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Outline 

• Introduction to Information Retrieval (IR) 
• Ad hoc information retrieval 

• Boolean Model 
• Vector Space Model 

• Cosine similarity measure 
• Choosing term weights 

• Performance evaluation methods 
• Improving IR system 

• Query expansion 
• Relevance feedback 



Information Retrieval (IR) 
• Have a large collection of unstructured 

documents (usually text) 
• in contrast to databases, which store documents in 

structured from 

• IR Goal: retrieve documents with information 
that is relevant to the need of the user 

• Main example is web search, but also 
• E-mail search 
• Searching your laptop 
• Corporate knowledge bases 
• Legal information retrieval 



90’s: Unstructured vs. Structured Data 



Today: Unstructured vs. Structured Data 



Information Retrieval (IR) 
• Traditionally, dealt with text documents 
• More recently 

• Speech 
• Images 
• Music 
• Video  



Translating User Needs: Structured data (Databases) 

User need User query Results 

For databases, 
enlightened users 

know how to do this  
correctly, using SQL or 

a GUI tool 

The answers 
coming out here are 
precisely what the 

user wanted 



Translating User Needs: Unstructured Data (Text Documents) 

User need User query Results 

For meanings in text, 
no IR-style query gives 
one exactly what one 

wants; it only hints at it 

The answers coming 
out may be roughly 

what was wanted; often 
needs to be refined 

  



Information Retrieval Types 
• Ad-hoc  

• user creates an “ad hoc” query which is not reused or saved 
• system returns a list of (hopefully) relevant documents  
• no training data is available  

• Classification/categorization 
• training data is available 
• documents are classified in a pre-determined set of categories 
• Ex: corporate news (CORP-NEWS), crude oil (CRUDE),  … 
• any of machine learning techniques can be used 

• Filtering/routing: special case of categorization  
• 2 categories: relevant and not-relevant 
• filtering: absolute assessment  (d1 is relevant but d2 is not) 
• routing: relative ranking of documents, such as d 1, d 2  



Different Types of Ad-Hoc Retrieval 
• Web search 

• Massive document collection (108-109) 
• Typically high precision (most retrieved documents are relevant), 

low recall (not all relevant documents are retrieved) 
• Commercial information providers (e.g. West, LexisNexis) 

• Large Collection (106-108)  of documents 
• often high recall is essential (e.g. legal or patent search) 

• Enterprise search (e.g. UWO, IBM)  
• Medium-sized to large collection (104-106)  of documents 
• Opportunity to exploit domain knowledge 

• Personal search (e.g. your PC) 
• Small collection (103-104) of documents 
• Good opportunity to learn a user model, do personalization 
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Example of Web Ad-Hoc IR 



Index 

Pre-process 

Parse 

Collections 

Rank 

Query 

text input 

How is query 
constructed? 

How is text 
processed? 

information  
need 

How to decide what is 
a relevant document 

and its rank? 

Information Retrieval Process 



Relevance 
• In what ways can a document be relevant to a 

query? 
• Answer precise question precisely 
• Partially answer question 
• Suggest a source for more information 
• Give background information 
• Remind the user of other knowledge 
• Others ... 

 



Two Major Issues 

 
• Indexing 

• How to represent a collection of documents to 
support fast search? 

• Retrieval methods 
• How do we match a user query to indexed 

documents? 
 



Indexing: Inverted Index 
• Most IR systems use inverted index to represent text collection  
• Inverted Index  is a data structure that lists for each word all 

documents in the collection that contain that word 
• this list is sometimes called posting list 
• posting list is sorted by document number 
 
   assassination  {d1, d4, d95, d150, d190…} 
   murder  {d3, d7, d95…} 
   Kennedy {d24, d33, d44…} 
   conspiracy {d3, d55, d90, d98…} 

 
• Inverted index  implemented as a dictionary which allows fast 

lookups based on word 
• B-trees, hash tables, etc. 



Indexing: Inverted Index with Position 

• Include position information, document start offset  
• Enables efficient search for phrases 
• example: need to find  car insurance 

 

car                (d1, offset 5), (d7, offset 10),  (d9, offset 35) 
insurance    (d2, offset 3), (d7, offset 11),  (d8, offset 7) 
 
   

 

car insurance occurs in document 7 
 

• Still primitive:  car insurance  ≠  insurance for car 



Indexing: Inverted Index with Position  
 

 
• Still primitive:  car insurance  ≠  insurance for car 
• One solution: find frequent phrases and index those too 

 
car                   {d1, d7, …}  
car insurance  {d1, d4, d95, d155, d190…} 
insurance for car   {d5, d7, d95,  d99…} 
 

• Say term to refer to these indexed entities 
•  sometimes just say word, because it’s simpler 



• For each term: 
• DocCnt:  in how many documents term 

occurs 
• FreqCnt:  total number of times term 

occurs in all documents 
• For each document 

• Freq: how many times term occurs in this 
document 

• WordPosition: offset where these 
occurrences are found in document 
 

Inverted Index Example 
term Term DocCnt FreqCnt Head 

ABANDON 3 10 

ABB 2 9 

ABSENCE 135 185          … 

ABSTRACT 7 10          … 

DocNo Freq Word Position 

67 2 279   283 

424 1 24 

1376 7 17  189  481 … 

206 1 70 

1376 8 426  432 … 



Choosing Terms To Index 
1. Controlled Vocabulary Indexing, done in libraries, web directories 

• A human expert selects a set of terms 
• Pros 

• Usually  controlled terms are less unambiguous 
• Cons 

• Expensive, need manual work 
• Controlled vocabularies cannot represent arbitrary detail 

2. Free Text Indexing, done in some search engines 
• Automatically select good terms to index 

3. Full Text Indexing, done in most search engines  
• Cons 

• Many ambiguous terms 
• Pros 

• can represent arbitrary detail 
• inexpensive and easy 

 
 



Full Text Indexing 

Can you tell what this document is about? 



Full Text Indexing Design Issues 
• To stem or not to stem 

• Stemming: laughing, laughs, laugh and laughed are stemmed to laugh 
• Problem: semantically different words like gallery and gall may both be 

truncated to gall  

• Exclude/Include Stop words 
• Stop words make up about 50% of the text 
• excluding them makes representation more space efficient 
• But impossible to search for documents for phrases 

containing stop words 
• to be or not to be,  take over 
• most queries are unaffected, but could be very annoying sometimes 

 



After Stemming and Stop Word Removal 



Problems with Index Terms 
• May not retrieve relevant documents that 

include synonymous terms 
• restaurant  vs. café 
• PRC vs. China 

• May retrieve irrelevant documents that 
include ambiguous terms 
• bat (baseball vs. mammal) 
• apple (company vs. fruit) 
• bit (unit of data vs. act of eating) 

 



Retrieval Models 
• We study 2 basic models: 

• boolean model 
• the oldest one, similar to what is used in database queries  

• vector-space model 
• most popular in IR 

• Models vary on: 
• how they represent  query and documents 
• how they calculate the relevance between the query and 

the documents 



Boolean Model 
• User gives a set of terms (keywords) that are likely to 

appear in relevant documents   
• Ex: JFK  Kennedy  conspiracy assassination  

• Connects the terms in the query with Boolean operators 
(AND, OR, NOT) 
 

AND(Kennedy, conspiracy, assassination) 
 

• Can expand query using synonyms 
 

AND (OR (Kennedy, JFK), 
       (OR (conspiracy, plot), 
     (OR (assassination, assassinated, 
     assassinate, murder, murdered, kill, killed) 
     ) )) 

• system returns set of documents that satisfy query exactly 



Example 
• Which of these documents will be returned for 

the following query :  
computer AND (information OR document) AND retrieval 

 

document collection: 
 d1: {computer √ , software, information √, language}  ×  
 d2: {computer √, document √, retrieval √, library}    √ 
 d3: {computer √, information √, filtering, retrieval √}  √ 

 



Implementation With Set Operators 
• Assume that the inverted index contains: 

t1-list: {d1,d2,d3,d4}   t2-list: {d1,d2}   t3-list: {d1,d2,d3}   t4-list: {d1} 

• The query Q = (t1 AND t2) OR (t3 AND (NOT t4)) 

• We perform set operations:   
• to satisfy (t1 AND t2), we intersect the t1 and t2 lists 

• {d1,d2,d3,d4} ∩ {d1,d2} = {d1,d2}  

• to satisfy (t3 AND (NOT t4)), we subtract the t4 list from the t3 list  

• {d1,d2,d3} - {d1} = {d2,d3}  

• to satisfy (t1 AND t2) OR (t3 AND (NOT t4)), we take the union of the two 
sets of documents obtained for the parts.  

• {d1,d2} ∪ {d2,d3} = {d1,d2,d3}  
 

 



Query processing: AND 
• Consider processing the query: 

computer AND retrieval 
• Locate computer in the Inverted Index 

• retrieve its document list 

• Locate retrieval in the Inverted Index 
• retrieve its document list 

• “Merge”  (intersect) the document sets: 

128 
34 

2 4 8 16 32 64 
1 2 3 5 8 13 21 

computer 
retrieval 



The Merge 
• Crucial: lists are sorted by document ID 
• Walk through two lists, in time linear in to total number 

of  entries 

34 
128 2 4 8 16 32 64 

1 2 3 5 8 13 21 

computer 
retrieval 

• If  list lengths are n and m, merge takes O(n+m) time 

{2,     } {     8  



Analysis of the Boolean Model 
• Advantages 

• queries are expressed with Boolean operators, i.e. semantics is 
clearly defined 

• results are easy to explain 
• computationally efficient 
• useful for expert users 

• Disadvantages 
• retrieval strategy is a binary decision (relevant or not)  
• difficult to rank documents in order of relevance 
• non-expert users have difficulty to express their need as Boolean 

expressions 
• “Feast of Famine” phenomena,  people create quires that are either 

• too strict: few relevant documents are found 
• too loose: too many documents, most irrelevant, are found 

• Most boolean searches on the web either return no documents or a 
huge set of documents 

 



Ranked Retrieval Models 
• Rather than a set of documents exactly satisfying a 

query expression, in ranked retrieval models, the 
system returns an ordering over the (top) documents 
in the collection with respect to a query 
• large set of retrieved documents is not a problem, just show 

top 10 ranked documents 

• Free text queries: rather than a query language of 
operators and expressions, the user query is just one 
or more words in a human language 



Vector-Space Model 
• Documents and queries are 

represented by a term vector 
• each dimension corresponds to a term 

in the vocabulary 

• Similarity between a document and 
a query is determined by a distance 
in vector space 

• First system SMART  
• developed by G. Salton at Cornell 

1960-1995 
• still used widely today 

Gerard Salton 



Term-Document Matrix 
• term-by-document matrix visualizes the collection of documents 

 d1 d2 d3 d4 d5 … 

term1 w11 w12 w13 w14 w15  

term2 w21 w22 w23 w24 w25  

term3 w31 w32 w33 w34 w35  

…       

termN wn1 wn2 wn3 wn4 wn5  
 

 

 
• 1 column = representation of one document 
• 1 row = representation of one term across all documents 
• cell wij = weight of term i in document j 

• simplest weight wij is the count of times term i occurred in document j 
• matrix is sparse, i.e. most weights are 0 

• Implemented with inverted index, matrix is useful just for visualization 



Term-Document Count Matrix 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

• Consider number of occurrences of a term in a document:  
• each document is a count vector in ℕ|V|: a column below  

document 2  document 1  



Bags of Words 
• This representation sometimes 

called  bags of words  
• the document is the  bag 
• bag contains word tokens 
• Word order is ignored 

I see what I eat  =  I eat what I see 

• A particular word may occur more 
than once in the bag 

The quick brown  
fox jumped over  
the lazy dog’s  
back.  

document 1 

document 2 
Now is the time  
for all good men  
to come to the  
aid of their party. 

quick 

brown 

fox 

over 

lazy 

dog 

back 

now 

time 

all 

good 

men 

come 

jump 

aid 

their 

party 
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Documents as Vectors 

Star 

Diet 

Doc about astronomy 
Doc about movie stars 

Doc about mammal behavior 



Documents as Vectors 

• |V|-dimensional vector space, where |V| is 
the number of terms 

• Terms are axes of the space 
• Documents are points or vectors in this space 
• Very high-dimensional: tens of millions of 

dimensions when you apply this to a web 
search engine 

• Very sparse vectors – most entries are zero 



Queries as Vectors 
• Key idea 1  

• represent queries also as vectors in the same vector space 

• Key idea 2 
• Rank documents according to their proximity to the query 

in this space 

• proximity = similarity of vectors 
• proximity ≈ inverse of distance 
• Use proximity to get away from “you’re-either-in-or-

out” Boolean model 
• Instead: rank more relevant documents higher than 

less relevant documents 



Query Representation 

• A query can also be represented as a vector, 
like a document 

q =(0,0,0,1,0,…1,..0,1) 
 

• Size of vector corresponding to query q is also 
the number of index terms |V| 



Example 
• The collection: 

• d1 = {introduction knowledge in speech and language processing ambiguity 
models and algorithms language thought and understanding the state of 
the art and the near-term future some brief history summary} 
 

• d2 = {hmms and speech recognition speech recognition architecture 
overview of the hidden markov models the Viterbi algorithm revisited 
advanced methods in decoding acoustic processing of speech computing 
acoustic probabilities training a speech recognizer waveform generation for 
speech synthesis human speech recognition summary} 
 

• d3 = {language and complexity the chomsky hierarchy how to tell if a 
language isn’t regular the pumping lemma are English and other languages 
regular languages ? is natural language context-free complexity and human 
processing summary} 
 

• The query: 
Q = {speech language processing} 
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Example Continued 
• The collection: 

• d1 = {introduction knowledge in speech and language processing ambiguity 
models and algorithms language thought and understanding the state of the 
art and the near-term future some brief history summary} 
 

• d2 = {hmms and speech recognition speech recognition architecture overview 
of the hidden markov models the viterbi algorithm revisited advanced 
methods in decoding acoustic processing of speech computing acoustic 
probabilities training a speech recognizer waveform generation for speech 
synthesis human speech recognition summary} 
 

• d3 = {language and complexity the chomsky hierarchy how to tell if a 
language isn’t regular the pumping lemma are English and other language 
regular language ? is natural language context-free complexity and human 
processing summary} 
 

• The query: 
Q = {speech language processing} 
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 d1 d2 d3 q 
introduction … … … … 
knowledge … … … … 
… … … … … 
speech 1 6 0 1 
language 2 0 5 1 
processing 1 1 1 1 
… … … … … 

 

 

• using raw term frequencies for weights 
Te

rm
 1

 
(s

pe
ec

h)
 

Term 2 
(language) 

d2 (6,0,1) 

d1 (1,2,1) 

d3 (0,5,1) 
q (1,1,1) 

Example Continued 



Vector Space Proximity 

• First idea: use standard Euclidean distance 
•  does not work well 
• because Euclidean distance is large for vectors of 

different lengths 
• documents tend to vary in lengths widely 



Why Eucledian Distance is a Bad Idea 
• Euclidean distance 

between q and d2 is 
large even though 
distribution of terms in 
query q and document 
d2 are similar 

• Query q is closer to d1 



d’ 

Use Angle Instead  
• Thought experiment  

• take a document d and append it to itself 
• call this document d′ 

• Semantically d and d′ have the same 
content 
• d is a short document, d’ is a long document 

• Euclidean distance between the two 
documents can be quite large 

• Angle between the two documents is 0, 
corresponding to maximal similarity 

• Key idea: rank documents according to 
the angle with the query 

d 



From Angles to Cosines 
• These two are equivalent: 

• rank documents in decreasing order of 
the angle between query and 
document 

• rank documents in increasing order of 
cosine(query,document) 

• Why cosine? For efficiency 

• Cosine is a monotonically decreasing 
function for the interval [0o, 180o] 

• Negative between [90,180] 
• but this is not a problem 



Length Normalization 
• Normalize vectors by dividing each of its components by 

its length 
 ∑=

i ixx 2
2

• After normalization, each vector has unit (1) length 
• Let d’ = d+d  (d appended to itself) 
• After normalization,  d and d′ are identical 
• long and short documents now have comparable weight 



Cosine for Length Normalized Vectors 
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Dot product Unit vectors 

• For length-normalized vectors, cosine similarity is 
simply the dot product 
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Cosine Similarity Illustrated 



Example 

la
ng

ua
ge

 

speech 

d2 (6, 0) 

d1 (1, 2) 

d3 (0, 5) 
q (1, 1) 

• assume only two indexed 
terms, speech and  language 

• query q = speech language 
• original representation 

 
 
 
 
 

 



Example: Normalized vectors 

la
ng

ua
ge

 

d'3(0, 1) speech 

d2‘(1, 0) 

d1‘(0.45, 0.89) 

q‘(0.71, 0.71) 

q(1,1):            ⇒ normalized   q’ (0.71, 0.71) 
d1(1,2):            ⇒ normalized   d1’ (0.45, 0.89) 
d2(6,0):           ⇒ normalized   d2’ (1, 0) 
d3(0,5):           ⇒ normalized    d3’ (0, 1) 
 

1.4111L 22 =+=

2.2421L 22 =+=

606L 22 =+=

550L 22 =+=

•  query q = speech language 
•  after normalization 



Term Frequency tf 
• Are word counts or binarized counts (bag of word) the 

best representation for document vectors? 
• Define the number of occurrences of a term t in a 

document is d  term frequency tftd  
• Want to use tf when computing query-document 

match scores. But how? 
• Raw term frequency is not what we want: 

• document with 10 occurrences of term is more relevant 
than document with 1 occurrence of term 

• but probably not 10 times more relevant 

• Relevance does not increase proportionally with term 
frequency 



Log-frequency weighting 
• The log frequency weight of term t in d is 

 
 
 



 >+

=
otherwise 0

0  tfif tflog  1
  10 tdtd

tdw

• 0 → 0 
• 1 → 1 
• 2 → 1.3 
• 10 → 2 
• 1000 → 4 
• document that has 10 times more occurrences of a term is 

only 2 times more important with one occurrence of a term 



Document Frequency 
• Rare terms are more informative than frequent terms 

• recall stop words the,  in, from ,… 

• Consider a term in query that is rare in the collection  
• e.g., arachnocentric 

• Document containing this term is very likely to be 
relevant to the query arachnocentric 

• Want a higher weight for rare terms like arachnocentric 
• The more rare the word, the higher its weight 

• word is rare if it does not occur in many documents 

• Use document frequency (df) to capture this 
 
 



idf weight 
• dft the document frequency of t is the number of 

documents that contain t 
• dft is an inverse measure of the informativeness of t 
• dft  ≤ N, where N is the number of documents 

• Define idf (inverse document frequency) of t  

 )/dfN( log  idf t10t =
 

• as before, use log (N/dft) instead of N/dft to dampen 
(lessen) the effect of idf 

• the base of the log is of little importance 



idf Example 

term dft idft = log10(N/dft) 

calpurnia 1 6 

animal 100 4 

sunday 1,000 3 

fly 10,000 2 

under 100,000 1 

the 1,000,000 0 

• Suppose N = 106  



Effect of idf on Ranking 
• Does idf have an effect on ranking for one-term 

queries, like  iPhone 
• No effect on ranking one term queries 

• Just scales all documents by the same factor 

• idf affects the ranking of documents for queries with 
at least two terms 
• for the query capricious person, idf weighting makes 

occurrences of capricious count for much more in the final 
document ranking than occurrences of person 



tf-idf weighting 
• The tf-idf weight of a term is the product of its tf 

weight and its idf weight 
 

 
• Best known weighting scheme in information retrieval 

• note: the “-” in tf-idf is a hyphen, not a minus sign 
• alternative names: tf.idf, tf x idf 

• Increases with the number of occurrences within a 
document 

• Increases with the rarity of the term in the collection 

wt,d = (1+log tft,d) × log10(N/dft) 



Analysis of the Vector Space Model 
• advantages: 

• simple and effective 
• term-weighting scheme improves retrieval performance 
• partial matching allows for retrieval of documents that 

approximate the query 
• cosine ranking allows for sorting the results 

• disadvantages 
• no real theoretical basis for the assumption of a term space 
• assumed independence between terms is not really true 

• Note: in web search engines the weights may be 
calculated differently   
• heuristics on where a term occurs in the document (ex, title) 
• notion of hub and authority  
 



Evaluation 
• Suppose have several retrieval methods 
• Which one is the best? 

• for us, best = effectiveness, or the relevance of retrieved documents 
• other possible measures: ease of use, efficiency, nice interface, cost, etc. 

• An information need is translated into a query 
• Relevance is assessed relative to the information need not the 

query 
• Information need: I’m looking for information on whether 

drinking red wine is more effective at reducing your risk of heart 
attacks than white wine. 

• Query: wine red white heart attack effective 
• Evaluate whether retrieved document addresses the 

information need, not whether it has these words 



Evaluation 
• To evaluate, need 

• a benchmark document collection 
• a benchmark set of queries 
• a set of relevance query/document judgments 

• To compare two (or more) methods 
• Each method is used to retrieve documents for a query 
• Results are compared using some measures 
• Common measures are based on precision and recall 

 



Relevant vs. Retrieved 

relevant 

retrieved 

all documents 



Precision vs. Recall 

collection in documents relevantof  number
retrieved documents relevantof  number  recall=

 retrieved documentsof  number
retrieved documents relevantof   number

  precision=

relevant 

retrieved 

all documents 

=  
|O∩O| 

|O| 

=  
|O∩O| 

|O| 



Evaluation: Example of P andR 
• Relevant: d3 d5 d9 d25 d39 d44 d56 d71 d123 d389 

 

• System 1  
• d123 d84 d56 
• Precision ? 
• Recall ? 

 

• System 2  
• d123 d84 d56 d6 d8 d9  
• Precision ? 
• Recall ? 

 
 



• Relevant: d3 d5 d9 d25 d39 d44 d56 d71 d123 d389 
 
 

• System 1:  
• d123√     d84 ×    d56√ 
• precision = 2/3 = 66%   
• recall = 2/10 = 20%  

 

• System 2:  
• d123√   d84×   d56√    d6×   d8×   d9√ 
• precision = 3/6 = 50%  
• recall = 3/10 = 30%  

 

Evaluation: Example of P&R 



Why Precision and Recall? 
• Get as much good stuff (high recall) while at the same 

time getting as little junk as possible (high precision) 
• Easy to get either high recall or high precision 
• Harder to get both high 



High Precision, Low Recall 

relevant 

retrieved 



High Recall, Low Precision 

relevant 

retrieved 



High Precision, High Recall 

relevant 

retrieved 



Precision/Recall Curves 
• There is a tradeoff between Precision and Recall 

• easy to get either high precision or high recall, but not both 

• So measure Precision at different levels of Recall 
• Note: this is an average over many queries 

precision 

recall 

x 

x 

x 

x 



Precision/Recall Curves 

• Often difficult to determine which system is better 
• Is blue method performing better than the red one? 

 
P 

R 

P 

R 

Yes! ? 



F-Measure 
• Sometime only one pair of precision and recall 

is available 
• e.g., filtering task 

• F-Measure 

( )
RP

F 111
1

αα −+
=

 
• α > 0.5: precision is more important 
• α < 0.5: recall is more important 
• Usually α = 0.5 

 
 RP

RPF
+
⋅

⋅= 2



Importance of Ranking 

• IR systems typically output a 
ranked list of documents 

• Should take relevance into 
account when measuring 
performance 

• The three systems have same 
precision/recall rates, but the 
method in the first column is 
better since it ranks the 
relevant documents higher 

system 1 system 2 system 3 

d1 √ d10 × d6 × 

d2 √ d9 × d1 √ 
d3 √ d8 × d2 √ 
d4 √ d7 × d10 × 
d5 √ d6 × d9 × 
d6 × d1 √ d3 √ 
d7 × d2 √ d5 √ 
d8 × d3 √ d4 √ 
d9 × d4 √ d7 × 
d10 × d5 √ d8 × 

 



Cutoff 
• Look at precision of the top 5 (or 10, … etc) ranked documents 

  system 1 system 2 system 3 
 d1 √ d10 × d6 × 
 d2 √ d9 × d1 √ 
 d3 √ d8 × d2 √ 
 d4 √ d7 × d10 × 
 d5 √ d6 × d9 × 
 d6 × d1 √ d3 √ 
 d7 × d2 √ d5 √ 
 d8 × d3 √ d4 √ 
 d9 × d4 √ d7 × 
 d10 × d5 √ d8 × 
precision at 5 1.0 0.0 0.4 
precision at 10 0.5 0.5 0.5 

 
 

• How to decide on the “cut off” threshold?  
• threshold 5 is informative in this example, threshold 10 is not informative 
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Uninterpolated Average Precision 
• Instead of using a single cut-off, average precision at many cut-offs  

usually at points where a relevant document is found 
  system 1 system 2 system 3 

 d1 √ d10 × d6 × 
 d2 √ d9 × d1 √ 
 d3 √ d8 × d2 √ 
 d4 √ d7 × d10 × 
 d5 √ d6 × d9 × 
 d6 × d1 √ d3 √ 
 d7 × d2 √ d5 √ 
 d8 × d3 √ d4 √ 
 d9 × d4 √ d7 × 
 d10 × d5 √ d8 × 
precision at 5 1.0 0.0 0.4 
precision at 10 0.5 0.5 0.5 
aver. precision 1.0 0.3544 0.5726 

 
 

For system 3: 
• At cutoff d1:                 

2 retrieved, 1 relevant, 
precision ½ 

• At cutoff d2:                 
3 retrieved, 2 relevant, 
precision 2/3 

• … 
• At cutoff d4:                 

8 retrieved, 5 relevant, 
precision 5/8 

• Average precision 
0.5726 

1/2 
2/3 

3/6 

5/8 
4/7 



IR System Improvements 
• Most Queries are short 

• Web queries tend to be 2-3 keywords long 

• The two big problems with short queries are: 
• Synonymy: poor recall results from missing 

documents that contain synonyms of search terms, 
but not the terms themselves 

• Polysemy/Homonymy: poor precision results from 
search terms that have multiple meanings leading to 
the retrieval of non-relevant documents 

 



Query Expansion 

• Find a way to expand a user’s query to automatically 
include relevant terms (that they should have 
included themselves), in an effort to improve recall 
• Use a dictionary/thesaurus 
• Use relevance feedback 



• Example: 
• query: seller of email solutions for cell phones 
• document: […] Giszmotron is a leading vendor of electronic messaging 

services for cellular devices […] 
 

• Solution:  expand user query with related terms  
• often using a thesaurus to find related terms (synonyms, hyponyms) 
• new terms will have lower weights in the query  
• ex: expanded query: seller vendor phones device …  
 

 

Query Expansion 



Relevance Feedback 
• Ask the user to identify a few documents which 

appear to be related to their information need 
• Extract terms from those documents and add them to 

the original query 
• Run the new query and present those results to the 

user 
• Iterate (ask the user to identify relevant 

documents…extract terms… add them to the query…) 
• Typically converges quickly 



Blind Feedback 

• Assume that first few documents returned are most 
relevant rather than having users identify them 

• Proceed as for relevance feedback 
• Tends to improve recall at the expense of precision 



Additional IR Issues 

• In addition to improved relevance, can improve overall 
information retrieval with some other factors 
• Eliminate duplicate documents 
• Provide good context 

• For the web: 
• Eliminate multiple documents from one site 
• Clearly identify paid links 



IR within NLP 
• IR needs to process the large volumes of online text 
• And (traditionally), NLP methods were not robust enough to 

work on thousands of real world texts. 
• so IR: 

• not based on NLP tools (ex. syntactic/semantic analysis)  
• uses (mostly) simple (shallow) techniques 
• based mostly on word frequencies 

 

• in IR, meaning of documents: 
• is the composition of meaning of individual words 
• ordering & constituency of words play are not taken into account 
• bag of word approach 

I see what I eat. 
I eat what I see. 

same meaning 
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