
CS4442/9542b
Artificial Intelligence II

 prof. Olga Veksler

Lecture 17
Natural Language Processing

Information Retrieval

Many slides from: L. Kosseim (Concordia), Jamie Callan (CMU), C.
Manning (Stanford), L. Venkata Subramaniam, Phillip Resnik

Outline

• Introduction to Information Retrieval (IR)
• Ad hoc information retrieval

• Boolean Model
• Vector Space Model

• Cosine similarity measure
• Choosing term weights

• Performance evaluation methods
• Improving IR system

• Query expansion
• Relevance feedback

Information Retrieval (IR)
• Have a large collection of unstructured

documents (usually text)
• in contrast to databases, which store documents in

structured from

• IR Goal: retrieve documents with information
that is relevant to the need of the user

• Main example is web search, but also
• E-mail search
• Searching your laptop
• Corporate knowledge bases
• Legal information retrieval

90’s: Unstructured vs. Structured Data

Today: Unstructured vs. Structured Data

Information Retrieval (IR)
• Traditionally, dealt with text documents
• More recently

• Speech
• Images
• Music
• Video

Translating User Needs: Structured data (Databases)

User need User query Results

For databases,
enlightened users

know how to do this
correctly, using SQL or

a GUI tool

The answers
coming out here are
precisely what the

user wanted

Translating User Needs: Unstructured Data (Text Documents)

User need User query Results

For meanings in text,
no IR-style query gives
one exactly what one

wants; it only hints at it

The answers coming
out may be roughly

what was wanted; often
needs to be refined

Information Retrieval Types
• Ad-hoc

• user creates an “ad hoc” query which is not reused or saved
• system returns a list of (hopefully) relevant documents
• no training data is available

• Classification/categorization
• training data is available
• documents are classified in a pre-determined set of categories
• Ex: corporate news (CORP-NEWS), crude oil (CRUDE), …
• any of machine learning techniques can be used

• Filtering/routing: special case of categorization
• 2 categories: relevant and not-relevant
• filtering: absolute assessment (d1 is relevant but d2 is not)
• routing: relative ranking of documents, such as d 1, d 2

Different Types of Ad-Hoc Retrieval
• Web search

• Massive document collection (108-109)
• Typically high precision (most retrieved documents are relevant),

low recall (not all relevant documents are retrieved)
• Commercial information providers (e.g. West, LexisNexis)

• Large Collection (106-108) of documents
• often high recall is essential (e.g. legal or patent search)

• Enterprise search (e.g. UWO, IBM)
• Medium-sized to large collection (104-106) of documents
• Opportunity to exploit domain knowledge

• Personal search (e.g. your PC)
• Small collection (103-104) of documents
• Good opportunity to learn a user model, do personalization

11

Example of Web Ad-Hoc IR

Index

Pre-process

Parse

Collections

Rank

Query

text input

How is query
constructed?

How is text
processed?

information
need

How to decide what is
a relevant document

and its rank?

Information Retrieval Process

Relevance
• In what ways can a document be relevant to a

query?
• Answer precise question precisely
• Partially answer question
• Suggest a source for more information
• Give background information
• Remind the user of other knowledge
• Others ...

Two Major Issues

• Indexing

• How to represent a collection of documents to
support fast search?

• Retrieval methods
• How do we match a user query to indexed

documents?

Indexing: Inverted Index
• Most IR systems use inverted index to represent text collection
• Inverted Index is a data structure that lists for each word all

documents in the collection that contain that word
• this list is sometimes called posting list
• posting list is sorted by document number

 assassination {d1, d4, d95, d150, d190…}
 murder {d3, d7, d95…}
 Kennedy {d24, d33, d44…}
 conspiracy {d3, d55, d90, d98…}

• Inverted index implemented as a dictionary which allows fast

lookups based on word
• B-trees, hash tables, etc.

Indexing: Inverted Index with Position

• Include position information, document start offset
• Enables efficient search for phrases
• example: need to find car insurance

car (d1, offset 5), (d7, offset 10), (d9, offset 35)
insurance (d2, offset 3), (d7, offset 11), (d8, offset 7)

car insurance occurs in document 7

• Still primitive: car insurance ≠ insurance for car

Indexing: Inverted Index with Position

• Still primitive: car insurance ≠ insurance for car
• One solution: find frequent phrases and index those too

car {d1, d7, …}
car insurance {d1, d4, d95, d155, d190…}
insurance for car {d5, d7, d95, d99…}

• Say term to refer to these indexed entities
• sometimes just say word, because it’s simpler

• For each term:
• DocCnt: in how many documents term

occurs
• FreqCnt: total number of times term

occurs in all documents
• For each document

• Freq: how many times term occurs in this
document

• WordPosition: offset where these
occurrences are found in document

Inverted Index Example
term Term DocCnt FreqCnt Head

ABANDON 3 10

ABB 2 9

ABSENCE 135 185 …

ABSTRACT 7 10 …

DocNo Freq Word Position

67 2 279 283

424 1 24

1376 7 17 189 481 …

206 1 70

1376 8 426 432 …

Choosing Terms To Index
1. Controlled Vocabulary Indexing, done in libraries, web directories

• A human expert selects a set of terms
• Pros

• Usually controlled terms are less unambiguous
• Cons

• Expensive, need manual work
• Controlled vocabularies cannot represent arbitrary detail

2. Free Text Indexing, done in some search engines
• Automatically select good terms to index

3. Full Text Indexing, done in most search engines
• Cons

• Many ambiguous terms
• Pros

• can represent arbitrary detail
• inexpensive and easy

Full Text Indexing

Can you tell what this document is about?

Full Text Indexing Design Issues
• To stem or not to stem

• Stemming: laughing, laughs, laugh and laughed are stemmed to laugh
• Problem: semantically different words like gallery and gall may both be

truncated to gall

• Exclude/Include Stop words
• Stop words make up about 50% of the text
• excluding them makes representation more space efficient
• But impossible to search for documents for phrases

containing stop words
• to be or not to be, take over
• most queries are unaffected, but could be very annoying sometimes

After Stemming and Stop Word Removal

Problems with Index Terms
• May not retrieve relevant documents that

include synonymous terms
• restaurant vs. café
• PRC vs. China

• May retrieve irrelevant documents that
include ambiguous terms
• bat (baseball vs. mammal)
• apple (company vs. fruit)
• bit (unit of data vs. act of eating)

Retrieval Models
• We study 2 basic models:

• boolean model
• the oldest one, similar to what is used in database queries

• vector-space model
• most popular in IR

• Models vary on:
• how they represent query and documents
• how they calculate the relevance between the query and

the documents

Boolean Model
• User gives a set of terms (keywords) that are likely to

appear in relevant documents
• Ex: JFK Kennedy conspiracy assassination

• Connects the terms in the query with Boolean operators
(AND, OR, NOT)

AND(Kennedy, conspiracy, assassination)

• Can expand query using synonyms

AND (OR (Kennedy, JFK),
 (OR (conspiracy, plot),
 (OR (assassination, assassinated,
 assassinate, murder, murdered, kill, killed)
)))

• system returns set of documents that satisfy query exactly

Example
• Which of these documents will be returned for

the following query :
computer AND (information OR document) AND retrieval

document collection:
 d1: {computer √ , software, information √, language} ×
 d2: {computer √, document √, retrieval √, library} √
 d3: {computer √, information √, filtering, retrieval √} √

Implementation With Set Operators
• Assume that the inverted index contains:

t1-list: {d1,d2,d3,d4} t2-list: {d1,d2} t3-list: {d1,d2,d3} t4-list: {d1}

• The query Q = (t1 AND t2) OR (t3 AND (NOT t4))

• We perform set operations:
• to satisfy (t1 AND t2), we intersect the t1 and t2 lists

• {d1,d2,d3,d4} ∩ {d1,d2} = {d1,d2}

• to satisfy (t3 AND (NOT t4)), we subtract the t4 list from the t3 list

• {d1,d2,d3} - {d1} = {d2,d3}

• to satisfy (t1 AND t2) OR (t3 AND (NOT t4)), we take the union of the two
sets of documents obtained for the parts.

• {d1,d2} ∪ {d2,d3} = {d1,d2,d3}

Query processing: AND
• Consider processing the query:

computer AND retrieval
• Locate computer in the Inverted Index

• retrieve its document list

• Locate retrieval in the Inverted Index
• retrieve its document list

• “Merge” (intersect) the document sets:

128
34

2 4 8 16 32 64
1 2 3 5 8 13 21

computer
retrieval

The Merge
• Crucial: lists are sorted by document ID
• Walk through two lists, in time linear in to total number

of entries

34
128 2 4 8 16 32 64

1 2 3 5 8 13 21

computer
retrieval

• If list lengths are n and m, merge takes O(n+m) time

{2, } { 8

Analysis of the Boolean Model
• Advantages

• queries are expressed with Boolean operators, i.e. semantics is
clearly defined

• results are easy to explain
• computationally efficient
• useful for expert users

• Disadvantages
• retrieval strategy is a binary decision (relevant or not)
• difficult to rank documents in order of relevance
• non-expert users have difficulty to express their need as Boolean

expressions
• “Feast of Famine” phenomena, people create quires that are either

• too strict: few relevant documents are found
• too loose: too many documents, most irrelevant, are found

• Most boolean searches on the web either return no documents or a
huge set of documents

Ranked Retrieval Models
• Rather than a set of documents exactly satisfying a

query expression, in ranked retrieval models, the
system returns an ordering over the (top) documents
in the collection with respect to a query
• large set of retrieved documents is not a problem, just show

top 10 ranked documents

• Free text queries: rather than a query language of
operators and expressions, the user query is just one
or more words in a human language

Vector-Space Model
• Documents and queries are

represented by a term vector
• each dimension corresponds to a term

in the vocabulary

• Similarity between a document and
a query is determined by a distance
in vector space

• First system SMART
• developed by G. Salton at Cornell

1960-1995
• still used widely today

Gerard Salton

Term-Document Matrix
• term-by-document matrix visualizes the collection of documents

 d1 d2 d3 d4 d5 …

term1 w11 w12 w13 w14 w15

term2 w21 w22 w23 w24 w25

term3 w31 w32 w33 w34 w35

…

termN wn1 wn2 wn3 wn4 wn5

• 1 column = representation of one document
• 1 row = representation of one term across all documents
• cell wij = weight of term i in document j

• simplest weight wij is the count of times term i occurred in document j
• matrix is sparse, i.e. most weights are 0

• Implemented with inverted index, matrix is useful just for visualization

Term-Document Count Matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

• Consider number of occurrences of a term in a document:
• each document is a count vector in ℕ|V|: a column below

document 2 document 1

Bags of Words
• This representation sometimes

called bags of words
• the document is the bag
• bag contains word tokens
• Word order is ignored

I see what I eat = I eat what I see

• A particular word may occur more
than once in the bag

The quick brown
fox jumped over
the lazy dog’s
back.

document 1

document 2
Now is the time
for all good men
to come to the
aid of their party.

quick

brown

fox

over

lazy

dog

back

now

time

all

good

men

come

jump

aid

their

party

0
0
1
1
0
1
1
0
1
1
0
0
1
0
1
0
0

1
1
0
0
1
0
0
1
0
0
1
1
0
1
0
1
1

indexed
 term do

cu
m

en
t 1

do

cu
m

en
t 2

Documents as Vectors

Star

Diet

Doc about astronomy
Doc about movie stars

Doc about mammal behavior

Documents as Vectors

• |V|-dimensional vector space, where |V| is
the number of terms

• Terms are axes of the space
• Documents are points or vectors in this space
• Very high-dimensional: tens of millions of

dimensions when you apply this to a web
search engine

• Very sparse vectors – most entries are zero

Queries as Vectors
• Key idea 1

• represent queries also as vectors in the same vector space

• Key idea 2
• Rank documents according to their proximity to the query

in this space

• proximity = similarity of vectors
• proximity ≈ inverse of distance
• Use proximity to get away from “you’re-either-in-or-

out” Boolean model
• Instead: rank more relevant documents higher than

less relevant documents

Query Representation

• A query can also be represented as a vector,
like a document

q =(0,0,0,1,0,…1,..0,1)

• Size of vector corresponding to query q is also
the number of index terms |V|

Example
• The collection:

• d1 = {introduction knowledge in speech and language processing ambiguity
models and algorithms language thought and understanding the state of
the art and the near-term future some brief history summary}

• d2 = {hmms and speech recognition speech recognition architecture
overview of the hidden markov models the Viterbi algorithm revisited
advanced methods in decoding acoustic processing of speech computing
acoustic probabilities training a speech recognizer waveform generation for
speech synthesis human speech recognition summary}

• d3 = {language and complexity the chomsky hierarchy how to tell if a
language isn’t regular the pumping lemma are English and other languages
regular languages ? is natural language context-free complexity and human
processing summary}

• The query:
Q = {speech language processing}

41

Example Continued
• The collection:

• d1 = {introduction knowledge in speech and language processing ambiguity
models and algorithms language thought and understanding the state of the
art and the near-term future some brief history summary}

• d2 = {hmms and speech recognition speech recognition architecture overview
of the hidden markov models the viterbi algorithm revisited advanced
methods in decoding acoustic processing of speech computing acoustic
probabilities training a speech recognizer waveform generation for speech
synthesis human speech recognition summary}

• d3 = {language and complexity the chomsky hierarchy how to tell if a
language isn’t regular the pumping lemma are English and other language
regular language ? is natural language context-free complexity and human
processing summary}

• The query:
Q = {speech language processing}

42

 d1 d2 d3 q
introduction … … … …
knowledge … … … …
… … … … …
speech 1 6 0 1
language 2 0 5 1
processing 1 1 1 1
… … … … …

• using raw term frequencies for weights
Te

rm
 1

(s

pe
ec

h)

Term 2
(language)

d2 (6,0,1)

d1 (1,2,1)

d3 (0,5,1)
q (1,1,1)

Example Continued

Vector Space Proximity

• First idea: use standard Euclidean distance
• does not work well
• because Euclidean distance is large for vectors of

different lengths
• documents tend to vary in lengths widely

Why Eucledian Distance is a Bad Idea
• Euclidean distance

between q and d2 is
large even though
distribution of terms in
query q and document
d2 are similar

• Query q is closer to d1

d’

Use Angle Instead
• Thought experiment

• take a document d and append it to itself
• call this document d′

• Semantically d and d′ have the same
content
• d is a short document, d’ is a long document

• Euclidean distance between the two
documents can be quite large

• Angle between the two documents is 0,
corresponding to maximal similarity

• Key idea: rank documents according to
the angle with the query

d

From Angles to Cosines
• These two are equivalent:

• rank documents in decreasing order of
the angle between query and
document

• rank documents in increasing order of
cosine(query,document)

• Why cosine? For efficiency

• Cosine is a monotonically decreasing
function for the interval [0o, 180o]

• Negative between [90,180]
• but this is not a problem

Length Normalization
• Normalize vectors by dividing each of its components by

its length
 ∑=

i ixx 2
2

• After normalization, each vector has unit (1) length
• Let d’ = d+d (d appended to itself)
• After normalization, d and d′ are identical
• long and short documents now have comparable weight

Cosine for Length Normalized Vectors

∑∑ ==

⋅=⋅=
⋅

=
V

i i
V

i i d

d

q

q
d
d

q
q

dq
dqdq

1
2

1
2

),cos(

Dot product Unit vectors

• For length-normalized vectors, cosine similarity is
simply the dot product

∑=
=⋅=

V

i iidqdq)d,qcos(
1

Cosine Similarity Illustrated

Example

la
ng

ua
ge

speech

d2 (6, 0)

d1 (1, 2)

d3 (0, 5)
q (1, 1)

• assume only two indexed
terms, speech and language

• query q = speech language
• original representation

Example: Normalized vectors

la
ng

ua
ge

d'3(0, 1) speech

d2‘(1, 0)

d1‘(0.45, 0.89)

q‘(0.71, 0.71)

q(1,1): ⇒ normalized q’ (0.71, 0.71)
d1(1,2): ⇒ normalized d1’ (0.45, 0.89)
d2(6,0): ⇒ normalized d2’ (1, 0)
d3(0,5): ⇒ normalized d3’ (0, 1)

1.4111L 22 =+=

2.2421L 22 =+=

606L 22 =+=

550L 22 =+=

• query q = speech language
• after normalization

Term Frequency tf
• Are word counts or binarized counts (bag of word) the

best representation for document vectors?
• Define the number of occurrences of a term t in a

document is d term frequency tftd
• Want to use tf when computing query-document

match scores. But how?
• Raw term frequency is not what we want:

• document with 10 occurrences of term is more relevant
than document with 1 occurrence of term

• but probably not 10 times more relevant

• Relevance does not increase proportionally with term
frequency

Log-frequency weighting
• The log frequency weight of term t in d is



 >+

=
otherwise 0

0 tfif tflog 1
 10 tdtd

tdw

• 0 → 0
• 1 → 1
• 2 → 1.3
• 10 → 2
• 1000 → 4
• document that has 10 times more occurrences of a term is

only 2 times more important with one occurrence of a term

Document Frequency
• Rare terms are more informative than frequent terms

• recall stop words the, in, from ,…

• Consider a term in query that is rare in the collection
• e.g., arachnocentric

• Document containing this term is very likely to be
relevant to the query arachnocentric

• Want a higher weight for rare terms like arachnocentric
• The more rare the word, the higher its weight

• word is rare if it does not occur in many documents

• Use document frequency (df) to capture this

idf weight
• dft the document frequency of t is the number of

documents that contain t
• dft is an inverse measure of the informativeness of t
• dft ≤ N, where N is the number of documents

• Define idf (inverse document frequency) of t

)/dfN(log idf t10t =

• as before, use log (N/dft) instead of N/dft to dampen
(lessen) the effect of idf

• the base of the log is of little importance

idf Example

term dft idft = log10(N/dft)

calpurnia 1 6

animal 100 4

sunday 1,000 3

fly 10,000 2

under 100,000 1

the 1,000,000 0

• Suppose N = 106

Effect of idf on Ranking
• Does idf have an effect on ranking for one-term

queries, like iPhone
• No effect on ranking one term queries

• Just scales all documents by the same factor

• idf affects the ranking of documents for queries with
at least two terms
• for the query capricious person, idf weighting makes

occurrences of capricious count for much more in the final
document ranking than occurrences of person

tf-idf weighting
• The tf-idf weight of a term is the product of its tf

weight and its idf weight

• Best known weighting scheme in information retrieval

• note: the “-” in tf-idf is a hyphen, not a minus sign
• alternative names: tf.idf, tf x idf

• Increases with the number of occurrences within a
document

• Increases with the rarity of the term in the collection

wt,d = (1+log tft,d) × log10(N/dft)

Analysis of the Vector Space Model
• advantages:

• simple and effective
• term-weighting scheme improves retrieval performance
• partial matching allows for retrieval of documents that

approximate the query
• cosine ranking allows for sorting the results

• disadvantages
• no real theoretical basis for the assumption of a term space
• assumed independence between terms is not really true

• Note: in web search engines the weights may be
calculated differently
• heuristics on where a term occurs in the document (ex, title)
• notion of hub and authority

Evaluation
• Suppose have several retrieval methods
• Which one is the best?

• for us, best = effectiveness, or the relevance of retrieved documents
• other possible measures: ease of use, efficiency, nice interface, cost, etc.

• An information need is translated into a query
• Relevance is assessed relative to the information need not the

query
• Information need: I’m looking for information on whether

drinking red wine is more effective at reducing your risk of heart
attacks than white wine.

• Query: wine red white heart attack effective
• Evaluate whether retrieved document addresses the

information need, not whether it has these words

Evaluation
• To evaluate, need

• a benchmark document collection
• a benchmark set of queries
• a set of relevance query/document judgments

• To compare two (or more) methods
• Each method is used to retrieve documents for a query
• Results are compared using some measures
• Common measures are based on precision and recall

Relevant vs. Retrieved

relevant

retrieved

all documents

Precision vs. Recall

collection in documents relevantof number
retrieved documents relevantof number recall=

 retrieved documentsof number
retrieved documents relevantof number

 precision=

relevant

retrieved

all documents

=
|O∩O|

|O|

=
|O∩O|

|O|

Evaluation: Example of P andR
• Relevant: d3 d5 d9 d25 d39 d44 d56 d71 d123 d389

• System 1
• d123 d84 d56
• Precision ?
• Recall ?

• System 2
• d123 d84 d56 d6 d8 d9
• Precision ?
• Recall ?

• Relevant: d3 d5 d9 d25 d39 d44 d56 d71 d123 d389

• System 1:
• d123√ d84 × d56√
• precision = 2/3 = 66%
• recall = 2/10 = 20%

• System 2:
• d123√ d84× d56√ d6× d8× d9√
• precision = 3/6 = 50%
• recall = 3/10 = 30%

Evaluation: Example of P&R

Why Precision and Recall?
• Get as much good stuff (high recall) while at the same

time getting as little junk as possible (high precision)
• Easy to get either high recall or high precision
• Harder to get both high

High Precision, Low Recall

relevant

retrieved

High Recall, Low Precision

relevant

retrieved

High Precision, High Recall

relevant

retrieved

Precision/Recall Curves
• There is a tradeoff between Precision and Recall

• easy to get either high precision or high recall, but not both

• So measure Precision at different levels of Recall
• Note: this is an average over many queries

precision

recall

x

x

x

x

Precision/Recall Curves

• Often difficult to determine which system is better
• Is blue method performing better than the red one?

P

R

P

R

Yes! ?

F-Measure
• Sometime only one pair of precision and recall

is available
• e.g., filtering task

• F-Measure

()
RP

F 111
1

αα −+
=

• α > 0.5: precision is more important
• α < 0.5: recall is more important
• Usually α = 0.5

 RP

RPF
+
⋅

⋅= 2

Importance of Ranking

• IR systems typically output a
ranked list of documents

• Should take relevance into
account when measuring
performance

• The three systems have same
precision/recall rates, but the
method in the first column is
better since it ranks the
relevant documents higher

system 1 system 2 system 3

d1 √ d10 × d6 ×

d2 √ d9 × d1 √
d3 √ d8 × d2 √
d4 √ d7 × d10 ×
d5 √ d6 × d9 ×
d6 × d1 √ d3 √
d7 × d2 √ d5 √
d8 × d3 √ d4 √
d9 × d4 √ d7 ×
d10 × d5 √ d8 ×

Cutoff
• Look at precision of the top 5 (or 10, … etc) ranked documents

 system 1 system 2 system 3
 d1 √ d10 × d6 ×
 d2 √ d9 × d1 √
 d3 √ d8 × d2 √
 d4 √ d7 × d10 ×
 d5 √ d6 × d9 ×
 d6 × d1 √ d3 √
 d7 × d2 √ d5 √
 d8 × d3 √ d4 √
 d9 × d4 √ d7 ×
 d10 × d5 √ d8 ×
precision at 5 1.0 0.0 0.4
precision at 10 0.5 0.5 0.5

• How to decide on the “cut off” threshold?
• threshold 5 is informative in this example, threshold 10 is not informative

75

Uninterpolated Average Precision
• Instead of using a single cut-off, average precision at many cut-offs

usually at points where a relevant document is found
 system 1 system 2 system 3

 d1 √ d10 × d6 ×
 d2 √ d9 × d1 √
 d3 √ d8 × d2 √
 d4 √ d7 × d10 ×
 d5 √ d6 × d9 ×
 d6 × d1 √ d3 √
 d7 × d2 √ d5 √
 d8 × d3 √ d4 √
 d9 × d4 √ d7 ×
 d10 × d5 √ d8 ×
precision at 5 1.0 0.0 0.4
precision at 10 0.5 0.5 0.5
aver. precision 1.0 0.3544 0.5726

For system 3:
• At cutoff d1:

2 retrieved, 1 relevant,
precision ½

• At cutoff d2:
3 retrieved, 2 relevant,
precision 2/3

• …
• At cutoff d4:

8 retrieved, 5 relevant,
precision 5/8

• Average precision
0.5726

1/2
2/3

3/6

5/8
4/7

IR System Improvements
• Most Queries are short

• Web queries tend to be 2-3 keywords long

• The two big problems with short queries are:
• Synonymy: poor recall results from missing

documents that contain synonyms of search terms,
but not the terms themselves

• Polysemy/Homonymy: poor precision results from
search terms that have multiple meanings leading to
the retrieval of non-relevant documents

Query Expansion

• Find a way to expand a user’s query to automatically
include relevant terms (that they should have
included themselves), in an effort to improve recall
• Use a dictionary/thesaurus
• Use relevance feedback

• Example:
• query: seller of email solutions for cell phones
• document: […] Giszmotron is a leading vendor of electronic messaging

services for cellular devices […]

• Solution: expand user query with related terms
• often using a thesaurus to find related terms (synonyms, hyponyms)
• new terms will have lower weights in the query
• ex: expanded query: seller vendor phones device …

Query Expansion

Relevance Feedback
• Ask the user to identify a few documents which

appear to be related to their information need
• Extract terms from those documents and add them to

the original query
• Run the new query and present those results to the

user
• Iterate (ask the user to identify relevant

documents…extract terms… add them to the query…)
• Typically converges quickly

Blind Feedback

• Assume that first few documents returned are most
relevant rather than having users identify them

• Proceed as for relevance feedback
• Tends to improve recall at the expense of precision

Additional IR Issues

• In addition to improved relevance, can improve overall
information retrieval with some other factors
• Eliminate duplicate documents
• Provide good context

• For the web:
• Eliminate multiple documents from one site
• Clearly identify paid links

IR within NLP
• IR needs to process the large volumes of online text
• And (traditionally), NLP methods were not robust enough to

work on thousands of real world texts.
• so IR:

• not based on NLP tools (ex. syntactic/semantic analysis)
• uses (mostly) simple (shallow) techniques
• based mostly on word frequencies

• in IR, meaning of documents:
• is the composition of meaning of individual words
• ordering & constituency of words play are not taken into account
• bag of word approach

I see what I eat.
I eat what I see.

same meaning

	Slide Number 1
	Outline
	Information Retrieval (IR)
	90’s: Unstructured vs. Structured Data
	Today: Unstructured vs. Structured Data
	Information Retrieval (IR)
	Translating User Needs: Structured data (Databases)
	Translating User Needs: Unstructured Data (Text Documents)
	Information Retrieval Types
	Different Types of Ad-Hoc Retrieval
	Example of Web Ad-Hoc IR
	Information Retrieval Process
	Relevance
	Two Major Issues
	Indexing: Inverted Index
	Indexing: Inverted Index with Position
	Indexing: Inverted Index with Position
	Inverted Index Example
	Choosing Terms To Index
	Full Text Indexing
	Full Text Indexing Design Issues
	After Stemming and Stop Word Removal
	Problems with Index Terms
	Retrieval Models
	Boolean Model
	Example
	Implementation With Set Operators
	Query processing: AND
	The Merge
	Analysis of the Boolean Model
	Ranked Retrieval Models
	Vector-Space Model
	Term-Document Matrix
	Term-Document Count Matrix
	Bags of Words
	Documents as Vectors
	Documents as Vectors
	Queries as Vectors
	Query Representation
	Example
	Example Continued
	Slide Number 42
	Vector Space Proximity
	Why Eucledian Distance is a Bad Idea
	Use Angle Instead
	From Angles to Cosines
	Length Normalization
	Cosine for Length Normalized Vectors
	Cosine Similarity Illustrated
	Example
	Example: Normalized vectors
	Term Frequency tf
	Log-frequency weighting
	Document Frequency
	idf weight
	idf Example
	Effect of idf on Ranking
	tf-idf weighting
	Analysis of the Vector Space Model
	Evaluation
	Evaluation
	Relevant vs. Retrieved
	Precision vs. Recall
	Evaluation: Example of P andR
	Evaluation: Example of P&R
	Why Precision and Recall?
	High Precision, Low Recall
	High Recall, Low Precision
	High Precision, High Recall
	Precision/Recall Curves
	Precision/Recall Curves
	F-Measure
	Importance of Ranking
	Cutoff
	Uninterpolated Average Precision
	IR System Improvements
	Query Expansion
	Slide Number 78
	Relevance Feedback
	Blind Feedback
	Additional IR Issues
	IR within NLP

