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Outline 
• Grouping problems in vision 

• Image segmentation: grouping of pixels 

• Grouping cues in Human Visual System 
• Gestalt perceptual grouping laws 

• Image Segmentation 
• 2-region (binary) 

• thresholding 
• graph cuts 

• used in MS office 2010 for background removal 
• based on the work of our faculty Yuri Boykov 

• General Grouping (or unsupervised learning) 
• K-means clustering 

 



Examples of Grouping in Vision 
• Group pixels into regions 

• image segmentation 

• Group video frames into shots 

• Group image regions into objects 



Image Segmentation 

• For many applications, useful to segment image pixels into 
blobs that (hopefully) belong to the same object or surface 

• How to do this without (necessarily) object recognition? 
• a bit subjective, but well-studied 

• Inspiration from Gestalt psychology 
• humans perceive the world as a collection of objects with relationships 

between them, not as a set of pixels 



Gestalt Psychology 

• Whole is greater than 
the sum of its parts 
• eye sees an object in 

its entirety before 
perceiving its 
individual parts 

• Identified factors that 
predispose a set of 
elements to be 
grouped by human 
visual system 
• perceptual grouping 



Grouping 

• Most human observers report no particular grouping 



Gestalt Principles of Grouping 
• Common form, includes: 

shape color size 



• Proximity 

Gestalt Principles of Grouping 



Gestalt Principles of Grouping 
• Good continuation 



Gestalt Principles of Grouping 

• Connectivity 
• stronger than color 



Gestalt Principles of Grouping 
• Symmetry 



Gestalt Principles of Grouping 
• Familiarity 



Gestalt Principles of Grouping 
• Closure 



Gestalt Principles of Grouping 
• Closure 



Gestalt Principles of Grouping 
• Closure 



Gestalt Principles of Grouping 
• Common fate 



Gestalt Principles of Grouping 
• Higher level knowledge? 



• Many other Gestalt grouping principles 
• parallelism, convexity, colinearity, common depth, etc. 

• Gestalt principles are an inspiration to computer vision   
• they seem to rely on nature of objects in the world, most do 

not involve higher level knowledge (object recognition) 
• should help to segment objects without necessarily 

performing object recognition 
• But most are difficult to implement in algorithms 

• used often 
• color,  proximity 

• we will use these as well 

• used sometimes 
• convexity, good continuation, common motion, colinearity 

 

 

Gestalt Principles of Grouping 



Image Segmentation 
• Many types of image segmentation  

superpixels regions figure-ground 

• We will focus on figure-ground (FG) 
• also called object/background segmentation 
  



FG Segmentation: Thresholding 
• Suppose the object is brighter than the background 

 

• Threshold gray scale image f: 
if   f(x,y) < T   then  pixel (x,y) is  background 
if   f(x,y) ≥ T   then  pixel (x,y) is  foreground 

 
 

T = 120 T = 180 T = 220 



FG Segmentation: Thresholding 
• Tiny isolated foreground regions,  isolated background regions 
• Result looks wrong even if you did not know object is a swan 

• Can we clean this result up? 
 



FG Segmentation: Motivation 
• Know object is light, background is dark 
• Do not know object shape 

• show background with red, foreground with blue 

bad result: crazy 
object shape 

bad result: object 
is dark, 

background light 

good result: light 
object of good shape, 

dark background 

input image 



FG Segmentation: Energy Function 
• Formulate an objective or energy 

function E  to measure how good  
segmentation is 
• low value means good segmentation 

E(                  )= high 

E(                  )=high 

E(                  )=low 

• After energy function is designed, 
search over all possible 
segmentations for the best one 
• one with lowest energy 



FG Segmentation: Energy Function 
• Energy has two terms 

• data term:   
• makes it cheap to assign light pixels to 

foreground,  expensive to the background 
• makes it cheap to assign dark pixels to the 

background, and expensive to the foreground 

• smoothness term:  ensures nice  
object shape 

• both terms are needed for a good energy 
function 

input image  f 



FG Segmentation: Data Term 
• Should be cheap to assign light pixels to foreground,  expensive 

to the background 
• For each pixel (x,y), we will pay D (x,y)(background) to assign it to 

background and D(x,y) )(foreground) to assign it to the foreground 
• Let the smallest image intensity be 5, and largest 20  

D(x,y)(background) =  f(x,y) – 5 
 D(x,y)(foreground)   = 20 - f(x,y) 

 

input image  f 
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• Brown pixel prefers foreground, green prefers background 



FG Segmentation: Data Term 
       

foreground D 
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• Edata  sums data D (x,y) term 
over all pixels (x,y) 

• Foreground blue, background red  

 

Edata  =  6+3+1+6+1+ 
 3+1+1+7+7+ 
 1+1+0+5+2+ 
 7+6+7+0+0+ 
 6+1+2+0+0  
 = 64 

Edata  = 283
  

Edata  = 97
  



FG Segmentation: Smoothness Term 
• Smoothness term:  ensures nice object shape 
• Consider segmentations below 

 

17 discontinuities 8 discontinuities 

bad shape nice  shape 

• discontinuity: when two nearby pixels are in different segments 
• smoothness term is the number of discontinuities 

nice  shape 

7 discontinuities 
Esmooth  = 17 Esmooth  = 8 Esmooth  = 7 



FG Segmentation: Total Energy 

Edata       = 64 
Esmooth   = 17 
E = Edata + Esmooth  =  81 

• Now combine both data and smoothness energy terms 

Edata     = 283 
Esmooth = 7 
E = Edata + Esmooth  = 290 

Edata        = 97 
Esmooth    = 8 
E = Edata + Esmooth  = 105 

• What went wrong ? 
• Smoothness term weighs very little relative to the data term 

• it basically gets ignored in the combined energy 

• Solution: increase the weight of the smoothness term 

best 



FG Segmentation: Total Energy 

Edata      = 64 
λ Esmooth  = 170 
E = Edata + λ Esmooth  =  234 

Edata      = 283 
λ Esmooth  = 70 
E = Edata + λ Esmooth  = 353 

Edata     = 97 
λ Esmooth = 80 
E = Edata + λ Esmooth  = 177 

• Solution: increase the weight of the smoothness term 
E = Edata +λ Esmooth  

 

• Take, for example, λ = 10 
best 



FG Segmentation: Energy Formula 
• Now we need to put everything into formulas 
• s(x,y) is the segmentation label 

s(x,y) = 1  means (x,y) is foreground pixel 
s(x,y) = 0 means (x,y) is background pixel 

 input image  f 
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• Convenient to write pixel (x,y) as p (or q, r,…)  
• Denote all pairs of nearby pixels: N 
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FG Segmentation: Formula Practice with  λ= 1 
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 [sp≠sq] +  [sq≠sr]  + [sv≠su] 
 [su≠sw] + [sy≠sh]  + [sh≠sz]  
 [sp≠sv]  + [sq≠su]  + [sr≠sw] 
 [sv≠sy] +  [su≠sh]  + [sw≠sz]  segmentation  s  
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FG Segmentation: Contrast Sensitive Discontinuity 
• Where is object boundary more likely? 

• Make discontinuity cost depend on image contrast 
• helps align object boundary with image edges 

small cost 

large cost 

• Replace  [sp≠sq]    with  wpq⋅[sp≠sq]  where wpq is  
• large if  intensities of pixels p,q are similar 
• small if  intensities of pixels p,q are not similar 

 



FG Segmentation: Contrast Sensitive Discontinuity 

• Good choice   wpq   
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• Where  f(p) is intensity of pixel p,  f(q) intensity of pixel q 
• for color image average over R, G, B  channels to get  f(p) 

• Parameter σ2 is either set by hand (trail and error) 
• or computed as average of ( f(p) - f(q) )2 over all neighbors in N 
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FG Segmentation: Contrast Sensitive Discontinuity 

• Good choice wpq   
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• Parameter σ2  estimates a “typical” (average)  intensity 
difference between pixels 

• Smaller weight edges between pixels with less than 
typical intensity difference 

• Larger edge weights between pixels with typical 
intensity difference  
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• Complete energy 
• note that is now folded into  wpq  



FG Segmentation: Example 

contrast sensitive 
weights 

p q r 
v u w 

z h y 
pixel names 

 3⋅[sp≠sq]  + 2⋅[sq≠sr]  + 6⋅[sv≠su] 
 2⋅[su≠sw] + 7⋅[sy≠sh]  + 1⋅[sh≠sz]  
 3⋅[sp≠sv]  + 2⋅[sq≠su]  + 6⋅[sr≠sw] 
 4⋅[sv≠sy]  + 2⋅[su≠sh]  + 1⋅[sw≠sz]  segmentation  s  

E(           )= data term as before 
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FG Segmentation: Optimization 
• We are all set to find the best segmentation s* 

s*=arg min E(s) 
s 

• How to do this efficiently?  
• Even for a 9 pixel image, there are 29 possible 

segmentations! 

... 

• O(2n) for an n pixel image 



  FG Segmentation: Optimization Graph 
• Build weighted graph 

• one node per pixel 
• connect to neighbor pixel nodes with weight wpq 
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• two special nodes (terminals) source s, sink t 
 • s connects to each pixel node p with weight Dp(0) 

 • t connects to each pixel node p with weight Dp(1) 
 • graph below omits most of these edges for clarity 
 



  FG Segmentation: Optimization with Graph Cut 

• Cut  is subset of edges C  s.t. removing C  
from graph makes s and t disconnected 
• cost of cut C is sum of its edge weights 
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• Minimum Graph Cut Problem 
• find a cut C of minimum cost 

cut of cost 38 

 

min cut of cost 13 

• Efficient algorithms for min-cut/max-flow  
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• Minimum cut C gives the smallest cost 
segmentation [Boykov&Veksler, 1998] 
• nodes that stay connected to source in 

the `cut’ graph become foreground 
• nodes that stay connected to sink in the 

`cut’ graph become background 
• In the example, p gets background label, 

v and y get foreground label 



FG Segmentation: Segmentation Result 

horizontal vertical  

• Contrast sensitive edge weights 
• dark means low weight, bright high 

weight 

• Data terms 
•  blue  means low weight, red high 

weight 

input segmentation 

background foreground 



FG Segmentation: Interactive  
• What if we do not know object/background color? 
• Can ask user for help 
• Interactive Segmentation [Boykov&Jolly, 2001] 

• User scribbles foreground and background seeds 
• these are hard constrained to be foreground and background, respectively 

• for any pixel p  that user marks as a foreground, set Dp(1) = 0, Dp(0) = ∞  
• for any pixel p  that user marks as a background, set Dp(1) = ∞, Dp(0) = 0 
• for unmarked pixels, set Dp(1) =  Dp(0) = 0 

• Smoothness term is as before 
• Contrast sensitive works best for interactive segmentation 

 

Dp(0) = ∞ 
Dp(1) = 0 

Dp(0) = 0 
Dp(1) = ∞ 

background D foreground D 



FG Segmentation: Interactive Results  
• Initial seeds: 

 
 

• Add more seeds for correction: 
 
 



FG Segmentation: More Interactive Results  



General Grouping or Clustering 
• General Clustering (Grouping) 
• Have samples (also called feature vectors, 

examples, etc. ) x1,…,xn 

recall supervised learning 

• Cluster  similar samples into groups 
• This is also called unsupervised learning 

• samples have no labels 
• think of clusters as ‘discovering’ labels  

horror movies 

documentaries 

sci-fi movies 



How does this Relate to Image Segmentation? 
• Represent image pixels as feature vectors  x1,…,xn 

• For example, each pixel can be represented as 
• intensity, gives one dimensional feature vectors  
• color, gives three-dimensional feature vectors 
• color + coordinates, gives five-dimensional feature vectors 

• Cluster them into k clusters, i.e. k segments  
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input  image feature vectors for 
clustering based on color 

[9  4  2] [7  3  1] [8  6  8] 

[8  2  4] [5  8  5] [3  7  2] 

[9  4  5] [2  9  3] [1  4  4] 



How does this Relate to Image Segmentation? 
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input  image feature vectors for 
clustering based on color 

and image coordinates 

[9  4  2  0  0] [7  3  1  0  1] [8  6  8  0  2] 

[8  2  4  1  0] [5  8  5  1  1] [3  7  2  1  2] 

[9  4  5  2  0] [2  9  3  2  1] [1  4  4  2  2] 



K-means Clustering: Objective Function 
• Probably the most popular clustering algorithm  

• assumes know the number of clusters should be k 

• Optimizes (approximately) the following objective function 
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K-means Clustering: Objective Function 

D1 D2 

D3 µ3 

µ1 

µ2 

=
SSE

J + + 

D1 

D2 

D3 µ3 

µ1 

µ2 

Good (tight) clustering 
smaller value of JSSE 

Bad (loose) clustering 
larger value of JSSE 
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K-means Clustering: Algorithm 
• Initialization step 

1. pick k cluster centers randomly 



K-means Clustering: Algorithm 
• Initialization step 

1. pick k cluster centers randomly 



K-means Clustering: Algorithm 
• Initialization step 

1. pick k cluster centers randomly 
2. assign each sample to closest center 

 



K-means Clustering: Algorithm 
• Initialization step 

1. pick k cluster centers randomly 
2. assign each sample to closest center 

 • Iteration step 
1. compute means in each cluster 



K-means Clustering: Algorithm 
• Initialization step 

1. pick k cluster centers randomly 
2. assign each sample to closest center 

 • Iteration step 
1. compute means in each cluster 
2. re-assign each sample to the closest mean 

 



K-means Clustering: Algorithm 
• Initialization step 

1. pick k cluster centers randomly 
2. assign each sample to closest center 

 • Iteration step 
1. compute means in each cluster 
2. re-assign each sample to the closest mean 

• Iterate until clusters stop changing 
 
 



K-means Clustering: Algorithm 
• Initialization step 

1. pick k cluster centers randomly 
2. assign each sample to closest center 

 • Iteration step 
1. compute means in each cluster 
2. re-assign each sample to the closest mean 

• Iterate until clusters stop changing 
 
 • Can prove that this procedure decreases the 

value of the objective function JSEE 



K-means: Approximate Optimization 
• K-means is fast and works quite well in practice 
• But can get stuck in a local minimum of objective JSEE 

• not surprising, since the problem is NP-hard 

global minimum converged to local min 

initialization 



K-means Clustering: Example  
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• with k = 2 

feature vectors 
[9  4  2] [7  3  1] [8  6  8] 

[8  2  4] [5  8  5] [3  7  2] 

[9  4  5] [2  9  3] [1  4  4] 



K-means Clustering: Example 
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• with k = 2 
• Initialize 

• pick [9  4  2] [5  8  5] as 
cluster centers 
 

feature vectors 
[9  4  2] [7  3  1] [8  6  8] 

[8  2  4] [5  8  5] [3  7  2] 

[9  4  5] [2  9  3] [1  4  4] 



K-means Clustering: Example 
• with k = 2 
• Initialize 

• pick [9  4  2] [5  8  5] as 
cluster centers 

• assign each feature vector 
to closest center 
 dist( [9  4  2] - [9  4  2] ) = 0  ⇒ [9  4  2] goes to  pink cluster   
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K-means Clustering: Example 
• with k = 2 
• Initialize 

• pick [9  4  2] [5  8  5] as 
cluster centers 

• assign each feature vector 
to closest center 
 dist( [9  4  2] - [9  4  2] ) = 0  ⇒ [9  4  2] goes to  pink cluster   

dist( [7  3  1] - [9  4  2] ) = (7-9)2 + (3-4)2 + (1-2)2  = 6 

dist( [7  3  1] – [5  8  5] ) = (7-5)2 + (3-8)2 + (1-5)2  = 45 
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K-means Clustering: Example 
• with k = 2 
• Initialize 

• pick [9  4  2] [5  8  5] as 
cluster centers 

• assign each feature vector 
to closest center 
 dist( [9  4  2] - [9  4  2] ) = 0  ⇒ [9  4  2] goes to  pink cluster   

dist( [7  3  1] - [9  4  2] ) = (7-9)2 + (3-4)2 + (1-2)2  = 6 

dist( [7  3  1] – [5  8  5] ) = (7-5)2 + (3-8)2 + (1-5)2  = 45 
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 [7  3  1]  goes 
to pink cluster 

dist( [8  6  8] - [9  4  2] ) = (8-9)2 + (6-4)2 + (8-2)2  = 41 

dist( [8  6  8] – [5  8  5] ) = (8-5)2 + (6-8)2 + (8-5)2  = 22 

 [8  6  8]  goes 
to blue cluster 



K-means Clustering: Example 
• with k = 2 
• Initialize 

• pick [9  4  2] [5  8  5] as 
cluster centers 

• assign each feature vector 
to closest center 

• repeat for the rest of 
feature vectors 
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initial clustering 

[8  2  4] [5  8  5] [3  7  2] 

[9  4  5] [2  9  3] [1  4  4] 



K-means Clustering: Example 
• Iterate 

• compute cluster means 
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initial clustering 

[8  6  8] + [5  8  5] + [3  7  2] + [2  9  3] + [1  4  4] 

 [9  4  2] + [7  3  1] + [8  2  4] + [9  4  5] 
 
 
 
 

µ1 =                                                           = 
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[8.25  3.25  3] 

µ2 =                                                                            = 
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[3.8  6.8  4.4]  



K-means Clustering: Example 

• Iterate 
• compute cluster means 
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initial clustering 

µ1 = [8.25  3.25  3] 
   µ2  = [3.8  6.8  4.4]  
             • reassign samples to the closest mean 

dist( [9  4  2] - [8.25  3.25  3] ) = (8.25-9)2 + (3.25-4)2 + (3-2)2  ≈ 2 

dist( [9  4  2] – [3.8  6.8  4.4] ) = (3.8-9)2 + (6.8-4)2 + (4.4-2)2 ≈ 41 

 [9  4  2]  goes 
to pink cluster 



K-means Clustering: Example 

• Iterate 
• compute cluster means 
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initial clustering 

µ1 = [8.25  3.25  3] 
   µ2  = [3.8  6.8  4.4]  
             • reassign samples to the closest mean 

• repeat for 
[7  3  1] [8  6  8] 

[8  2  4] [5  8  5] [3  7  2] 

[9  4  5] [2  9  3] [1  4  4] 

• Converged after one iteration 
• for larger images, usually 10-20 iterations enough for 

convergence 



K-means Clustering: Examples 

k = 3 

k = 10 k = 5 



K-means Properties 
• Works best when clusters are spherical  (blob like) 

• Fails for elongated clusters  
• JSEE is not an appropriate objective function in this case 

• Sensitive to outliers 



K-means Summary 

• Advantages 
• Principled (objective function) approach to clustering 
• Simple to implement 
• Fast 

• Disadvantages 
• Only a local minimum is found 
• May fail for non-blob like clusters 
• Sensitive to initialization 
• Sensitive to choice of k 
• Sensitive to outliers 

 
 



Back to FG Segmentation: Improving Data Term 

• Can improve segmentation with more user strokes 
• But can we get a better initial result? 
• We are not using color information in the image effectively  

initial result user strokes 



FG Segmentation: Improving Data Term 

• Data terms are 0 for most pixels 
• no preference to either foreground or background 

• However 
• background strokes are mostly green 
• foreground strokes are mostly grey 

• Can we push green non-seed pixels to prefer background? 
• Can we push grey non-seed pixels to prefer   foreground? 

foreground  D background  D 



FG Segmentation: Improving Data Term 

  Dp (0) = 0   Dp(0) = small 
  Dp (1) = 0     Dp(1) = large 
 
 

foreground  D background  D 

p q 

 Dq (0) = 0    Dq(0) = large 
 Dq (1) = 0    Dq(1) = small 
 

Currently have:                     Want to have: 



FG Segmentation: Color Distributions 
• Build color distribution from foreground seeds 

• Build color distribution from background seeds 

color 

P(color) 

color 

P(color) 



FG Segmentation: Color Distributions 
• Build color distribution from foreground seeds 

• Build color distribution from background seeds 

color 

P(color) 

color 

P(color) 

• Normalized histogram for distribution 
   Pforeground(color) = number of foreground seeds of color 

total number of foreground seeds 



FG Segmentation: Color Distributions 
• For green pixels p,  Pbackground(p) is high,  Pbackground(p) low 
• We want just the opposite for the data term 
• Convert to “opposite” using   –log() 

• Do the same for the foreground 

Pforeground(color) 

color 

Pbackground(color) 

color color 

-log Pforeground(color) 

color 

-log Pbackground(color) 



FG Segmentation: Color Distributions 

• Dp(foreground) = - log Pforeground(color of p) 
• Dp(background) = - log Pbackground(color of p) 
• Problem 
• The number of colors is too high:  2563 

• too large to build a normalized histogram 

• Cluster colors using kmeans clustering, and treat each cluster as 
the “new” color 
 

color 

-log Pforeground(color) 

color 

-log Pbackground(color) 



FG Segmentation: Cluster Colors 
• Need to reduce number of colors 
• Group similar colors together and treat 

the group as the same color 
• 10 color clusters with kmeans 

• cluster 1  = color 1 
• cluster 2  = color 2 
• … 
• cluster 10 = color 10 

 • Now we only have 10 colors 
• Build foreground/background color 

models over 10 “new” colors 

clusters visualized with 
random colors 

pixels painted with average 
color of pixels in its cluster 



Example 
• In matlab, use kmeans( [R(:),G(:),B(:)] ) to get kmeans clustering, 

where R,G,B are image color channels 
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kmeans 

• Foreground histogram 
color index 1 2 3 

count 0 2 1 

• Background histogram 
color index 1 2 3 

count 2 0 0 

• Normalized F-histogram 

color index 1 2 3 

count 0 2/3 1/3 

• Normalized B-histogram 

color index 1 2 3 

count 2/2 0 0 



Example 

• Do not want infinity costs 
• Problem? Zero counts in histogram 
• Smooth histogram by adding 1 to every  bin count 

• Foreground data cost (-log histF) 

color index 1 2 3 

count ∞ 0.4 1.1 

• Background data cost (-log histB) 

color index 1 2 3 

count 0 ∞ ∞ 

• Normalized F-histogram 

color index 1 2 3 

count 0 2/3 1/3 

• Normalized B-histogram 

color index 1 2 3 

count 2/2 0 0 



Example 
• Foreground histogram 

color index 1 2 3 

count 0 2 1 

• Background histogram 
color index 1 2 3 

count 2 0 0 

• Smoothed F-histogram 

color index 1 2 3 

count 1 3 2 

• Smoothed B-histogram 

color index 1 2 3 

count 3 1 1 

• Foreground data cost (-log histF) 

color index 1 2 3 

count 1.8 0.7 1.1 

• Background data cost (-log histB) 

color index 1 2 3 

count 0.5 1.6 1.6 

• Normalized F-histogram 

color index 1 2 3 

count 1/6 3/6 2/6 

• Normalized B-histogram 

color index 1 2 3 

count 3/5 1/5 1/5 



FG Segmentation: Segmentation Result 

user input reduced colors segmentation 

foreground   D background   D blue pixels prefer foreground 
red pixels prefer background 
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