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Outline 

• Performance evaluation and model selection 
methods 
• validation 
• cross-validation 

• k-fold 
• Leave-one-out 

 
 



Regression 
• In this lecture, it’s convenient 

to show examples in the 
context of regression 

• In regression, labels yi are 
continuous 

• Classification/regression are 
solved very similarly 

• Everything we have done so 
far transfers to regression 
with very minor changes 

• Error: sum of distances from 
examples to the fitted model 
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Training/Test Data Split 
• Talked about splitting data in training/test sets 

• training data is used to fit parameters 
• test data is used to assess how classifier generalizes to new 

data 

• What if classifier has “non-tunable” (hyper) parameters?  
• a parameter is “non-tunable” if tuning (or training) it 

on the training data leads to overfitting 
• Examples 

• k in kNN classifier 
• λ for weight regularization 
• Many hyper-parameters in neural networks 

• number of hidden units in MNN 
• number of hidden layers in MNN 

• etc… 



Example of Overfitting 
• Want to fit a polynomial 

machine f(x,w) 
• Instead of fixing polynomial 

degree, make it  parameter d 
• learning machine  f(x,w,d) 

• Consider just three choices for d 
• degree 1 
• degree 2 
• degree 3 
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• Training error is a bad measure to choose d  
• degree 3 is the best according to the training error, but 

overfits the data 



Training/Test Data Split 

• What about test error? Seems appropriate 
• degree 2 is the best model according to the test error 

• Except what do we report as the test error now? 
• Test error should be computed on data that was not 

used for training at all 
• Here  used “test” data for training, i.e. choosing model 



Validation data 
• Same question when choosing among several classifiers 

• our polynomial degree example can be looked at as choosing 
among 3 classifiers (degree 1, 2, or 3) 

• Solution: split the labeled  data into three parts 

train tunable 
parameters w   

train other 
parameters, 
or to select 

classifier 

labeled data 
Training 
  ≈60% 

Validation  
≈20% 

  
 

Test  
≈20% 

  
 use only to 

assess final 
performance 



Training/Validation/Test 

Training error:   computed 
on training examples 

Validation error: 
computed on 

validation 
examples 

labeled data 
Training 
  ≈60% 

Validation  
≈20% 

  
 

Test  
≈20% 

  
 Test error: 
computed on 
test examples 



Training/Validation/Test Data 

• Validation Data 

validation error: 3.3   validation error: 1.8  validation error: 3.4  

 

• Test Data 
• 1.3 test error computed for d = 2 

 

• d = 2 is chosen 

 

• Training Data 

d = 1  d = 2  d = 3  



Training/Validation 
labeled data 

Training 
  ≈60% 

Validation  
≈20% 

  
 

Test  
≈20% 

  
 • After non-tunable parameters are chosen (using validation data), 

retrain on combined Training+Validation data before computing  
Test error 
 labeled data 

Training 
  ≈60% 

Validation  
≈20% 

  
 

Test  
≈20% 

  
 • The more data to train on, the better is the trained classifier (the 

more reliable test error) 
 



Train/Test/Validation Method 
• Good news 

• Very simple 

• Bad news: 
• Wastes data 

• in general, the more data we have, the better are the 
estimated parameters 

• we estimate parameters on  40% less data, since 20% 
removed for test and 20% for validation data 

• If we have a small dataset our validation set might 
just be lucky or unlucky 



Small Dataset 

Linear Model: 

 

 

 

 

 

Mean Squared Error = 2.4 

Quadratic Model: 

 

 

 

 

 

Mean Squared Error = 0.9 
x 

Join the dots Model: 

 

 

 

 

 

Mean Squared Error = 2.2 

• “Unlucky” validation set: 



Cross Validation 

Training Validation  
  
 

Test  
≈20% 

  
 

• Create multiple spits of training/validation 
• Average results over splits 

1 

Validation  
  
 

Test  
≈20% 

  
 

Training Training 2 

Training Validation  
  
 

Test  
≈20% 

  
 

Training 3 

Validation  
  
 

Test  
≈20% 

  
 

Training 4 



LOOCV (Leave-one-out Cross Validation) 
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For k=1 to R 

1. Let (xk,yk) be the k example 
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LOOCV (Leave-one-out Cross Validation) 
For k=1 to n 

1. Let (xk,yk) be the kth example 

2. Temporarily remove (xk,yk) 
from the dataset 
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LOOCV (Leave-one-out Cross Validation) 
For k=1 to n 

1. Let (xk,yk) be the kth example 

2. Temporarily remove (xk,yk) 
from the dataset 

3. Train on the remaining n-1 
examples 
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LOOCV (Leave-one-out Cross Validation) 
For k=1 to n 

1. Let (xk,yk) be the kth example 

2. Temporarily remove (xk,yk) 
from the dataset 

3. Train on the remaining n-1 
examples 

4. Note your error on (xk,yk)  



For k=1 to n 

1. Let (xk,yk) be the kth example 

2. Temporarily remove (xk,yk) 
from the dataset 

3. Train on the remaining n-1 
examples 

4. Note your error on (xk,yk)  

When you’ve done all points, 
report the mean error 
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LOOCV (Leave-one-out Cross Validation) 
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MSELOOCV 
= 2.12 

LOOCV (Leave-one-out Cross Validation) 



LOOCV for Quadratic Regression 
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MSELOOCV
= 0.962 



LOOCV for Join The Dots 

x 

y 

x 

y 

x 

y 

x 

y 

x 

y 

x 

y 

x 

y 

x 

y 

x 

y 

MSELOOCV
=3.33 



Which kind of Cross Validation? 

Downside Upside 

Validation-
set 

may give unreliable  
estimate of future 

performance 

cheap 

Leave-one-
out 

expensive  doesn’t waste 
data 

•    Can we get the best of both worlds? 
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Randomly break the dataset into k 
partitions in this example we’ll have k=3 
partitions colored Red Green and Blue) 

K-Fold Cross Validation 



• Randomly break the dataset into k 
partitions  

• in example have k=3 partitions 
colored red green and blue 

• For the blue partition: train on all 
points not in the blue partition. Find  test-
set sum of errors on blue points 

K-Fold Cross Validation 
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• Randomly break the dataset into k 
partitions  

• in example have k=3 partitions 
colored red green and blue 

• For the blue partition: train on all 
points not in the blue partition. Find  sum 
of errors on blue points 

• For the green partition: train on all 
points not in green partition. Find  
sum of errors on green points 

K-Fold Cross Validation 
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• Randomly break the dataset into k 
partitions  

• in example have k=3 partitions 
colored red green and blue 

• For the blue partition: train on all 
points not in the blue partition. Find  sum 
of errors on blue points 

• For the green partition: train on all 
points not in green partition. Find  
sum of errors on green points 

• For the red partition: train on all 
points not in red partition. Find sum 
of errors on red points 

K-Fold Cross Validation 
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Linear Regression 
MSE3FOLD=2.05 
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• Randomly break the dataset into k 
partitions  

• in example have k=3 partitions 
colored red green and blue 

• For the blue partition: train on all 
points not in the blue partition. Find  sum 
of errors on blue points 

• For the green partition: train on all 
points not in green partition. Find  
sum of errors on green points 

• For the red partition: train on all 
points not in red partition. Find  sum 
of errors on red points 

• Report the mean error 

K-Fold Cross Validation 



Quadratic Regression 
MSE3FOLD=1.11 

K-Fold Cross Validation 
• Randomly break the dataset into k 

partitions  
• in example have k=3 partitions 

colored red green and blue 
• For the blue partition: train on all 

points not in the blue partition. Find  sum 
of errors on blue points 

• For the green partition: train on all 
points not in green partition. Find  
sum of errors on green points 

• For the red partition: train on all 
points not in red partition. Find sum 
of errors on red points 

• Report the mean error 
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Joint-the-dots 
MSE3FOLD= 2.93 

• Randomly break the dataset into k 
partitions  

• in example have k=3 partitions 
colored red green and blue 

• For the blue partition: train on all 
points not in the blue partition. Find sum 
of errors on blue points 

• For the green partition: train on all 
points not in green partition. Find  
sum of errors on green points 

• For the red partition: train on all 
points not in red partition. Find sum 
of errors on red points 

• Report the mean error 

K-Fold Cross Validation 



Which kind of Cross Validation? 
Downside Upside 

Validation-
set 

may give unreliable  
estimate of future 

performance 
cheap 

Leave-
one-out 

expensive  
 

doesn’t waste data 

10-fold wastes 10% of the data,10 
times more expensive than 

validation set 

only wastes 10%, only 10 
times more expensive 

instead of n times 
3-fold wastes more data than 10-

fold, more expensive than 
validation set 

slightly better than 
validation-set 

N-fold Identical to Leave-one-out 



CV-based Model Selection 
• We’re trying to decide which algorithm to use. 
• We train each machine and make a table… 

fi Training Error 10-FOLD-CV Error Choice 
f1 
f2 
f3  
f4 

f5 

f6 



CV-based Model Selection 
• Example: Choosing “k” for a k-nearest-neighbor regression. 
• Step 1: Compute LOOCV error for six different model classes: 

• Step 2: Choose model that gave best CV score 
• Train it with all the data, and that’s the final model you’ll use 

Algorithm Training Error 10-fold-CV Error Choice 

k=1 

k=2 

k=3 

k=4  
k=5 

k=6 



CV-based Model Selection 
• Why stop at k=6? 

• No good reason, except it looked like things were 
getting worse as K was increasing 

• Are we guaranteed that a local optimum of K vs 
LOOCV will be the global optimum? 
• No, in fact the relationship can be very bumpy 

• What should we do if we are depressed at the 
expense of doing LOOCV for k = 1 through 
1000? 
• Try: k=1, 2, 4,  8, 16, 32, 64, … ,1024 
• Then do hillclimbing from an initial guess at k 

 



Cross Validation Notes 
• After we chose non-tunable parameters/classifiers, retrain 

chosen classifier on all training data 

Training Validation  
  
 

Test  
≈20% 

  
 Validation  

  
 

Test  
≈20% 

  
 

Training Training 

Training Validation  
  
 

Test  
≈20% 

  
 

Training 

Validation  
  
 

Test  
≈20% 

  
 

Training 

• Based on 4-fold cross validation error, suppose λ = 0.3 is the best 
• Retrain classifier with  λ = 0.3 on all training data now 

Training 
Test  
≈20% 

  
 

λ = 0.1 

λ = 0.2 

λ = 0.3 

λ = 0.4 



Cross Validation Notes 

Training 
Test  
≈20% 

  
 

• Should still have separate Test set, not touched during 
cross-validation 

• Sometime report just CV-results, no separate Test data 
• Common practice, but should be aware that extensive 

use of CV could overfit to the data 
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