplest method: assume an unknown word could belong to any tag; unknown words are assigned the distribution over POS over the whole lexicon
- \(P(\text{“karumbula”}|\text{verb}) = P(\text{“karumbula”}|\text{noun}) = P(\text{“karumbula”}|\text{adjective}) = \ldots \text{ etc} \)

Some tags are more common than others
- for example a new word can be most likely a verb, a noun etc. but not a preposition or an article

Use morphological and other cues
- for example words ending in \(-ed\) are likely to be past tense forms or past participles
Tagging Accuracy

- **Ranges from 96%-97%**
- **Depends on:**
 - Amount of training data available
 - The tag set
 - Difference between training corpus and dictionary and the corpus of application
 - Unknown words in the corpus of application
- **A change in any of these factors can have a dramatic effect on tagging accuracy – often much more stronger than the choice of tagging method**