1. (15%) Suppose we have the following one dimensional samples from two classes: \(D_1 = \{-2, 0, 2, 4\} \) and \(D_2 = \{-1, 3, 6, 7\} \). We use kNN classifier with \(k = 2 \), and whenever there is a tie (that is one neighbor is from class 1 and another from class 2), we always decide class 1. Draw the decision regions and decision boundaries for this case.

SOLUTION:

\[
\begin{array}{c}
\text{Class 1} \\
-1 & 0 & 1 \\
\end{array}
\begin{array}{c}
\text{Class 2} \\
5 & 5 \\
\end{array}
\]

2. (10 %) Suppose the training examples from class 1 and 2 are, respectively:

\[
C_1 = \left\{ \begin{bmatrix} -2 \\ -3 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ -3 \\ 3 \end{bmatrix} \right\}, C_2 = \left\{ \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ -1 \end{bmatrix} \right\}
\]

Write down a linear discriminant function \(g(x) \) which is positive for all samples from class 1 and negative for all samples from class 2. In other words, \(\text{sign}(g(x)) \) classifies all samples correctly. Hint: it is easiest to do by observation, not gradient descent.

SOLUTION: Many possible solutions, one of the simplest is: \(g(x) = -x_1 \)
3. (15 %) Let \(W = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & -1 \\ 3 & 1 & -1 \end{bmatrix} \) be multiclass classification matrix.

(a) (5%) Using \(W \) above, how does sample \(x = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \) get classified?

SOLUTION:
First augment sample to get
\[
z = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix},
\]
Then matrix multiply \(W \) and \(z \):
\[
Wz = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & -1 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ 2 \end{bmatrix}
\]
Largest entry is in the first row of \(Wz \), so sample \(x \) is classified as class 1.

(b) (5%) What is the loss for sample \(x \) above under quadratic loss function? Assume the true class of \(x \) is 2.

SOLUTION: Target representation for a sample of class 2 is \(y = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \)
Quadratic loss is \(\frac{1}{2} ||y - Wz||^2 = \frac{1}{2} (25 + 4) = \frac{29}{2} \).

(c) (5%) What is the loss for sample \(x \) above under Perceptron loss function? Assume the true class of \(x \) is 2.

SOLUTION: Perceptron loss is the largest row of \(Wz \) minus for of \(Wz \) corresponding to the correct class. It is \(5 - 1 = 4 \) in this case.
4. (35 %) Suppose the training examples from class 1 and 2 are, respectively:

\[C_1 = \left\{ \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \end{bmatrix} \right\}, C_2 = \left\{ \begin{bmatrix} 1 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \end{bmatrix} \right\} \]

(a) (10 %) Suppose we start Perceptron algorithm with \(a = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} \) and the learning rate of \(\alpha = 1 \). What is the weight vector \(a \) after you apply Perceptron Single Sample algorithm for one iteration?

SOLUTION:
First sample gives \(a^t \cdot [1, 3, 1] = 1 \), classified correctly, so no change to \(a \). Second sample gives \(a^t \cdot [1, 2, -1] = 2 \), classified correctly, so no change to \(a \). Third sample gives \(a^t \cdot [1, 1, -3] = 3 \), misclassified (true class is 2, classified as class 1). Change \(a \) according to Perceptron rule:

\[
a = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} + (-1) \cdot \begin{bmatrix} 1 \\ 1 \\ -3 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix}
\]

Forth sample with the new \(a \) gives \(a^t \cdot [1, 3, 1] = -2 \), classified correctly. We are now done with one iteration of the single sample rule.

(b) (10 %) What is the value of the Perceptron loss function for the weight vector \(a \) you computed in part (a)?

SOLUTION: To see which samples are misclassified, matrix multiply matrix \(C \) below that contains all augmented samples and vector \(a \):

\[
C \cdot a = \begin{bmatrix} 1 & 3 & 1 \\ 1 & 2 & -1 \\ 1 & 1 & -3 \\ 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ -4 \\ -8 \\ -2 \end{bmatrix}
\]

First two samples are class 1, next two are negative class. Therefore \(a \) misclassified the second sample. Loss is \(-a \cdot [1, 2, -1] = 4 \).
(c) (15 %) Plot the samples and the decision boundary corresponding to the weight vector a computed in part (a), and also the vector normal to the decision boundary. Make sure you label the axis.

SOLUTION:

$$a = \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix}$$ corresponds to line $-2 + 2x_2 = 0$, or, equivalently, line $x_2 = 1$.

![Graph showing the samples, decision boundary, and vector normal to the decision boundary](image)
5. (25 %)

(a) (15%) Draw the neural network corresponding to the weights stored in the matrices and bias vectors below.

\[W^1 = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & -1 \end{bmatrix} \quad b^1 = \begin{bmatrix} 9 \\ 4 \end{bmatrix} \quad W^2 = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \quad b^2 = \begin{bmatrix} 8 \\ 7 \end{bmatrix} \]

SOLUTION:

(b) (10 %) How is example \(\begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} \) classified by the network below? Show all the work.

Assume the \(\text{sign}() \) activation function for all the hidden and output units.

SOLUTION:

Hidden layer:
- First unit outputs value \(\text{sign}(-20 - 1(1) + 2(3) + 1(2)) = -1. \)
- Second unit outputs value \(\text{sign}(1(2) + 2(4) + 1(-1)) = 1. \)

Output layer:
- First unit outputs value \(\text{sign}(-1(4) + 1(3)) = -1. \)
- Second unit outputs value \(\text{sign}(-1(1) + 1(6)) = 1. \)

Since the second output is higher, sample classified as class 2.