
Some slides are from S. Seitz, D. Jacobs, O. Camps, A. Torralba

CS4442/9542b
Artificial Intelligence II

 prof. Olga Veksler

Lecture 10
Computer Vision

Grouping and Segmentation

Outline
• Grouping problems in vision

• Image segmentation: grouping of pixels

• Grouping cues in Human Visual System
• Gestalt perceptual grouping laws

• Image Segmentation
• 2-region (binary)

• thresholding
• graph cuts

• used in MS office 2010 for background removal
• based on the work of our faculty Yuri Boykov

• General Grouping (or unsupervised learning)
• K-means clustering

Examples of Grouping in Vision
• Group pixels into regions

• image segmentation

• Group video frames into shots

• Group image regions into objects

Image Segmentation

• For many applications, useful to segment image pixels into
blobs that (hopefully) belong to the same object or surface

• How to do this without (necessarily) object recognition?
• a bit subjective, but well-studied

• Inspiration from Gestalt psychology
• humans perceive the world as a collection of objects with relationships

between them, not as a set of pixels

Gestalt Psychology

• Whole is greater than
the sum of its parts
• eye sees an object in

its entirety before
perceiving its
individual parts

• Identified factors that
predispose a set of
elements to be
grouped by human
visual system
• perceptual grouping

Grouping

• Most human observers report no particular grouping

Gestalt Principles of Grouping
• Common form, includes:

shape color size

• Proximity

Gestalt Principles of Grouping

Gestalt Principles of Grouping
• Good continuation

Gestalt Principles of Grouping

• Connectivity
• stronger than color

Gestalt Principles of Grouping
• Symmetry

Gestalt Principles of Grouping
• Familiarity

Gestalt Principles of Grouping
• Closure

Gestalt Principles of Grouping
• Closure

Gestalt Principles of Grouping
• Closure

Gestalt Principles of Grouping
• Common fate

Gestalt Principles of Grouping
• Higher level knowledge?

• Many other Gestalt grouping principles
• parallelism, convexity, colinearity, common depth, etc.

• Gestalt principles are an inspiration to computer vision
• they seem to rely on nature of objects in the world, most do

not involve higher level knowledge (object recognition)
• should help to segment objects without necessarily

performing object recognition
• But most are difficult to implement in algorithms

• used often
• color, proximity

• we will use these as well

• used sometimes
• convexity, good continuation, common motion, colinearity

Gestalt Principles of Grouping

Image Segmentation
• Many types of image segmentation

superpixels regions figure-ground

• We will focus on figure-ground (FG)
• also called object/background segmentation

FG Segmentation: Thresholding
• Suppose the object is brighter than the background

• Threshold gray scale image f:
if f(x,y) < T then pixel (x,y) is background
if f(x,y) ≥ T then pixel (x,y) is foreground

T = 120 T = 180 T = 220

FG Segmentation: Thresholding
• Tiny isolated foreground regions, isolated background regions
• Result looks wrong even if you did not know object is a swan

• Can we clean this result up?

FG Segmentation: Motivation
• Know object is light, background is dark
• Do not know object shape

• show background with red, foreground with blue

bad result: crazy
object shape

bad result: object
is dark,

background light

good result: light
object of good shape,

dark background

input image

FG Segmentation: Energy Function
• Formulate an objective or energy

function E to measure how good
segmentation is
• low value means good segmentation

E()= high

E()=high

E()=low

• After energy function is designed,
search over all possible
segmentations for the best one
• one with lowest energy

FG Segmentation: Energy Function
• Energy has two terms

• data term:
• makes it cheap to assign light pixels to

foreground, expensive to the background
• makes it cheap to assign dark pixels to the

background, and expensive to the foreground

• smoothness term: ensures nice
object shape

• both terms are needed for a good energy
function

input image f

FG Segmentation: Data Term
• Should be cheap to assign light pixels to foreground, expensive

to the background
• For each pixel (x,y), we will pay D (x,y)(background) to assign it to

background and D(x,y))(foreground) to assign it to the foreground
• Let the smallest image intensity be 5, and largest 20

D(x,y)(background) = f(x,y) – 5
 D(x,y)(foreground) = 20 - f(x,y)

input image f

19
19
20 19 19

19

19 17
19 17

11 11
 13 13
10

13 11 13
11 5

5
5
5

7

7

foreground data term D

 1

 1

 0
 1
 1

 1
 1 1

 3
 3 9 9

 7 7
 10

 9
7 9 7

 13

 13

 15 15
 15 15

background data term D

 14

14

 15
 14
 14

 14
 14 14

 12
 12 6 6

 8 8
 5

 6
 8 6 8

 2

 2

 0 0
 0 0

• Brown pixel prefers foreground, green prefers background

FG Segmentation: Data Term

foreground D

 1

 1

 0
 1
 1

 1
 1 1

 3
 3 9 9

 7 7
 10

 9
 7 9 7

 13

 13

 15 15
 15 15

background D

 14

14

 15
 14
 14

 14
 14 14

 12
 12 6 6

 8 8
 5

 6
 8 6 8

 2

 2

 0 0
 0 0

• Edata sums data D (x,y) term
over all pixels (x,y)

• Foreground blue, background red

Edata = 6+3+1+6+1+
 3+1+1+7+7+
 1+1+0+5+2+
 7+6+7+0+0+
 6+1+2+0+0
 = 64

Edata = 283

Edata = 97

FG Segmentation: Smoothness Term
• Smoothness term: ensures nice object shape
• Consider segmentations below

17 discontinuities 8 discontinuities

bad shape nice shape

• discontinuity: when two nearby pixels are in different segments
• smoothness term is the number of discontinuities

nice shape

7 discontinuities
Esmooth = 17 Esmooth = 8 Esmooth = 7

FG Segmentation: Total Energy

Edata = 64
Esmooth = 17
E = Edata + Esmooth = 81

• Now combine both data and smoothness energy terms

Edata = 283
Esmooth = 7
E = Edata + Esmooth = 290

Edata = 97
Esmooth = 8
E = Edata + Esmooth = 105

• What went wrong ?
• Smoothness term weighs very little relative to the data term

• it basically gets ignored in the combined energy

• Solution: increase the weight of the smoothness term

best

FG Segmentation: Total Energy

Edata = 64
λ Esmooth = 170
E = Edata + λ Esmooth = 234

Edata = 283
λ Esmooth = 70
E = Edata + λ Esmooth = 353

Edata = 97
λ Esmooth = 80
E = Edata + λ Esmooth = 177

• Solution: increase the weight of the smoothness term
E = Edata +λ Esmooth

• Take, for example, λ = 10
best

FG Segmentation: Energy Formula
• Now we need to put everything into formulas
• s(x,y) is the segmentation label

s(x,y) = 1 means (x,y) is foreground pixel
s(x,y) = 0 means (x,y) is background pixel

 input image f

() () ()sEsEsE smoothdata ⋅+= λ () []∑∑
∈

≠+=
Nqp

qp
p

pp sssD
),(

λ

segmentation s

• Convenient to write pixel (x,y) as p (or q, r,…)
• Denote all pairs of nearby pixels: N

p q r
v u w

z h y

N ={ (p,q), (q,r), (v,u), (u,w),
 (y,h), (h,z), (p,v), (v,y),
 (q,u), (u,h), (r,w), (w,z) }

• where [true] = 1, [false] = 0

0 0

0 0
0

0
0 0

0 0 0

1 1 1
1
1
1

1
1

1

1
1
1

1 1

FG Segmentation: Formula Practice with λ= 1

() () []∑∑
∈

≠+=
Nqp

qp
p

pp sssDsE
),(

λ

 Dp(0) + Dq(1) + Dr(0)
 Dv(0) + Du(0) + Dw(0)
 Dy(0) + Dh(1) + Dz(1)

background D

 0
 1
 1

 1
 1 1

 3
 3 9

foreground D

 15
 14
 14

 14
 14 14

 12
 12 6 p q r

v u w
z h y

pixel names

 [sp≠sq] + [sq≠sr] + [sv≠su]
 [su≠sw] + [sy≠sh] + [sh≠sz]
 [sp≠sv] + [sq≠su] + [sr≠sw]
 [sv≠sy] + [su≠sh] + [sw≠sz] segmentation s

1

1 1

0 0
0
0

0 0 E()=

=
 9 + 12 + 1
 3 + 1 + 1
 1 + 14 + 15

+

+

1 + 1 + 0
0 + 1 + 0
0 + 1 + 0
0 + 1 + 1

= 57+ 6= 63

FG Segmentation: Contrast Sensitive Discontinuity
• Where is object boundary more likely?

• Make discontinuity cost depend on image contrast
• helps align object boundary with image edges

small cost

large cost

• Replace [sp≠sq] with wpq⋅[sp≠sq] where wpq is
• large if intensities of pixels p,q are similar
• small if intensities of pixels p,q are not similar

FG Segmentation: Contrast Sensitive Discontinuity

• Good choice wpq

() ()()
2

2

2σλ
qfpf

e
−

−
⋅=

• Where f(p) is intensity of pixel p, f(q) intensity of pixel q
• for color image average over R, G, B channels to get f(p)

• Parameter σ2 is either set by hand (trail and error)
• or computed as average of (f(p) - f(q))2 over all neighbors in N

 8
4

 2
 5

5
 8

 3
2

 7

 9
2

 4
 7

1
 3

 8
8

 6

 9
5

 4
 2

3
 9

 1
4

 4

5

 4 7

5

6

6 4

5 3

=2σ

3=

() () () () () () () () () () () ()
12

345665476455355646657445 222222222222 −+−+−+−+−+−+−+−+−+−+−+−

FG Segmentation: Contrast Sensitive Discontinuity

• Good choice wpq

() ()()
2

2

2σλ
qfpf

e
−

−
⋅=

• Parameter σ2 estimates a “typical” (average) intensity
difference between pixels

• Smaller weight edges between pixels with less than
typical intensity difference

• Larger edge weights between pixels with typical
intensity difference

() ∑∑
∈

≠+=
Nqp

qppq
p

pp sswsDsE
),(

][)(

• Complete energy
• note that is now folded into wpq

FG Segmentation: Example

contrast sensitive
weights

p q r
v u w

z h y
pixel names

 3⋅[sp≠sq] + 2⋅[sq≠sr] + 6⋅[sv≠su]
 2⋅[su≠sw] + 7⋅[sy≠sh] + 1⋅[sh≠sz]
 3⋅[sp≠sv] + 2⋅[sq≠su] + 6⋅[sr≠sw]
 4⋅[sv≠sy] + 2⋅[su≠sh] + 1⋅[sw≠sz] segmentation s

E()= data term as before

= 57

+

+

3 + 2 + 0
0 + 7 + 0
0 + 2 + 0
0 + 2 + 1

= 57+ 15= 72

() ∑∑
∈

≠+=
Nqp

qppq
p

pp
sswsDsE

),(

][)(
3 5 6

1
1

2
2

4
7

6

3 2

1

1 1

0 0
0
0

0 0

FG Segmentation: Optimization
• We are all set to find the best segmentation s*

s*=arg min E(s)
s

• How to do this efficiently?
• Even for a 9 pixel image, there are 29 possible

segmentations!

...

• O(2n) for an n pixel image

 FG Segmentation: Optimization Graph
• Build weighted graph

• one node per pixel
• connect to neighbor pixel nodes with weight wpq

foreground D

 0
 1
 1

 1
 1 1

 3
 3 9

background D

 15
 14
 14

 14
 14 14

 12
 12 6

contrast sensitive
weights

3 5 6

1
1

2
2

4
7

6

3 2

p q r
v u w

z h y
pixel names

3 2

6 2

7 1

3

4 2

5 6

1

s t

 6

 12

 14

 1

 1

 0
v u

p

y h z

w

r q

• two special nodes (terminals) source s, sink t
 • s connects to each pixel node p with weight Dp(0)

 • t connects to each pixel node p with weight Dp(1)
 • graph below omits most of these edges for clarity

 FG Segmentation: Optimization with Graph Cut

• Cut is subset of edges C s.t. removing C
from graph makes s and t disconnected
• cost of cut C is sum of its edge weights

+

v

p

y

3

4

s t

 6
 12
 14

 9
 3
 1

• Minimum Graph Cut Problem
• find a cut C of minimum cost

cut of cost 38

min cut of cost 13

• Efficient algorithms for min-cut/max-flow

v

p

y

3

4

s t

 6
 12
 14

 9
 3
 1

• Minimum cut C gives the smallest cost
segmentation [Boykov&Veksler, 1998]
• nodes that stay connected to source in

the `cut’ graph become foreground
• nodes that stay connected to sink in the

`cut’ graph become background
• In the example, p gets background label,

v and y get foreground label

FG Segmentation: Segmentation Result

horizontal vertical

• Contrast sensitive edge weights
• dark means low weight, bright high

weight

• Data terms
• blue means low weight, red high

weight

input segmentation

background foreground

FG Segmentation: Interactive
• What if we do not know object/background color?
• Can ask user for help
• Interactive Segmentation [Boykov&Jolly, 2001]

• User scribbles foreground and background seeds
• these are hard constrained to be foreground and background, respectively

• for any pixel p that user marks as a foreground, set Dp(1) = 0, Dp(0) = ∞
• for any pixel p that user marks as a background, set Dp(1) = ∞, Dp(0) = 0
• for unmarked pixels, set Dp(1) = Dp(0) = 0

• Smoothness term is as before
• Contrast sensitive works best for interactive segmentation

Dp(0) = ∞
Dp(1) = 0

Dp(0) = 0
Dp(1) = ∞

background D foreground D

FG Segmentation: Interactive Results
• Initial seeds:

• Add more seeds for correction:

FG Segmentation: More Interactive Results

General Grouping or Clustering
• General Clustering (Grouping)
• Have samples (also called feature vectors,

examples, etc.) x1,…,xn

recall supervised learning

• Cluster similar samples into groups
• This is also called unsupervised learning

• samples have no labels
• think of clusters as ‘discovering’ labels

horror movies

documentaries

sci-fi movies

How does this Relate to Image Segmentation?
• Represent image pixels as feature vectors x1,…,xn

• For example, each pixel can be represented as
• intensity, gives one dimensional feature vectors
• color, gives three-dimensional feature vectors
• color + coordinates, gives five-dimensional feature vectors

• Cluster them into k clusters, i.e. k segments

 8
4

 2
 5

5
 8

 3
2

 7

 9
2

 4
 7

1
 3

 8
8

 6

 9
5

 4
 2

3
 9

 1
4

 4

input image feature vectors for
clustering based on color

[9 4 2] [7 3 1] [8 6 8]

[8 2 4] [5 8 5] [3 7 2]

[9 4 5] [2 9 3] [1 4 4]

How does this Relate to Image Segmentation?

 8
4

 2
 5

5
 8

 3
2

 7

 9
2

 4
 7

1
 3

 8
8

 6

 9
5

 4
 2

3
 9

 1
4

 4

input image feature vectors for
clustering based on color

and image coordinates

[9 4 2 0 0] [7 3 1 0 1] [8 6 8 0 2]

[8 2 4 1 0] [5 8 5 1 1] [3 7 2 1 2]

[9 4 5 2 0] [2 9 3 2 1] [1 4 4 2 2]

K-means Clustering: Objective Function
• Probably the most popular clustering algorithm

• assumes know the number of clusters should be k

• Optimizes (approximately) the following objective function

∑∑
= ∈

−=
k

i Dx
iSSE

i

xJ
1

2
µ

D1 D2

D3 µ3

µ1

µ2

=
SSE

J + +

K-means Clustering: Objective Function

D1 D2

D3 µ3

µ1

µ2

=
SSE

J + +

D1

D2

D3 µ3

µ1

µ2

Good (tight) clustering
smaller value of JSSE

Bad (loose) clustering
larger value of JSSE

=
SSE

J + +

K-means Clustering: Algorithm
• Initialization step

1. pick k cluster centers randomly

K-means Clustering: Algorithm
• Initialization step

1. pick k cluster centers randomly

K-means Clustering: Algorithm
• Initialization step

1. pick k cluster centers randomly
2. assign each sample to closest center

K-means Clustering: Algorithm
• Initialization step

1. pick k cluster centers randomly
2. assign each sample to closest center

 • Iteration step
1. compute means in each cluster

K-means Clustering: Algorithm
• Initialization step

1. pick k cluster centers randomly
2. assign each sample to closest center

 • Iteration step
1. compute means in each cluster
2. re-assign each sample to the closest mean

K-means Clustering: Algorithm
• Initialization step

1. pick k cluster centers randomly
2. assign each sample to closest center

 • Iteration step
1. compute means in each cluster
2. re-assign each sample to the closest mean

• Iterate until clusters stop changing

K-means Clustering: Algorithm
• Initialization step

1. pick k cluster centers randomly
2. assign each sample to closest center

 • Iteration step
1. compute means in each cluster
2. re-assign each sample to the closest mean

• Iterate until clusters stop changing

 • Can prove that this procedure decreases the

value of the objective function JSEE

K-means: Approximate Optimization
• K-means is fast and works quite well in practice
• But can get stuck in a local minimum of objective JSEE

• not surprising, since the problem is NP-hard

global minimum converged to local min

initialization

K-means Clustering: Example

 8
4

 2
 5

5
 8

 3
2

 7

 9
2

 4
 7

1
 3

 8
8

 6

 9
5

 4
 2

3
 9

 1
4

 4

• with k = 2

feature vectors
[9 4 2] [7 3 1] [8 6 8]

[8 2 4] [5 8 5] [3 7 2]

[9 4 5] [2 9 3] [1 4 4]

K-means Clustering: Example

 8
4

 2
 5

5
 8

 3
2

 7

 9
2

 4
 7

1
 3

 8
8

 6

 9
5

 4
 2

3
 9

 1
4

 4

• with k = 2
• Initialize

• pick [9 4 2] [5 8 5] as
cluster centers

feature vectors
[9 4 2] [7 3 1] [8 6 8]

[8 2 4] [5 8 5] [3 7 2]

[9 4 5] [2 9 3] [1 4 4]

K-means Clustering: Example
• with k = 2
• Initialize

• pick [9 4 2] [5 8 5] as
cluster centers

• assign each feature vector
to closest center
 dist([9 4 2] - [9 4 2]) = 0 ⇒ [9 4 2] goes to pink cluster

 8
4

 2
 5

5
 8

 3
2

 7

 9
2

 4
 7

1
 3

 8
8

 6

 9
5

 4
 2

3
 9

 1
4

 4

K-means Clustering: Example
• with k = 2
• Initialize

• pick [9 4 2] [5 8 5] as
cluster centers

• assign each feature vector
to closest center
 dist([9 4 2] - [9 4 2]) = 0 ⇒ [9 4 2] goes to pink cluster

dist([7 3 1] - [9 4 2]) = (7-9)2 + (3-4)2 + (1-2)2 = 6

dist([7 3 1] – [5 8 5]) = (7-5)2 + (3-8)2 + (1-5)2 = 45

 8
4

 2
 5

5
 8

 3
2

 7

 9
2

 4
 7

1
 3

 8
8

 6

 9
5

 4
 2

3
 9

 1
4

 4

 [7 3 1] goes
to pink cluster

K-means Clustering: Example
• with k = 2
• Initialize

• pick [9 4 2] [5 8 5] as
cluster centers

• assign each feature vector
to closest center
 dist([9 4 2] - [9 4 2]) = 0 ⇒ [9 4 2] goes to pink cluster

dist([7 3 1] - [9 4 2]) = (7-9)2 + (3-4)2 + (1-2)2 = 6

dist([7 3 1] – [5 8 5]) = (7-5)2 + (3-8)2 + (1-5)2 = 45

 8
4

 2
 5

5
 8

 3
2

 7

 9
2

 4
 7

1
 3

 8
8

 6

 9
5

 4
 2

3
 9

 1
4

 4

 [7 3 1] goes
to pink cluster

dist([8 6 8] - [9 4 2]) = (8-9)2 + (6-4)2 + (8-2)2 = 41

dist([8 6 8] – [5 8 5]) = (8-5)2 + (6-8)2 + (8-5)2 = 22

 [8 6 8] goes
to blue cluster

K-means Clustering: Example
• with k = 2
• Initialize

• pick [9 4 2] [5 8 5] as
cluster centers

• assign each feature vector
to closest center

• repeat for the rest of
feature vectors

 8
4

 2
 5

5
 8

 3
2

 7

 9
2

 4
 7

1
 3

 8
8

 6

 9
5

 4
 2

3
 9

 1
4

 4

initial clustering

[8 2 4] [5 8 5] [3 7 2]

[9 4 5] [2 9 3] [1 4 4]

K-means Clustering: Example
• Iterate

• compute cluster means
 8

4
 2

 5
5

 8
 3

2
 7

 9
2

 4
 7

1
 3

 8
8

 6

 9
5

 4
 2

3
 9

 1
4

 4

initial clustering

[8 6 8] + [5 8 5] + [3 7 2] + [2 9 3] + [1 4 4]

 [9 4 2] + [7 3 1] + [8 2 4] + [9 4 5]

µ1 = =
4

[8.25 3.25 3]

µ2 = =
5

[3.8 6.8 4.4]

K-means Clustering: Example

• Iterate
• compute cluster means

 8
4

 2
 5

5
 8

 3
2

 7

 9
2

 4
 7

1
 3

 8
8

 6

 9
5

 4
 2

3
 9

 1
4

 4

initial clustering

µ1 = [8.25 3.25 3]
 µ2 = [3.8 6.8 4.4]
 • reassign samples to the closest mean

dist([9 4 2] - [8.25 3.25 3]) = (8.25-9)2 + (3.25-4)2 + (3-2)2 ≈ 2

dist([9 4 2] – [3.8 6.8 4.4]) = (3.8-9)2 + (6.8-4)2 + (4.4-2)2 ≈ 41

 [9 4 2] goes
to pink cluster

K-means Clustering: Example

• Iterate
• compute cluster means

 8
4

 2
 5

5
 8

 3
2

 7

 9
2

 4
 7

1
 3

 8
8

 6

 9
5

 4
 2

3
 9

 1
4

 4

initial clustering

µ1 = [8.25 3.25 3]
 µ2 = [3.8 6.8 4.4]
 • reassign samples to the closest mean

• repeat for
[7 3 1] [8 6 8]

[8 2 4] [5 8 5] [3 7 2]

[9 4 5] [2 9 3] [1 4 4]

• Converged after one iteration
• for larger images, usually 10-20 iterations enough for

convergence

K-means Clustering: Examples

k = 3

k = 10 k = 5

K-means Properties
• Works best when clusters are spherical (blob like)

• Fails for elongated clusters
• JSEE is not an appropriate objective function in this case

• Sensitive to outliers

K-means Summary

• Advantages
• Principled (objective function) approach to clustering
• Simple to implement
• Fast

• Disadvantages
• Only a local minimum is found
• May fail for non-blob like clusters
• Sensitive to initialization
• Sensitive to choice of k
• Sensitive to outliers

Back to FG Segmentation: Improving Data Term

• Can improve segmentation with more user strokes
• But can we get a better initial result?
• We are not using color information in the image effectively

initial result user strokes

FG Segmentation: Improving Data Term

• Data terms are 0 for most pixels
• no preference to either foreground or background

• However
• background strokes are mostly green
• foreground strokes are mostly grey

• Can we push green non-seed pixels to prefer background?
• Can we push grey non-seed pixels to prefer foreground?

foreground D background D

FG Segmentation: Improving Data Term

 Dp (0) = 0 Dp(0) = small
 Dp (1) = 0 Dp(1) = large

foreground D background D

p q

 Dq (0) = 0 Dq(0) = large
 Dq (1) = 0 Dq(1) = small

Currently have: Want to have:

FG Segmentation: Color Distributions
• Build color distribution from foreground seeds

• Build color distribution from background seeds

color

P(color)

color

P(color)

FG Segmentation: Color Distributions
• Build color distribution from foreground seeds

• Build color distribution from background seeds

color

P(color)

color

P(color)

• Normalized histogram for distribution
 Pforeground(color) = number of foreground seeds of color

total number of foreground seeds

FG Segmentation: Color Distributions
• For green pixels p, Pbackground(p) is high, Pbackground(p) low
• We want just the opposite for the data term
• Convert to “opposite” using –log()

• Do the same for the foreground

Pforeground(color)

color

Pbackground(color)

color color

-log Pforeground(color)

color

-log Pbackground(color)

FG Segmentation: Color Distributions

• Dp(foreground) = - log Pforeground(color of p)
• Dp(background) = - log Pbackground(color of p)
• Problem
• The number of colors is too high: 2563

• too large to build a normalized histogram

• Cluster colors using kmeans clustering, and treat each cluster as
the “new” color

color

-log Pforeground(color)

color

-log Pbackground(color)

FG Segmentation: Cluster Colors
• Need to reduce number of colors
• Group similar colors together and treat

the group as the same color
• 10 color clusters with kmeans

• cluster 1 = color 1
• cluster 2 = color 2
• …
• cluster 10 = color 10

 • Now we only have 10 colors
• Build foreground/background color

models over 10 “new” colors

clusters visualized with
random colors

pixels painted with average
color of pixels in its cluster

Example
• In matlab, use kmeans([R(:),G(:),B(:)]) to get kmeans clustering,

where R,G,B are image color channels

 8
4

 2
 5

5
 8

 3
2

 7

 9
2

 4
 7

1
 3

 8
8

 6

 9
5

 4
 2

3
 9

 1
4

 4

image with seeds

1

 1 1

1

1

2 2

2 3

kmeans

• Foreground histogram
color index 1 2 3

count 0 2 1

• Background histogram
color index 1 2 3

count 2 0 0

• Normalized F-histogram

color index 1 2 3

count 0 2/3 1/3

• Normalized B-histogram

color index 1 2 3

count 2/2 0 0

Example

• Do not want infinity costs
• Problem? Zero counts in histogram
• Smooth histogram by adding 1 to every bin count

• Foreground data cost (-log histF)

color index 1 2 3

count ∞ 0.4 1.1

• Background data cost (-log histB)

color index 1 2 3

count 0 ∞ ∞

• Normalized F-histogram

color index 1 2 3

count 0 2/3 1/3

• Normalized B-histogram

color index 1 2 3

count 2/2 0 0

Example
• Foreground histogram

color index 1 2 3

count 0 2 1

• Background histogram
color index 1 2 3

count 2 0 0

• Smoothed F-histogram

color index 1 2 3

count 1 3 2

• Smoothed B-histogram

color index 1 2 3

count 3 1 1

• Foreground data cost (-log histF)

color index 1 2 3

count 1.8 0.7 1.1

• Background data cost (-log histB)

color index 1 2 3

count 0.5 1.6 1.6

• Normalized F-histogram

color index 1 2 3

count 1/6 3/6 2/6

• Normalized B-histogram

color index 1 2 3

count 3/5 1/5 1/5

FG Segmentation: Segmentation Result

user input reduced colors segmentation

foreground D background D blue pixels prefer foreground
red pixels prefer background

	Slide Number 1
	Outline
	Examples of Grouping in Vision
	Image Segmentation
	Gestalt Psychology
	Grouping
	Gestalt Principles of Grouping
	Gestalt Principles of Grouping
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Image Segmentation
	FG Segmentation: Thresholding
	FG Segmentation: Thresholding
	FG Segmentation: Motivation
	FG Segmentation: Energy Function
	FG Segmentation: Energy Function
	FG Segmentation: Data Term
	FG Segmentation: Data Term
	FG Segmentation: Smoothness Term
	FG Segmentation: Total Energy
	FG Segmentation: Total Energy
	FG Segmentation: Energy Formula
	FG Segmentation: Formula Practice with λ= 1
	FG Segmentation: Contrast Sensitive Discontinuity
	FG Segmentation: Contrast Sensitive Discontinuity
	FG Segmentation: Contrast Sensitive Discontinuity
	FG Segmentation: Example
	FG Segmentation: Optimization
	 FG Segmentation: Optimization Graph
	 FG Segmentation: Optimization with Graph Cut
	FG Segmentation: Segmentation Result
	FG Segmentation: Interactive
	FG Segmentation: Interactive Results
	FG Segmentation: More Interactive Results
	General Grouping or Clustering
	How does this Relate to Image Segmentation?
	How does this Relate to Image Segmentation?
	K-means Clustering: Objective Function
	K-means Clustering: Objective Function
	K-means Clustering: Algorithm
	K-means Clustering: Algorithm
	K-means Clustering: Algorithm
	K-means Clustering: Algorithm
	K-means Clustering: Algorithm
	K-means Clustering: Algorithm
	K-means Clustering: Algorithm
	K-means: Approximate Optimization
	K-means Clustering: Example
	K-means Clustering: Example
	K-means Clustering: Example
	K-means Clustering: Example
	K-means Clustering: Example
	K-means Clustering: Example
	K-means Clustering: Example
	K-means Clustering: Example
	K-means Clustering: Example
	K-means Clustering: Examples
	K-means Properties
	K-means Summary
	Back to FG Segmentation: Improving Data Term
	FG Segmentation: Improving Data Term
	FG Segmentation: Improving Data Term
	FG Segmentation: Color Distributions
	FG Segmentation: Color Distributions
	FG Segmentation: Color Distributions
	FG Segmentation: Color Distributions
	FG Segmentation: Cluster Colors
	Example
	Example
	Example
	FG Segmentation: Segmentation Result

