Lecture 3
Machine Learning
K Nearest Neighbor Classifier
Today

- kNN classifier - the simplest classifier on earth
- matlab implementation of kNN
k-Nearest Neighbors

• classify an unknown example with the most common class among k closest examples
 • “tell me who your neighbors are, and I’ll tell you who you are”

• Example:
 • $k = 3$
 • 2 sea bass, 1 salmon
 • Classify as sea bass
kNN: Multiple Classes

- Easy to implement for multiple classes
- Example for $k = 5$
 - 3 fish species: salmon, sea bass, eel
 - 3 sea bass, 1 eel, 1 salmon \Rightarrow classify as sea bass
kNN: How to Choose k?

- In theory, if infinite number of samples available, the larger is k, the better is classification.

- But the caveat is that all k neighbors have to be close.
 - Possible when infinite # samples available.
 - Impossible in practice since # samples is finite.
kNN: How to Choose k?

- Rule of thumb is $k = \sqrt{n}$, n is number of examples
- interesting theoretical properties
- In practice, $k = 1$ is often used for efficiency, but can be sensitive to “noise”

1 NN

noisy sample

every example in the blue shaded area will be misclassified as the blue class

3 NN

every example in the blue shaded area will be classified correctly as the red class
kNN: How to Choose k?

- Larger k gives smoother boundaries, better for generalization
 - But only if *locality* is preserved. Locality is not preserved if end up looking at samples too far away, not from the same class.
- Interesting theoretical properties if $k < \sqrt{n}$, n is # of examples
- Can choose k through cross-validation (study soon)
kNN: How Well does it Work?

- kNN is simple and intuitive, but does it work?
- Theoretically, the best error rate is the Bayes rate E^*
 - Bayes error rate is the best (smallest) error rate a classifier can have, for a given problem, but we do not study it in this course
- Assume we have an unlimited number of samples
- kNN leads to an error rate greater than E^*
- But even for $k = 1$, as $n \to \infty$, it can be shown that kNN error rate is smaller than $2E^*$
- As we increase k, the upper bound on the error gets better, that is the error rate (as $n \to \infty$) for the kNN rule is smaller than cE^*, with smaller c for larger k
- If we have lots of samples, kNN works well
• Voronoi tessellation is useful for visualization
So far we assumed we use Euclidean Distance to find the nearest neighbor:

\[D(a,b) = \sqrt{\sum_k (a_k - b_k)^2} \]

- Euclidean distance treats each feature as equally important.
- However, some features (dimensions) may be much more discriminative than other features.

kNN Selection of Distance
kNN Distance Selection: Extreme Example

- feature 1 gives the correct class: 1 or 2
- feature 2 gives irrelevant number from 100 to 200
- dataset: \([1 \ 150]\)
 \([2 \ 110]\)
- classify \([1 \ 100]\)

\[
D([1\ 100], [1\ 150]) = \sqrt{(1-1)^2 + (100-150)^2} = 50
\]

\[
D([1\ 100], [2\ 110]) = \sqrt{(1-2)^2 + (100-110)^2} = 10.5
\]

- \([1 \ 100]\) is misclassified!
- The denser the samples, the less of this problem
- But we rarely have samples dense enough
• Decision boundary is in red, and is really wrong because
 • feature 1 is discriminative, but it’s scale is small
 • feature 2 gives no class information but its scale is large, it dominates distance calculation
kNN: Feature Normalization

- Notice that 2 features are on different scales:
 - First feature takes values between 1 or 2
 - Second feature takes values between 100 to 200
- **Idea**: normalize features to be on the same scale
- Different normalization approaches
- Linearly scale the range of each feature to be, say, in range $[0,1]$

$$f_{new} = \frac{f_{old} - f_{old}^{\min}}{f_{old}^{\max} - f_{old}^{\min}}$$
kNN: Feature Normalization

- Linearly scale to 0 mean variance 1:
- If Z is a random variable of mean μ and variance σ^2, then $(Z - \mu)/\sigma$ has mean 0 and variance 1
- For each feature f let the new rescaled feature be
 \[f_{\text{new}} = \frac{f_{\text{old}} - \mu}{\sigma} \]
- C is a matrix with all samples stored as rows, in Matlab can normalize all features simultaneously
 \[
 C_{\text{new}} = (C - \text{repmat(mean}(C), \text{size}(C,1), 1)) \ast \text{diag}(1./\text{std}(C))
 \]
kNN: Feature Normalization

- C is a matrix with all samples stored as rows, in Matlab can normalize all features simultaneously.

\[
f_{\text{new}} = \frac{f_{\text{old}} - \mu}{\sigma}
\]

\[
C_{\text{new}} = (C - \text{repmat(mean}(C), \text{size}(C,1), 1)) \ast \text{diag}(1./\text{std}(C))
\]

\[
C = \begin{bmatrix}
1 & 180 \\
1 & 100 \\
1 & 160 \\
2 & 120 \\
2 & 150 \\
2 & 170
\end{bmatrix}
\]

\[\text{size}(C,1) = 6\]
kNN: Feature Normalization

- \(C \) is a matrix with all samples stored as rows, in Matlab can normalize all features simultaneously

\[
f_{new} = \frac{f_{old} - \mu}{\sigma}
\]

\[
C_{new} = (C - \text{repmat}(\text{mean}(C), 6, 1)) \ast \text{diag}(1./\text{std}(C))
\]

\[
C = \begin{bmatrix}
1 & 180 \\
1 & 100 \\
1 & 160 \\
2 & 120 \\
2 & 150 \\
2 & 170 \\
\end{bmatrix}
\]
kNN: Feature Normalization

- \(C \) is a matrix with all samples stored as rows, in Matlab can normalize all features simultaneously
 \[C_{\text{new}} = (C - \text{repmat}(\text{mean}(C), 6, 1)) \ast \text{diag}(1./\text{std}(C)) \]

\[
\begin{bmatrix}
1 & 180 \\
1 & 100 \\
1 & 160 \\
2 & 120 \\
2 & 150 \\
2 & 170 \\
\end{bmatrix}
\]

\[
f_{\text{new}} = \frac{f_{\text{old}} - \mu}{\sigma}
\]
\textbf{repmat Function}

\[
\text{repmat} \left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, 2, 3 \right) = \begin{bmatrix}
1 & 2 & 1 & 2 & 1 & 2 \\
3 & 4 & 3 & 4 & 3 & 4 \\
1 & 2 & 1 & 2 & 1 & 2 \\
3 & 4 & 3 & 4 & 3 & 4 \\
\end{bmatrix}
\]
kNN: Feature Normalization

- \mathbf{C} is a matrix with all samples stored as rows, in Matlab can normalize all features simultaneously

$$
\mathbf{C}_{\text{new}} = (\mathbf{C} - \text{repmat(\text{mean}(\mathbf{C}), 6, 1)}) \ast \text{diag}(1./\text{std}(\mathbf{C}))
$$

$$
\begin{bmatrix}
1.5 & 146.7 \\
1.5 & 146.7 \\
1.5 & 146.7 \\
1.5 & 146.7 \\
1.5 & 146.7 \\
1.5 & 146.7 \\
\end{bmatrix}
$$

mean(\mathbf{C}) = [1.5 146.7]
kNN: Feature Normalization

- C is a matrix with all samples stored as rows, in Matlab can normalize all features simultaneously

\[
f_{\text{new}} = \frac{f_{\text{old}} - \mu}{\sigma}
\]

\[
C_{\text{new}} = (C - \text{repmat(mean}(C),6,1)) \ast \text{diag}(1./\text{std}(C))
\]

\[
\begin{bmatrix}
1 & 180 \\
1 & 100 \\
1 & 160 \\
2 & 120 \\
2 & 150 \\
2 & 170 \\
\end{bmatrix}
- \begin{bmatrix}
1.5 & 146.7 \\
1.5 & 146.7 \\
1.5 & 146.7 \\
1.5 & 146.7 \\
1.5 & 146.7 \\
1.5 & 146.7 \\
\end{bmatrix}
= \begin{bmatrix}
-0.5 & 33.3 \\
-0.5 & -46.7 \\
-0.5 & 13.3 \\
0.5 & -26.7 \\
0.5 & 3.3 \\
0.5 & 23.3 \\
\end{bmatrix}
\]
kNN: Feature Normalization

- \(C \) is a matrix with all samples stored as rows, in Matlab can normalize all features simultaneously

\[
C_{new} = (C - \text{repmat(mean}(C), 6, 1)) \times \text{diag}(1./\text{std}(C))
\]

\[
\text{std}(C) = \begin{bmatrix} 0.55 & 30.8 \end{bmatrix}
\]

\[
C = \begin{bmatrix}
 1 & 180 \\
 1 & 100 \\
 1 & 160 \\
 2 & 120 \\
 2 & 150 \\
 2 & 170 \\
\end{bmatrix}
\]

\[
f_{new} = \frac{f_{old} - \mu}{\sigma}
\]
kNN: Feature Normalization

- \mathbf{C} is a matrix with all samples stored as rows, in Matlab can normalize all features simultaneously

$$
\mathbf{C}_{\text{new}} = (\mathbf{C} - \text{repmat}(\text{mean}(\mathbf{C}), 6, 1)) \times \text{diag}(1./\text{std}(\mathbf{C}))
$$

$$
\frac{f_{\text{new}}}{\sigma} = \frac{f_{\text{old}} - \mu}{\sigma}
$$

$1./\text{std}(\mathbf{C}) = [1.83 \ 0.03]$

$\text{std}(\mathbf{C}) = [0.55 \ 30.8]$
kNN: Feature Normalization

- \mathbf{C} is a matrix with all samples stored as rows, in Matlab can normalize all features simultaneously

$$
\mathbf{C}_{\text{new}} = (\mathbf{C} - \text{repmat}(\text{mean}(\mathbf{C}), 6, 1)) \times \text{diag}(1./\text{std}(\mathbf{C}))
$$

\[
\begin{bmatrix}
1.83 & 0 \\
0 & 0.03
\end{bmatrix}
\]

$$
1./\text{std}(\mathbf{C}) = \begin{bmatrix} 1.83 & 0.03 \end{bmatrix}
$$
• \mathbf{C} is a matrix with all samples stored as rows, in Matlab can normalize all features simultaneously

$$\mathbf{C}_{new} = (\mathbf{C} - \text{repmat(\text{mean(\mathbf{C}), 6, 1))}) * \text{diag}(1./\text{std(\mathbf{C}))}$$

$$f_{new} = \frac{f_{old} - \mu}{\sigma}$$
kNN: Feature Normalization

- \(C \) is a matrix with all samples stored as rows, in Matlab can normalize all features simultaneously.

\[
C_{\text{new}} = (C - \text{repmat(mean}(C), 6, 1)) \ast \text{diag}(1./\text{std}(C))
\]

\[
f_{\text{new}} = \frac{f_{\text{old}} - \mu}{\sigma}
\]
kNN: Feature Normalization
kNN: Selection of Distance

- Feature normalization does not help in high dimensional spaces if most features are irrelevant

\[D(a, b) = \sqrt{\sum_k (a_k - b_k)^2} = \sqrt{\sum_i (a_i - b_i)^2 + \sum_j (a_j - b_j)^2} \]

 discriminative features noisy features

- If the number of useful features is smaller than the number of noisy features, Euclidean distance is dominated by noise
kNN: Feature Weighting

• Scale each feature by its importance for classification

\[D(a, b) = \sqrt{\sum_{k} w_k (a_k - b_k)^2} \]

• Can use our prior knowledge about which features are more important

• Can learn the weights \(w_k \)
kNN: Computational Complexity

- Basic kNN algorithm stores all examples
- Suppose we have n examples each of dimension d
- $O(d)$ to compute distance to one example
- $O(nd)$ to find distances to all examples
- $O(knd)$ to find k closest examples examples
 - $O(nd) + O(kn)$ if careful
- Thus total complexity is $O(knd)$
- Very expensive for a large number of samples
- But we need a large number of samples for kNN to work well!
Reducing Complexity: editing 1NN

- If all Voronoi neighbors have the same class, a sample is useless, remove it.

- Number of samples decreases
- Decision boundary does not change
Reduction Complexity: Partial Distance

- Have current k closes samples
- Abort distance computation if partial distance is already greater than the full distance to the current k closest samples

- Advantages:
 - complexity decreases
 - we are guaranteed to find closes neighbor(s)

- Disadvantages:
 - how much complexity decreases depends on our luck and data layout
kNN in Matlab for 2 classes

\[
\text{class1} = \begin{bmatrix}
3 & 8 \\
5 & 9 \\
7 & 10 \\
6 & 8
\end{bmatrix}
\]

\[
\text{class2} = \begin{bmatrix}
2 & 4 \\
3 & 7 \\
5 & 4
\end{bmatrix}
\]

- Want to classify \textbf{newSample} = \begin{bmatrix} 4 & 7 \end{bmatrix}
numClass1 = size(Class1,1);
numClass2 = size(Class2,1);
totalSamples = numClass1+numClass2;

combinedSamples = [Class1;Class2];
trueClass = [zeros(numClass1,1)+1;zeros(numClass2,1)+2];

testMatrix = repmat(newSample,totalSamples,1);
absDiff = abs(combinedSamples-testMatrix);
absDiff = absDiff.^2;
dist = sum(absDiff,2);
[Y,I] = sort(dist);
neighborsInd = I(1:k);
neighbors = trueClass(neighborsInd);

class1 = find(neighbors == 1);
class2 = find(neighbors == 2);
joint = [size(class1,1);size(class2,1)];

[value class] = max(joint);

class1 = [3 8
5 9
7 10
6 8]
class2 = [2 4
3 7
5 4]
newSample = [4 7]
k = 3
kNN in Matlab

\[
\begin{align*}
\text{numClass1} & = \text{size(Class1,1)}; \\
\text{numClass2} & = \text{size(Class2,1)}; \\
\text{totalSamples} & = \text{numClass1} + \text{numClass2}; \\
\text{combinedSamples} & = [\text{Class1};\text{Class2}]; \\
\text{trueClass} & = [\text{zeros(numClass1,1)}+1;\text{zeros(numClass2,1)}+2];
\end{align*}
\]

\[
\begin{align*}
\text{numClass1} & = 4 \\
\text{numClass2} & = 3 \\
\text{totalSamples} & = 7
\end{align*}
\]

\[
\begin{align*}
\text{combinedSamples} & = \begin{bmatrix} 3 & 8 \\ 5 & 9 \\ 7 & 10 \\ 6 & 8 \\ 2 & 4 \\ 3 & 7 \\ 5 & 4 \end{bmatrix} \\
\text{trueClass} & = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\text{class1} & = \begin{bmatrix} 3 & 8 \\ 5 & 9 \\ 7 & 10 \\ 6 & 8 \end{bmatrix} \\
\text{class2} & = \begin{bmatrix} 2 & 4 \\ 3 & 7 \\ 5 & 4 \end{bmatrix} \\
\text{newSample} & = \begin{bmatrix} 4 & 7 \end{bmatrix}
\end{align*}
\]
kNN in Matlab

testMatrix = repmat(newSample,totalSamples,1);
absDiff = abs(combinedSamples-testMatrix);
absDiff = absDiff.^2;
dist = sum(absDiff,2);

\[
\begin{bmatrix}
4 & 7 \\
4 & 7 \\
4 & 7 \\
4 & 7 \\
4 & 7 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 1 \\
1 & 2 \\
3 & 3 \\
2 & 1 \\
2 & 3 \\
1 & 0 \\
1 & 3 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
3 \\
5 \\
7 \\
6 \\
2 \\
3 \\
5 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
\end{bmatrix}
\]

newSample = [4 7]
combinedSamples =
trueClass =
kNN in Matlab

```
[Y,I] = sort(dist);
neighborsInd = I(1:k);
neighbors = trueClass(neighborsInd);
```

```
dist =
    2
    5
   18
    5
   13
    1
   10
```

```
Y =
   1
   2
   5
   5
  10
  18
  13

I =
   6
   1
   4
   7
   5
   3
```

```
neighborsInd =
   6
   1
   2

neighbors =
   2
   1
   1
```

```
trueClass =
   1
   1
   1
   2
   2
   2
```

```
k = 3
```
class1 = find(neighbors == 1);
class2 = find(neighbors == 2);
joint = [size(class1,1);size(class2,1)];

[value class] = max(joint);

\[
\begin{bmatrix}
2 \\
3
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 \\
2
\end{bmatrix}
\]

\[
\begin{bmatrix}
2 \\
1
\end{bmatrix}
\]
class1 = find(neighbors == 1);
class2 = find(neighbors == 2);
joint = [size(class1,1);size(class2,1)];

[value class] = max(joint);

Also can use class = mode(neighbors) instead

neighbors = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}

class1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}

class2 = \begin{bmatrix} 1 \end{bmatrix}

joint = \begin{bmatrix} 2 \\ 1 \end{bmatrix}

class = 1
kNN in Matlab
numClass1 = size(Class1,1);
numClass2 = size(Class2,1);
totalSamples = numClass1 + numClass2;

combinedSamples = [Class1;Class2];
trueClass = [zeros(numClass1,1)+1;zeros(numClass2,1)+2];

testMatrix = repmat(newSample,totalSamples,1);
absDiff = abs(combinedSamples-testMatrix);
absDiff = absDiff.^2;
dist = sum(absDiff,2);

[Y,I] = sort(dist);
neighborsInd = I(1:k);
neighbors = trueClass(neighborsInd);

class = mode(neighbors);

• Simpler code if use matlab **mode** function
Video

- http://videolectures.net/aaai07_bosch_knn/

kNN Summary

- **Advantages**
 - Can be applied to the data from any distribution
 - for example, data does not have to be separable with a linear boundary
 - Very simple and intuitive
 - Good classification if the number of samples is large enough

- **Disadvantages**
 - Choosing k may be tricky
 - Test stage is computationally expensive
 - No training stage, all the work is done during the test stage
 - This is actually the opposite of what we want. Usually we can afford training step to take a long time, but we want fast test step
 - Need large number of samples for accuracy