Lecture 11

Computer Vision

Stereo

Some slides are from S. Seitz, S. Narasimhan, K. Grauman
Outline

• Cues for 3D reconstruction
• Stereo Cues
• Stereo Reconstruction
 1) camera calibration and rectification
 • an easier, mostly solved problem
 2) stereo correspondence
 • a harder problem
2D Images

- Depth is inherently ambiguous from a single view
2D Images

• World is 3D
• In 2D images, depth (the third coordinate) is largely lost
 • includes human retina
Street Pavement Art

• Viewed from the “right” side
Street Pavement Art

- Viewed from the “wrong” side
Babies and Animals Perceive Depth

• Yet we perceive the world in 3D

The Visual Cliff, by William Vandivert, 1960
3D Shape from Images

• What image cues provide 3D information?
• Cues from a single image
• Cues from multiple images
 • Motion cues
 • Stereo cues
• Can we use these cues in a computer vision system?
Single Image 3D Cues: Shading

- Pixels covered by shadow are perceived to be further away
Single Image 3D Cues: Linear Perspective

- The further away are parallel lines, the closer they come together
Single Image 3D Cues: Relative Size

- If objects have the same size, those further away appear smaller.
Single Image 3D Cues: Texture

• Further away texture appears finer (smaller scale)
Single Image 3D Cues: Known Size

- Ducks are smaller than elephants, duck is closer
Illusions: Linear Perspective + Relative Size
Illusions: Linear Perspective + Relative Size
Illusions: Ames Room
Cues from Multiple Image: Motion Parallax

- Closer objects appear to move more than further away objects

http://psych.hanover.edu/KRANTZ/MotionParallax/MotionParallax.html
• $X =$ shading, texture, motion, ...

• We will focus on **stereo**
 • depth perception from two **stereo images**
Why Two Eyes? Cylopes?
Why Two Eyes?

- Charles Wheatstone first explained stereopsis in 1838

3D Scene
Why Two Eyes?

- **Disparity** \(d \) is the difference in \(x \) coordinates of corresponding points.
Stereoscopes

• Wheatstone invented the first stereoscope
Anaglyph Images

• Encodes left and right image into a single picture
 • left eye image is transferred to the **red** channel
 • right eye image to the **green**+**blue** = **cyan** channel
• **Red** filter lets through only the left image
• **Cyan** filter lets through only the right eye image
• Brain fuses into 3D
• Similar technology for 3D movies
• Works for most of us
What is Needed for Stereopsis?

- Image with no monocular cues and no recognizable objects: random dots
Need Object Recognition for Stereopsis?

- Answered by Julesz in 1960
- Make a copy of it
Need Object Recognition for Stereopsis?

- Answered by Julesz in 1960
- Select a square
Need Object Recognition for Stereopsis?

- Answered by Julesz in 1960
- Copy square the right image, shifting by d to the left
 - random dot stereogram
Need Object Recognition for Stereopsis?

- Answered by Julesz in 1960
- Random dot stereogram
- Humans perceive square floating in front of background
• Use two cameras instead of two eyes
Stereo System

- Unlike eyes, usually stereo cameras are not on the same plane
 - better numerical stability
• Depth by triangulation
 • given two corresponding points in the left and right image
 • cast the rays through the optical camera centers
 • ray intersection is the corresponding 3D world point P
 • depth of P is based on camera positions and parameters

• Triangulation ideas can be traced to ancient Greece
What is needed for Triangulation

1. Distance between cameras, camera focal length
 • Solved through *camera calibration*, essentially a solved problem
 • We will not talk about it
 • Code available on the web
 • OpenCV http://www.intel.com/research/mrl/research/opencv/
 • Matlab, J. Bouget http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

2. Pairs of corresponding pixels in left and right images
 • Called *stereo correspondence problem*, still much researched
Formula: Depth from Disparity

- Top down view on geometry (slice through XZ plane)
 - from camera calibration, know the distance between camera optical centers called baseline B, and camera focal length f
Formula: Depth from Disparity

- Height to base ratio of triangle \(C_l P C_r : \frac{Z}{B} \)

\[P = (X,Y,Z) \]

- \(f \) is the focal length.
- \(X \) is the left optical center.
- \(Y \) is the right optical center.
- \(Z \) is the depth.
- \(B \) is the baseline.

\(C_l \) is the left image point.
\(C_r \) is the right image point.
Formula: Depth from Disparity

- Height to base ratio of triangle $\frac{Z - f}{B - x_l + x_r}$
- x_l is positive, x_r is negative
• $C_l P C_r$ and $\Delta x_l P x_r$ are similar:

$$\frac{Z}{B} = \frac{Z - f}{B - x_l + x_r}$$
Formula: Depth from Disparity

- Rewriting: \[Z = \frac{B \cdot f}{x_l - x_r} \]
- \(x_l - x_r \) is the disparity
• Which pairs of pixels correspond to the same scene element?

• Epipolar constraint
 • Given a left image pixel, the corresponding pixel in the right image must lie on a line called the epipolar line
 • reduces correspondence to 1D search along conjugate epipolar lines
 • demo: http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html
Stereo Rectification

- Epipolar lines can be computed from camera calibration
- Usually they are not horizontal
- Can **rectify** stereo pair to make epipolar lines horizontal
• From now on assume stereo pair is rectified
• How to solve the correspondence problem?
• Corresponding pixels should be similar in intensity
 • or color, or something else
Difficulties in Stereo Correspondence

- Image noise
 - corresponding pixels have similar, but not exactly the same intensities

- Matching each pixel individually is unreliable
Difficulties in Stereo Correspondence

- Especially in regions with (almost) constant intensity

- Matching each pixel individually is unreliable
Window Matching Correspondence

- Use a window (patch) of pixels
 - more likely to have enough intensity variation to form a distinguishable pattern
 - also more robust to noise
Window Matching Correspondence

- Use a window (patch) of pixels
 - more likely to have enough intensity variation to form a distinguishable pattern
 - also more robust to noise
Window Matching: Basic Algorithm

- for each epipolar line
 - for each pixel p on the left line
 - compare window around p with same window shifted to many right window locations on corresponding epipolar line
 - pick location corresponding to the best matching window
• Disparity cannot be negative
• Maximum possible disparity is limited by the camera setup
 • assume we know $maxDisp$
• Disparity can range from 0 to $maxDisp$
 • consider only (x,y), $(x-1,y)$,...$(x-maxDisp,y)$ in the right image
Window Matching Cost

- How to define the best matching window?
- Define window cost
 - sum of squared differences (SSD)
 - or sum of absolute differences (SAD)
 - many other possibilities
- Pick window of best (smallest) cost
SSD Window Cost

<table>
<thead>
<tr>
<th>left image</th>
<th>right image</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 5 4 4 2 4 2</td>
<td>3 5 4 4 2 4 2</td>
</tr>
<tr>
<td>7 4 1 4 4 2 6</td>
<td>7 4 1 4 4 2 6</td>
</tr>
<tr>
<td>2 7 46 46 46 6 7</td>
<td>46 46 46 3 6 6 7</td>
</tr>
<tr>
<td>5 9 46 46 44 9 7</td>
<td>48 46 44 6 4 9 7</td>
</tr>
<tr>
<td>4 7 47 47 47 2 4</td>
<td>47 47 47 7 4 2 4</td>
</tr>
<tr>
<td>4 7 56 56 46 6 7</td>
<td>58 56 46 5 6 6 7</td>
</tr>
<tr>
<td>3 4 4 1 4 3 2</td>
<td>3 4 4 1 4 3 2</td>
</tr>
</tbody>
</table>

\[
(46 - 44)^2 + (46 - 6)^2 + (44 - 4)^2 + (47 - 47)^2 + (47 - 7)^2 + (47 - 4)^2 + (56 - 46)^2 + (56 - 5)^2 + (46 - 6)^2 = 12454
\]
Algorithm with SSD Window Cost

This shift corresponds to disparity 0

\[
\begin{align*}
& (46 - 44)^2 + (46 - 6)^2 + (44 - 4)^2 + \\
& (47 - 47)^2 + (47 - 7)^2 + (47 - 4)^2 + \\
& (56 - 46)^2 + (56 - 5)^2 + (46 - 6)^2 = 12454
\end{align*}
\]
Algorithm with SSD Window Cost

This shift corresponds to disparity 1

\[
(46 - 46)^2 + (46 - 44)^2 + (44 - 6)^2 + (47 - 47)^2 + (47 - 7)^2 + (47 - 7)^2 + (56 - 56)^2 + (56 - 46)^2 + (46 - 5)^2 = 6425
\]
Algorithm with SSD Window Cost

\[
\begin{align*}
(46 - 48)^2 + (46 - 46)^2 + (44 - 44)^2 + \\
(47 - 47)^2 + (47 - 47)^2 + (47 - 47)^2 + \\
(56 - 58)^2 + (56 - 56)^2 + (46 - 46)^2 &= 8
\end{align*}
\]

- This shift corresponds to disparity 2
Best SSD Window Cost

** Algorithm with SSD Window Cost **

left image

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>46</td>
<td>46</td>
<td>44</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>56</td>
<td>56</td>
<td>46</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

right image

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>46</td>
<td>46</td>
<td>46</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>48</td>
<td>46</td>
<td>44</td>
<td>6</td>
<td>4</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>47</td>
<td>47</td>
<td>47</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>58</td>
<td>56</td>
<td>46</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

- Best SSD window cost is **8** at disparity **2**
- Red pixel is assigned disparity **2**
- Repeat this for all image pixels
Correspondence with SSD Matching

- Unique best cost location
Compare to One Pixel “Window”

- No unique best cost location
SAD Window Cost

- SSD is fragile to outliers

SSD cost = $80^2 = 6400$

- SAD (Sum of Absolute Differences) is more robust

SAD cost = 80 ✔️ best

SSD cost = 6384 ✔️ best

SAD cost = 232
Window Matching Efficiency

• Suppose
 • image has n pixels
 • matching window is 11 by 11

• Need $11 \cdot 11 = 121$ additions and multiplications to compute one window cost

• Multiply that by number of locations to check $(\text{maxDisp} + 1)$

• Multiply that by n image pixels

• $121 \cdot n \cdot (\text{maxDisp} + 1)$

• Tooooo sloooow
 • gets worse for larger windows

• Can get cost down to $n \cdot (\text{maxDisp} + 1)$ with integral images
• Given image \(f(x,y) \), the **integral** image \(I(x,y) \) is the sum of values in \(f(x,y) \) to the left and above \((x,y) \), including \((x,y) \)

\[
\begin{array}{cccc}
0 & 0 & 0 & 5 \\
0 & 0 & 5 & 5 \\
0 & 5 & 5 & 10 \\
5 & 5 & 5 & 10 \\
5 & 5 & 10 & 0 \\
\end{array}
\quad \quad
\begin{array}{cccc}
0 & 0 & 0 & 5 \\
0 & 0 & 5 & 15 \\
0 & 5 & 15 & 30 \\
5 & 15 & 30 & 55 \\
10 & 25 & 50 & 75 \\
\end{array}
\]

\(f(x,y) \quad I(x,y) \)

• Example: \(I(2,2) = 0 + 0 + 0 + 0 + 0 + 5 + 0 + 5 + 5 = 15 \)
 • indexing starts at 0 in this example
Speedups: Integral Image

• Given image $f(x,y)$, the integral image $I(x,y)$ is the sum of values in $f(x,y)$ to the left and above (x,y), including (x,y)

$$
\begin{array}{|c|c|c|c|c|}
\hline
0 & 0 & 0 & 5 & 5 \\
0 & 0 & 5 & 5 & 5 \\
0 & 5 & 5 & 5 & 10 \\
5 & 5 & 5 & 10 & 0 \\
5 & 5 & 10 & 0 & 0 \\
\hline
\end{array}
\quad
\begin{array}{|c|c|c|c|c|}
\hline
0 & 0 & 0 & 5 & 10 \\
0 & 0 & 5 & 15 & 25 \\
0 & 5 & 15 & 30 & 50 \\
5 & 15 & 30 & 55 & 75 \\
10 & 25 & 50 & 75 & 95 \\
\hline
\end{array}

f(x,y) \quad I(x,y)

• Example: $I(4,1) = 0 + 0 + 0 + 5 + 5 + 0 + 0 + 5 + 5 + 5 = 25$
• Suppose computed integral image up to location \((x, y)\)

\[I(x, y) = f(x, y) \]
Suppose computed integral image up to location \((x,y)\)

\[
I(x,y) = f(x,y) + I(x-1,y)
\]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(f(x,y)\)

\(I(x,y)\)
• Suppose computed integral image up to location \((x, y)\)

\[I(x, y) = f(x, y) + I(x-1, y) + I(x, y-1) \]
Suppose computed integral image up to location \((x, y)\)

\[
I(x, y) = f(x, y) + I(x-1, y) + I(x, y-1) - I(x-1, y-1)
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
0 & 0 & 0 & 5 & 5 \\
\hline
0 & 0 & 5 & 5 & 5 \\
\hline
0 & 5 & 5 & 5 & 10 \\
\hline
5 & 5 & 5 & 10 & 0 \\
\hline
5 & 5 & 10 & 0 & 0 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
+ & + & + \\
\hline
\end{array}
\]

\[f(x, y)\] \hspace{2cm} \[I(x, y)\]
• Convenient order of computation
 1. first row
 2. first column
 3. the rest in row-wise fashion

\[
\begin{array}{ccc|ccc}
1 & 2 & 3 & 4 & 5 \\
6 & 10 & 11 & 12 & 13 \\
7 & 14 & 15 & 16 & 17 \\
8 & 18 & 19 & 20 & 21 \\
9 & 22 & 23 & 24 & 25 \\
\end{array}
\]

\[I(x,y)\]
Using Integral Image

• After computed integral image, sum over any rectangular window is computed with four operations

• Top left corner \((x_1, y_1)\) and bottom right corner \((x_2, y_2)\)

\[
l(x_2, y_2)
\]

\[
\begin{array}{c|cccc}
0 & 0 & 0 & 5 & 5 \\
\hline
0 & 0 & 5 & 5 & 5 \\
\hline
0 & 5 & 5 & 5 & 10 \\
\hline
5 & 5 & 5 & 10 & 0 \\
\hline
5 & 5 & 10 & 0 & 0
\end{array}
\]

\[
f(x, y)
\]

\[
\begin{array}{c|cccc}
+ & + & + & + & + \\
\hline
+ & + & + & + & + \\
\hline
+ & + & + & + & + \\
\hline
+ & + & + & + & + \\
\hline
+ & + & + & + & +
\end{array}
\]

\[
l(x, y)
\]
Using Integral Image

- After computed integral image, sum over any rectangular window is computed with four operations.
- Top left corner \((x_1, y_1)\) and bottom right corner \((x_2, y_2)\)

\[
l(x_2,y_2) - l(x_1-1,y_2)
\]

\[
\begin{array}{cccc}
0 & 0 & 0 & 5 & 5 \\
0 & 0 & 5 & 5 & 5 \\
0 & 5 & 5 & 5 & 10 \\
0 & 5 & 5 & 10 & 0 \\
5 & 5 & 10 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
-+ & -+ & + & + & + \\
-+ & -+ & + & + & + \\
-+ & -+ & + & + & + \\
-+ & -+ & + & + & + \\
-+ & -+ & + & + & + \\
\end{array}
\]

\[f(x,y)\] \hspace{1cm} \[l(x,y)\]
Using Integral Image

- After computed integral image, sum over any rectangular window is computed with four operations
- Top left corner \((x_1, y_1)\) and bottom right corner \((x_2, y_2)\)

\[
l(x_2, y_2) - l(x_1 - 1, y_2) - l(x_2, y_1 - 1)
\]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(f(x, y)\) \hspace{2cm} l(x, y)
Using Integral Image

- After computed integral image, sum over any rectangular window is computed with four operations
- Top left corner \((x_1, y_1)\) and bottom right corner \((x_2, y_2)\)

\[
l(x_2, y_2) - l(x_1-1, y_2) - l(x_2, y_1-1) + l(x_1-1, y_1-1)
\]

\[
\begin{array}{cccc}
0 & 0 & 0 & 5 & 5 \\
0 & 0 & 5 & 5 & 5 \\
0 & 5 & 5 & 5 & 10 \\
5 & 5 & 5 & 10 & 0 \\
5 & 5 & 10 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
+ & - & + & - \\
- & + & - & + \\
+ & - & + & - \\
- & + & - & + \\
- & + & - & + \\
\end{array}
\]

\[
f(x, y) \quad l(x, y)
\]
Using Integral Image

- After computed integral image, sum over any rectangular window is computed with four operations
- Top left corner \((x_1, y_1) \) and bottom right corner \((x_2, y_2) \)

\[
I(x_2, y_2) - I(x_1-1, y_2) - I(x_2, y_1-1) + I(x_1-1, y_1-1)
\]

\[
\begin{array}{cccccc}
0 & 0 & 0 & 5 & 5 \\
0 & 0 & 5 & 5 & 5 \\
0 & 5 & 5 & 5 & 10 \\
5 & 5 & 5 & 10 & 0 \\
5 & 5 & 10 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccccc}
0 & 0 & 0 & 5 & 10 \\
0 & 0 & 5 & 15 & 25 \\
0 & 5 & 15 & 30 & 50 \\
5 & 15 & 30 & 55 & 75 \\
10 & 25 & 50 & 75 & 95 \\
\end{array}
\]

- Example: \(5 + 5 + 10 + 5 + 10 + 0 = 75 - 15 - 25 + 0 = 35 \)
Inefficient Window Matching (SAD cost)

- for each pixel p
 - for every disparity d
 - compute cost between window around p in the left image and the same window shifted by d in the right image
 - pick d corresponding to the best matching window
Integral Image for Window Matching

- For each disparity d need to compute window cost for all pixels, eventually
- For example, pick disparity $d = 1$

<table>
<thead>
<tr>
<th>left image</th>
<th>right image</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Integral Image for Window Matching

• Old inefficient algorithm:
 • for each pixel \(p \)
 • for every disparity \(d \)
 • compute cost between window around \(p \) in the left image and the same window shifted by \(d \) in the right image
 • pick \(d \) corresponding to the best matching window

• New efficient algorithm:
 • for each disparity \(d \)
 • for every pixel \(p \)
 • compute cost between window around \(p \) in the left image and the same window shifted by \(d \) in the right image
 • pick \(d \) corresponding to the best matching window

use integral image

swap
Integral Image for Window Matching

- Suppose current disparity is $d = 1$

Overlay left and right image at disparity 1
- Compute AD (absolute difference) between every overlaid pair of pixels
- Compute SAD in a window for every pixel
 Integral Image for Window Matching

- current disparity is $d = 1$

<table>
<thead>
<tr>
<th>left image</th>
<th>right image</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 5 4 4 2 4 2</td>
<td>3 5 4 4 2 4 2</td>
</tr>
<tr>
<td>7 4 1 4 4 2 6</td>
<td>7 4 1 4 4 2 6</td>
</tr>
<tr>
<td>2 7 46 46 46 6 7</td>
<td>46 46 46 3 6 6 7</td>
</tr>
<tr>
<td>5 9 46 46 44 9 7</td>
<td>48 46 44 6 4 9 7</td>
</tr>
<tr>
<td>4 7 47 47 47 2 4</td>
<td>47 47 47 7 4 2 4</td>
</tr>
<tr>
<td>4 7 56 56 46 6 7</td>
<td>58 56 46 5 6 6 7</td>
</tr>
<tr>
<td>3 4 4 1 4 3 2</td>
<td>3 4 4 1 4 3 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AD image for disparity 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 1 0 2 2 2</td>
</tr>
<tr>
<td>3 3 3 0 2 4</td>
</tr>
<tr>
<td>39 0 0 43 0 1</td>
</tr>
<tr>
<td>39 0 2 38 5 2</td>
</tr>
<tr>
<td>40 0 0 40 2 2</td>
</tr>
<tr>
<td>51 0 10 41 0 1</td>
</tr>
<tr>
<td>1 0 3 3 1 1</td>
</tr>
</tbody>
</table>
Integral Image for Window Matching

- current disparity is $d = 1$
- Pad AD image with zeros

<table>
<thead>
<tr>
<th>left image</th>
<th>right image</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 5 4 4 2 4 2</td>
<td>3 5 4 4 2 4 2</td>
</tr>
<tr>
<td>7 4 1 4 4 2 6</td>
<td>7 4 1 4 4 2 6</td>
</tr>
<tr>
<td>2 7 46 46 46 6 7</td>
<td>46 46 46 3 6 6 7</td>
</tr>
<tr>
<td>5 9 46 46 44 9 7</td>
<td>48 46 44 6 4 9 7</td>
</tr>
<tr>
<td>4 7 47 47 47 2 4</td>
<td>47 47 47 7 4 2 4</td>
</tr>
<tr>
<td>4 7 56 56 46 6 7</td>
<td>58 56 46 5 6 6 7</td>
</tr>
<tr>
<td>3 4 4 1 4 3 2</td>
<td>3 4 4 1 4 3 2</td>
</tr>
</tbody>
</table>

AD image for disparity 1

3 5 4 4 2 4 2	0 2 1 0 2 2 2
7 4 1 4 4 2 6	0 3 3 3 0 2 0
2 7 46 46 46 6 7	0 39 0 0 43 0 0
5 9 46 46 44 9 7	0 39 0 2 38 5 0
4 7 47 47 47 2 4	0 40 0 0 40 2 0
4 7 56 56 46 6 7	0 51 0 10 41 0 0
3 4 4 1 4 3 2	0 1 0 3 3 1 0
Integral Image for Window Matching

- current disparity is $d = 1$

<table>
<thead>
<tr>
<th>left image</th>
<th>right image</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 5 4 4 2</td>
<td>3 5 4 4 2</td>
</tr>
<tr>
<td>7 4 1 4 4</td>
<td>7 4 1 4 4</td>
</tr>
<tr>
<td>2 7 46 46</td>
<td>46 46 46</td>
</tr>
<tr>
<td>5 9 46 46</td>
<td>48 46 44</td>
</tr>
<tr>
<td>4 7 47 47</td>
<td>47 47 47</td>
</tr>
<tr>
<td>4 7 56 56</td>
<td>58 56 46</td>
</tr>
<tr>
<td>3 4 4 1 4</td>
<td>3 4 4 1 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AD image for disparity 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 2 1 0 2 2 2</td>
</tr>
<tr>
<td>0 3 3 3 0 2 0</td>
</tr>
<tr>
<td>0 39 0 0 43 0 0</td>
</tr>
<tr>
<td>0 39 0 2 38 5 0</td>
</tr>
<tr>
<td>0 40 0 0 40 2 0</td>
</tr>
<tr>
<td>0 51 0 10 41 0 0</td>
</tr>
<tr>
<td>0 1 0 3 3 1 0</td>
</tr>
</tbody>
</table>
Integral Image for Window Matching

- current disparity is $d = 1$

<table>
<thead>
<tr>
<th>left image</th>
<th>right image</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 5 4 4 2 4 2</td>
<td>3 5 4 4 2 4 2</td>
</tr>
<tr>
<td>7 4 1 4 4 2 6</td>
<td>7 4 1 4 4 2 6</td>
</tr>
<tr>
<td>2 7 46 46 46 6 7</td>
<td>46 46 46 3 6 6 7</td>
</tr>
<tr>
<td>5 9 46 46 44 9 7</td>
<td>48 46 44 6 4 9 7</td>
</tr>
<tr>
<td>4 7 47 47 47 2 4</td>
<td>47 47 47 7 4 2 4</td>
</tr>
<tr>
<td>4 7 56 56 46 6 7</td>
<td>58 56 46 5 6 6 7</td>
</tr>
<tr>
<td>3 4 4 1 4 3 2</td>
<td>3 4 4 1 4 3 2</td>
</tr>
</tbody>
</table>

AD image for disparity 1

<table>
<thead>
<tr>
<th>0 2 1 0 2 2 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 3 3 3 0 2 0</td>
</tr>
<tr>
<td>0 39 0 0 43 0 0</td>
</tr>
<tr>
<td>0 39 0 2 38 5 0</td>
</tr>
<tr>
<td>0 40 0 0 40 2 0</td>
</tr>
<tr>
<td>0 51 0 10 41 0 0</td>
</tr>
<tr>
<td>0 1 0 3 3 1 0</td>
</tr>
</tbody>
</table>
• current disparity is $d = 1$

<table>
<thead>
<tr>
<th></th>
<th>left image</th>
<th>right image</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>left image</th>
<th>right image</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>AD image for disparity 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>0</td>
<td>51</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
• Current disparity is 1
• For each window pixel, have to compute window sums in AD image
• Apply integral image to AD image
for every pixel p do
 bestDisparity[p] = 0
 bestWindCost[p] = HUGE

for disparity $d = 0, 1, \ldots, \maxD$ do
 overlay images at disparity d
 compute AD image for disparity d
 compute Integral image from AD image

for every pixel p do
 currentCost = window cost at pixel p, computed from integral image
 if currentCost < bestWindCost[p]
 bestWindCost[p] = currentCost
 bestDisparity[p] = d

return bestDisparity
Effect of Window size

- 3x3 window
- 7x7 window
- 15x15 window
Effect of Window size: Low Texture Area

- windows of size 3x3 and 7x7 are too small to have a distinct pattern
 - no clearly best disparity
- window of size 15x15 is large enough to have a distinct pattern
 - 7 is clearly the best disparity
- window has to be large enough
Effect of Window size: Near Discontinuities

- central pixel (the one we are matching) is the lamp
- windows of size 3x3 and 7x7 contain mostly the lamp
- window of size 15x15 contains mostly the wall
 - we match the wall instead of the lamp!
- window must be **small enough** to contain mostly the same object as the central pixel
Effect of Window size

• No single window size is ‘perfect’ for the image

 - Smaller window
 • works better around object boundaries
 • noisy results in low texture areas

 - Larger window
 • better results in low texture areas
 • does not preserve object boundaries well

• **Adaptive window algorithms exist** [Veksler’2001]
Better Stereo Algorithms

State of the art method
[Boykov, Veksler, Zabih, 2001]

ground truth

- Formulate stereo as energy minimization
- Recall binary object/background segmentation problem
Better Stereo Algorithms

- Stereo is multi-label segmentation problem
 - region 0 = label 0 “likes” disparity 0
 - region 1 = label 1 “likes” disparity 1
 - ...
 - region maxDisp = label maxDisp “likes” disparity maxDisp
Stereo with Graph Cuts

- Energy Function
 - Data Term: assign each pixel disparity label it likes
 - Smoothness Term: count number of label (disparity) discontinuities

- Solved with Graph Cuts: iteratively cuts out regions corresponding to disparities
- NP-hard with more than 2 labels, but computes a good approximation
Stereo with Graph Cuts

- Start with everything as label (disparity) 0
Stereo with Graph Cuts

- "Cut out" label (disparity) 1
Stereo with Graph Cuts

• “Cut out” label (disparity) 2
Stereo with Graph Cuts

• “Cut out” label (disparity) 3
Stereo with Graph Cuts

- “Cut out” label (disparity) 4
Stereo with Graph Cuts

- “Cut out” label (disparity) 5
Stereo with Graph Cuts

- “Cut out” label (disparity) 6
Multiple Artificial Eyes

- Two eyes better than one → three eyes better than two → four eyes better than three → ... → the more, the better
Stereo with Structured Light

- Project “structured” light patterns onto the object
 - Simplifies correspondence problem
- Need one camera and one projector
Stereo with Structured Light

• Triangulate between camera and projector
Kinect: Structured Infrared Light

Laser Scanning

- Optical triangulation
 - Project a single stripe of laser light
 - Scan it across the surface of the object
 - This is a very precise version of structured light scanning

Digital Michelangelo Project
Levoy et al.
http://graphics.stanford.edu/projects/mich/
Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.
Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.
Numerous Applications

- Autonomous navigation

Nomad robot searches for meteorites in Antarctica
http://www.frc.ri.cmu.edu/projects/meteorobot/index.html
Novel View Synthesis

input image (1 of 2) depth map 3D rendering

[Szeliski & Kang '95]
Applications: Video View Interpolation

http://research.microsoft.com/users/larryz/videoviewinterpolation.htm
Stereo Correspondence

- **Steps:**
 - Calibrate cameras
 - Rectify images
 - Stereo correspondence
 - Apply depth/disparity formula

- Stereo correspondence is still heavily researched
- The simple window matching algorithm we studied is heavily used in practice due to speed and simplicity
- Popular Benchmark
 - http://www.middlebury.edu/stereo