CS4442/9542b Artificial Intelligence II prof. Olga Veksler

Lecture 10
Computer Vision
Grouping and Segmentation

Some slides are from S. Seitz, D. Jacobs, O. Camps, A. Torralba

Outline

- Grouping problems in vision
- Image segmentation: grouping of pixels
- Grouping cues in Human Visual System
- Gestalt perceptual grouping laws
- Image Segmentation
- 2-region (binary)
- thresholding
- graph cuts
- used in MS office 2010 for background removal
- based on the work of our faculty Yuri Boykov
- General Grouping (or unsupervised learning)
- K-means clustering

Examples of Grouping in Vision

- Group pixels into regions
- image segmentation
- Group video frames into shots

- Group image regions into objects

Image Segmentation

- For many applications, useful to segment image pixels into blobs that (hopefully) belong to the same object or surface
- How to do this without (necessarily) object recognition?
- a bit subjective, but well-studied
- Inspiration from Gestalt psychology
- humans perceive the world as a collection of objects with relationships between them, not as a set of pixels

Gestalt Psychology

- Whole is greater than the sum of its parts
- eye sees an object in its entirety before perceiving its individual parts
- Identified factors that predispose a set of elements to be grouped by human visual system
- perceptual grouping

Grouping

- Most human observers report no particular grouping

Gestalt Principles of Grouping

- Common form, includes:
shape
$0 \star \bullet \star \bullet \star \bullet \star$
$\bullet \star \bullet \star \bullet \star \bullet \star$

size

- •••••••

- •••••••
- •••••• •

Gestalt Principles of Grouping

- Proximity

Gestalt Principles of Grouping

- Good continuation

Gestalt Principles of Grouping

- Connectivity
- stronger than color

Gestalt Principles of Grouping

- Symmetry

Gestalt Principles of Grouping

- Familiarity

Gestalt Principles of Grouping

- Closure

Gestalt Principles of Grouping

- Closure

Gestalt Principles of Grouping

- Closure

Gestalt Principles of Grouping

- Common fate

Gestalt Principles of Grouping

- Higher level knowledge?

Gestalt Principles of Grouping

- Many other Gestalt grouping principles
- parallelism, convexity, colinearity, common depth, etc.
- Gestalt principles are an inspiration to computer vision
- they seem to rely on nature of objects in the world, most do not involve higher level knowledge (object recognition)
- should help to segment objects without necessarily performing object recognition
- But most are difficult to implement in algorithms
- used often
- color, proximity
- we will use these as well
- used sometimes
- convexity, good continuation, common motion, colinearity

Image Segmentation

- Many types of image segmentation

regions

superpixels

figure-ground
- We will focus on figure-ground (FG)
- also called object/background segmentation
- Suppose the object is brighter than the background

- Threshold gray scale image f :
if $f(x, y)<T$ then pixel (x, y) is background if $f(x, y) \geq T$ then pixel (x, y) is foreground

$T=120$

$T=180$

$T=220$

FG Segmentation: Thresholding

- Tiny isolated foreground regions, isolated background regions
- Result looks wrong even if you did not know object is a swan

- Can we clean this result up?

FG Segmentation: Motivation

- Know object is light, background is dark
- Do not know object shape
- show background with red, foreground with blue

bad result: crazy object shape

bad result: object is dark, background light

good result: light object of good shape, dark background

FG Segmentation: Energy Function

- Formulate an objective or energy function E to measure how good segmentation is
- low value means good segmentation
- After energy function is designed, search over all possible segmentations for the best one
- one with lowest energy

FG Segmentation: Energy Function

- Energy has two terms
- data term:
- makes it cheap to assign light pixels to foreground, expensive to the background
- makes it cheap to assign dark pixels to the background, and expensive to the foreground

input image f
- smoothness term: ensures nice object shape
- both terms are needed for a good energy function

FG Segmentation: Data Term

- Should be cheap to assign light pixels to foreground, expensive to the background
- For each pixel (x, y), we will pay $\boldsymbol{D}_{(x, y)}$ (background) to assign it to background and $\boldsymbol{D}_{(x, y))}$ (foreground) to assign it to the foreground
- Let the smallest image intensity be 5, and largest 20
$\boldsymbol{D}_{(x, y)}($ background $)=f(x, y)-5$
$D_{(x, y)}($ foreground $)=20-f(x, y)$

input image f

6	12	14	6	14
12	14	14	8	8
14	14	15	5	2
8	6	8		
6	14			

background data term D

9	3	1	9	1
3	1	1	7	7
1	1	0	10	1
7	9	7		15
9	1			

foreground data term D

- Brown pixel prefers foreground, green prefers background

FG Segmentation: Data Term

- $E_{\text {data }}$ sums data $D_{(x, y)}$ term over all pixels ($\boldsymbol{x}, \boldsymbol{y}$)
- Foreground blue, background red

6	12	14	6	14
12	14	14	8	8
14	14	15	5	2
8	6	8		0
6	14	2		0

background D

9	3	1	9	1
3	1	1	7	7
1	1	0	10	13
7	9	7	15	15
9	1	13	15	15

foreground D

$$
\begin{aligned}
E_{\text {data }}= & 6+3+1+6+1+ \\
& 3+1+1+7+7+ \\
& 1+1+0+5+2+ \\
& 7+6+7+0+0+ \\
& 6+1+2+0+0 \\
& =64
\end{aligned}
$$

$\mathbf{E}_{\text {data }}=283$

$$
E_{\text {data }}=97
$$

FG Segmentation: Smoothness Term

- Smoothness term: ensures nice object shape
- Consider segmentations below

17 discontinuities

$$
E_{\text {smooth }}=17
$$

8 discontinuities
$E_{\text {smooth }}=8$
nice shape

7 discontinuities
$E_{\text {smooth }}=7$

- discontinuity: when two nearby pixels are in different segments
- smoothness term is the number of discontinuities

FG Segmentation: Total Energy

- Now combine both data and smoothness energy terms

$$
\begin{aligned}
& E_{\text {data }}=283 \\
& E_{\text {smooth }}=7 \\
& E=E_{\text {data }}+E_{\text {smooth }}=290
\end{aligned}
$$

$E_{\text {data }}=97$

$$
\mathbf{E}_{\text {smooth }}=8
$$

$$
E=E_{\text {data }}+E_{\text {smooth }}=105
$$

- What went wrong ?
- Smoothness term weighs very little relative to the data term
- it basically gets ignored in the combined energy
- Solution: increase the weight of the smoothness term

FG Segmentation: Total Energy

- Solution: increase the weight of the smoothness term

$$
E=E_{\text {data }}+\lambda E_{\text {smooth }}
$$

- Take, for example, $\lambda=10$

$$
\begin{aligned}
& E_{\text {data }}=64 \\
& \lambda E_{\text {smooth }}=170 \\
& E=E_{\text {data }}+\lambda E_{\text {smooth }}=234
\end{aligned}
$$

best

$E_{\text {data }}=97$
$\lambda E_{\text {smooth }}=80$
$E=E_{\text {data }}+\lambda E_{\text {smooth }}=177$

FG Segmentation: Energy Formula

- Now we need to put everything into formulas
- $s(x, y)$ is the segmentation label

$$
\begin{aligned}
& s(x, y)=1 \text { means }(x, y) \text { is foreground pixel } \\
& s(x, y)=0 \text { means }(x, y) \text { is background pixel }
\end{aligned}
$$

- Convenient to write pixel (x, y) as p (or q, r, \ldots)

input image f

0	1	1	0	1
1	1	1	1	1
1	1	1	0	0
1	0	1	0	0
0	1	0	0	0

segmentation s
$E(s)=E_{\text {data }}(s)+\lambda \cdot E_{\text {smooth }}(s)=\sum_{p} D_{p}\left(s_{p}\right)+\lambda \sum_{(p, q) \in N}\left[s_{p} \neq s_{q}\right]$

- where $[$ true $]=1,[$ false $]=0$

FG Segmentation: Formula Practice with $\lambda=1$

$E(s)=\sum_{p} D_{p}\left(s_{p}\right)+\lambda \sum_{(p, q) \in N}\left[s_{p} \neq s_{q}\right]$

p	q	r
v	u	w
y	h	z

pixel names background D

6	12	14
12	14	14
14	14	15

foreground D
$E\left(\begin{array}{lll}0 & 1 & 0\end{array} \quad D_{\mathrm{p}}(0)+D_{\mathrm{q}}(1)+D_{\mathrm{r}}(0) \quad\left[s_{\mathrm{p}} \neq s_{\mathrm{q}}\right]+\left[s_{\mathrm{q}} \neq s_{\mathrm{r}}\right]+\left[s_{\mathrm{v}} \neq s_{\mathrm{u}}\right]\right.$
$E\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1\end{array}\right)=$ $D_{\mathrm{v}}(0)+D_{\mathrm{u}}(0)+D_{\mathrm{w}}(0)+\left[s_{\mathrm{u}} \neq s_{\mathrm{w}}\right]+\left[s_{\mathrm{y}} \neq s_{\mathrm{h}}\right]+\left[s_{\mathrm{h}} \neq s_{z}\right]$ $D_{y}(0)+D_{h}(1)+D_{z}(1) \quad\left[s_{p} \neq s_{v}\right]+\left[s_{q} \neq s_{u}\right]+\left[s_{r} \neq s_{w}\right]$
segmentation s

$$
\left[s_{v} \neq s_{y}\right]+\left[s_{u} \neq s_{h}\right]+\left[s_{w} \neq s_{z}\right]
$$

$$
=\begin{aligned}
& 9+12+1 \\
& 3+1+1 \\
& 1+14+15
\end{aligned}+\begin{aligned}
& 1+1+0 \\
& 0+1+0 \\
& 0+1+0 \\
& 0+1+1
\end{aligned}=57+6=63
$$

FG Segmentation: Contrast Sensitive Discontinuity

- Where is object boundary more likely?

- Make discontinuity cost depend on image contrast
- helps align object boundary with image edges

- Replace $\left[\boldsymbol{s}_{\mathrm{p}} \neq \boldsymbol{s}_{\mathrm{q}}\right]$ with $\boldsymbol{w}_{\mathrm{pq}} \cdot\left[\boldsymbol{s}_{\mathrm{p}} \neq \boldsymbol{s}_{\mathrm{q}}\right]$ where $\boldsymbol{w}_{\mathrm{pq}}$ is
- large if intensities of pixels p, q are similar
- small if intensities of pixels p, q are not similar

FG Segmentation: Contrast Sensitive Discontinuity

- Good choice $w_{p q}=\lambda \cdot e^{-\frac{(f(p)-f(q))^{2}}{2 \sigma^{2}}}$
- Where $f(p)$ is intensity of pixel $p, f(q)$ intensity of pixel q
- for color image average over R, G, B channels to get $f(p)$

${ }^{9} 4$	7	${ }^{8} 6$
${ }^{8}{ }^{2}$	${ }^{5} 8{ }_{5}$	${ }^{3} 7$
${ }^{9} 4$	${ }^{2} 9$	${ }^{1} 4$

\Longleftrightarrow| 5 | 4 | 7 |
| :--- | :--- | :--- |
| 5 | 6 | 4 |
| 6 | 5 | 3 |

- Parameter σ^{2} is either set by hand (trail and error)
- or computed as average of $(f(p)-f(q))^{2}$ over all neighbors in \boldsymbol{N}

$$
\begin{aligned}
\sigma^{2} & =\frac{(5-4)^{2}+(4-7)^{2}+(5-6)^{2}+(6-4)^{2}+(6-5)^{2}+(5-3)^{2}+(5-5)^{2}+(4-6)^{2}+(7-4)^{2}+(5-6)^{2}+(6-5)^{2}+(4-3)^{2}}{12} \\
& =3
\end{aligned}
$$

FG Segmentation: Contrast Sensitive Discontinuity

- Good choice $w_{\mathrm{pq}}=\lambda \cdot e^{-\frac{(f(p)-f(q))^{2}}{2 \sigma^{2}}}$
- Parameter σ^{2} estimates a "typical" (average) intensity difference between pixels
- Smaller weight edges between pixels with less than typical intensity difference
- Larger edge weights between pixels with typical intensity difference
- Complete energy
- note that is now folded into $\boldsymbol{w}_{\mathrm{pq}}$

$$
E(s)=\sum_{p} D_{p}\left(s_{p}\right)+\sum_{(p, q) \in N} w_{p q}\left[s_{p} \neq s_{q}\right]
$$

FG Segmentation: Example

$$
E(s)=\sum_{p} D_{p}\left(s_{p}\right)+\sum_{(p, q) \in N} w_{p q}\left[s_{p} \neq s_{q}\right]
$$

p	q	r
v	u	w
y	h	z

pixel names

contrast sensitive weights
$\boldsymbol{E}\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & \\ 0 & 1 & 1\end{array}\right)=\quad 3 \cdot\left[s_{\mathrm{p}} \neq s_{\mathrm{q}}\right]+2 \cdot\left[s_{\mathrm{q}} \neq s_{\mathrm{r}}\right]+6 \cdot\left[s_{\mathrm{v}} \neq s_{\mathrm{u}}\right]$
$3 \cdot\left[s_{\mathrm{p}} \neq s_{\mathrm{v}}\right]+2 \cdot\left[s_{\mathrm{q}} \neq s_{\mathrm{u}}\right]+6 \cdot\left[s_{\mathrm{r}} \neq s_{\mathrm{w}}\right]$ $4 \cdot\left[s_{v} \neq s_{y}\right]+2 \cdot\left[s_{u} \neq s_{h}\right]+1 \cdot\left[s_{w} \neq s_{z}\right]$

$$
=57+\begin{aligned}
& 3+2+0 \\
& 0+7+0 \\
& 0+2+0 \\
& 0+2+1
\end{aligned}=57+15=72
$$

FG Segmentation: Optimization

- We are all set to find the best segmentation \boldsymbol{s}^{*}

$$
s^{*}=\arg \min _{s} E(s)
$$

- How to do this efficiently?
- Even for a 9 pixel image, there are 2^{9} possible segmentations!

- $O\left(2^{n}\right)$ for an n pixel image

FG Segmentation: Optimization Graph

- Build weighted graph
- one node per pixel
- connect to neighbor pixel nodes with weight $\boldsymbol{w}_{\text {pq }}$
- two special nodes (terminals) source $s, \operatorname{sink} t$

9	3	1
3	1	1
1	1	0

6	12	14
12	14	14
14	14	15

foreground D background D

- \boldsymbol{s} connects to each pixel node \boldsymbol{p} with weight $\boldsymbol{D}_{\mathrm{p}}(0)$
- \boldsymbol{t} connects to each pixel node \boldsymbol{p} with weight $\boldsymbol{D}_{\mathrm{p}}(1)$
- graph below omits most of these edges for clarity

contrast sensitive weights

p	q	r
v	u	w
y	h	z

FG Segmentation: Optimization with Graph Cut

- Cut is subset of edges \boldsymbol{C} s.t. removing \boldsymbol{C} from graph makes s and t disconnected
- cost of cut \boldsymbol{C} is sum of its edge weights
- Minimum Graph Cut Problem
- find a cut C of minimum cost
- Minimum cut C gives the smallest cost segmentation [Boykov\&Veksler, 1998]
- nodes that stay connected to source in the 'cut' graph become foreground
- nodes that stay connected to sink in the ‘cut' graph become background
- In the example, \boldsymbol{p} gets background label, \boldsymbol{v} and \boldsymbol{y} get foreground label
- Efficient algorithms for min-cut/max-flow

cut of cost 38
min cut of cost 13

FG Segmentation: Segmentation Result

input

segmentation

- Data terms
- blue means low weight, red high weight

foreground

background
- Contrast sensitive edge weights
- dark means low weight, bright high weight

horizontal

vertical

FG Segmentation: Interactive

- What if we do not know object/background color?
- Can ask user for help
- Interactive Segmentation [Boykov\&Jolly, 2001]

background D

foreground D
- User scribbles foreground and background seeds
- these are hard constrained to be foreground and background, respectively
- for any pixel \boldsymbol{p} that user marks as a foreground, set $\boldsymbol{D}_{\mathrm{p}}(1)=0, \boldsymbol{D}_{\mathrm{p}}(0)=\infty$
- for any pixel \boldsymbol{p} that user marks as a background, set $\boldsymbol{D}_{\mathrm{p}}(1)=\infty, \boldsymbol{D}_{\mathrm{p}}(0)=0$
- for unmarked pixels, set $\boldsymbol{D}_{\mathrm{p}}(1)=\boldsymbol{D}_{\mathrm{p}}(0)=0$
- Smoothness term is as before
- Contrast sensitive works best for interactive segmentation

FG Segmentation: Interactive Results

- Initial seeds:

- Add more seeds for correction:

FG Segmentation: More Interactive Results

General Grouping or Clustering

- General Clustering (Grouping)
- Have samples (also called feature vectors, examples, etc.) $\boldsymbol{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}$
- Cluster similar samples into groups

- This is also called unsupervised learning
- samples have no labels
- think of clusters as 'discovering' labels

How does this Relate to Image Segmentation?

- Represent image pixels as feature vectors $\boldsymbol{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}$
- For example, each pixel can be represented as
- intensity, gives one dimensional feature vectors
- color, gives three-dimensional feature vectors
- color + coordinates, gives five-dimensional feature vectors
- Cluster them into \boldsymbol{k} clusters, i.e. \boldsymbol{k} segments

feature vectors for clustering based on color
$\left[\begin{array}{lll}9 & 4 & 2\end{array}\right] \quad\left[\begin{array}{lll}7 & 3 & 1\end{array}\right]\left[\begin{array}{lll}8 & 6 & 8\end{array}\right]$
$\left[\begin{array}{lll}8 & 2 & 4\end{array}\right] \quad\left[\begin{array}{lll}5 & 8 & 5\end{array}\right] \quad\left[\begin{array}{lll}3 & 7 & 2\end{array}\right]$
$\left[\begin{array}{lll}9 & 4 & 5\end{array}\right]$
$\left[\begin{array}{lll}2 & 9 & 3\end{array}\right] \quad\left[\begin{array}{lll}1 & 4 & 4\end{array}\right]$

How does this Relate to Image Segmentation?

input image		
${ }^{9} 4$	${ }^{7} 3$	${ }^{8} 6$
${ }^{8}$	${ }^{5} 8$	${ }^{3} 7$
${ }^{9} \times 15$	${ }^{2} 9$	${ }^{1} 4$

feature vectors for
clustering based on color and image coordinates
[9 422000$]\left[\begin{array}{lllll}7 & 3 & 1 & 0 & 1\end{array}\right]\left[\begin{array}{lllll}8 & 8 & 0 & 2\end{array}\right]$

[9 4 5 2 0) [$\left.\begin{array}{lllll}2 & 9 & 3 & 2 & 1\end{array}\right]\left[\begin{array}{lllll}1 & 4 & 4 & 2\end{array}\right]$

K-means Clustering: Objective Function

- Probably the most popular clustering algorithm
- assumes know the number of clusters should be \boldsymbol{k}
- Optimizes (approximately) the following objective function

$$
J_{S S E}=\sum_{i=1}^{k} \sum_{x \in D_{i}}\left\|x-\mu_{i}\right\|^{2}
$$

K-means Clustering: Objective Function

Good (tight) clustering smaller value of $J_{S S E}$

Bad (loose) clustering larger value of $J_{\text {SSE }}$

K-means Clustering: Algorithm

- Initialization step

1. pick \boldsymbol{k} cluster centers randomly

K-means Clustering: Algorithm

- Initialization step

1. pick \boldsymbol{k} cluster centers randomly

K-means Clustering: Algorithm

- Initialization step

1. pick \boldsymbol{k} cluster centers randomly
2. assign each sample to closest center

K-means Clustering: Algorithm

- Initialization step

1. pick \boldsymbol{k} cluster centers randomly
2. assign each sample to closest center

- Iteration step

1. compute means in each cluster

K-means Clustering: Algorithm

- Initialization step

1. pick \boldsymbol{k} cluster centers randomly
2. assign each sample to closest center

- Iteration step

1. compute means in each cluster
2. re-assign each sample to the closest mean

K-means Clustering: Algorithm

- Initialization step

1. pick \boldsymbol{k} cluster centers randomly
2. assign each sample to closest center

- Iteration step

1. compute means in each cluster
2. re-assign each sample to the closest mean

- Iterate until clusters stop changing

K-means Clustering: Algorithm

- Initialization step

1. pick \boldsymbol{k} cluster centers randomly
2. assign each sample to closest center

- Iteration step

1. compute means in each cluster
2. re-assign each sample to the closest mean

- Iterate until clusters stop changing
- Can prove that this procedure decreases the value of the objective function $J_{\text {SEE }}$

K-means: Approximate Optimization

- K-means is fast and works quite well in practice
- But can get stuck in a local minimum of objective $J_{\text {SEE }}$
- not surprising, since the problem is NP-hard
initialization
00
0
0
0
converged to local min

global minimum

K-means Clustering: Example

- with $k=2$

9			7			8		
	4	2		3			6	
		2		1		8		
8			5			3		
	2			8			7	
		4			5			2
9		2		1				
	4			9			4	
		5			3			4

feature vectors

$\left[\begin{array}{lll}8 & 2 & 4\end{array}\right] \quad\left[\begin{array}{lll}5 & 8 & 5\end{array}\right] \quad\left[\begin{array}{lll}3 & 7 & 2\end{array}\right]$
$\left[\begin{array}{lll}9 & 4 & 5\end{array}\right] \quad\left[\begin{array}{lll}2 & 9 & 3\end{array}\right]\left[\begin{array}{lll}1 & 4 & 4\end{array}\right]$

K-means Clustering: Example

- with $\boldsymbol{k}=2$
- Initialize
- pick[942][5 8 5] as cluster centers

9			7		8			
	4	2		3			6	
8			5			3		
	2			8			7	
		4		5		2		
9		2		1				
	4			9			4	
		5			3			4

feature vectors
$\left[\begin{array}{lll}9 & 4 & 2\end{array}\right] \quad\left[\begin{array}{lll}7 & 3 & 1\end{array}\right] \quad\left[\begin{array}{lll}8 & 6 & 8\end{array}\right]$
[8 2 24$]\left[\begin{array}{lll}5 & 8 & 5\end{array}\right] \quad\left[\begin{array}{lll}3 & 7 & 2\end{array}\right]$
$\left[\begin{array}{lll}9 & 4 & 5\end{array}\right] \quad\left[\begin{array}{lll}2 & 9 & 3\end{array}\right]\left[\begin{array}{lll}1 & 4 & 4\end{array}\right]$

K-means Clustering: Example

- with $\boldsymbol{k}=2$
- Initialize
- pick[942][5 8 5] as cluster centers
- assign each feature vector to closest center

$\operatorname{dist}\left(\left[\begin{array}{lll}9 & 4 & 2\end{array}\right]-\left[\begin{array}{lll}9 & 4 & 2\end{array}\right]\right)=0 \Rightarrow\left[\begin{array}{lll}9 & 4 & 2\end{array}\right]$ goes to pink cluster

K-means Clustering: Example

- with $\boldsymbol{k}=2$
- Initialize
- pick[942][5 8 5] as cluster centers
- assign each feature vector to closest center

$\operatorname{dist}\left(\left[\begin{array}{lll}9 & 4 & 2\end{array}\right]-\left[\begin{array}{lll}9 & 4 & 2\end{array}\right]\right)=0 \Rightarrow\left[\begin{array}{lll}9 & 4 & 2\end{array}\right]$ goes to pink cluster
$\left.\begin{array}{l}\operatorname{dist}\left(\left[\begin{array}{lll}7 & 3 & 1\end{array}\right]-\left[\begin{array}{lll}9 & 4 & 2\end{array}\right]\right)=(7-9)^{2}+(3-4)^{2}+(1-2)^{2}=6 \\ \operatorname{dist}\left(\left[\begin{array}{lll}7 & 3 & 1\end{array}\right]-\left[\begin{array}{lll}5 & 8 & 5\end{array}\right]\right)=(7-5)^{2}+(3-8)^{2}+(1-5)^{2}=45\end{array}\right] \begin{array}{lll}{\left[\begin{array}{lll}7 & 3 & 1\end{array}\right] \text { goes }} \\ \text { to pink cluster }\end{array}$

K-means Clustering: Example

- with $\boldsymbol{k}=2$
- Initialize
- pick[942][5 8 5] as cluster centers
- assign each feature vector to closest center

$\operatorname{dist}\left(\left[\begin{array}{lll}9 & 4 & 2\end{array}\right]-\left[\begin{array}{lll}9 & 4 & 2\end{array}\right]\right)=0 \Rightarrow\left[\begin{array}{lll}9 & 4 & 2\end{array}\right]$ goes to pink cluster
$\left.\begin{array}{l}\operatorname{dist}\left(\left[\begin{array}{lll}7 & 3 & 1\end{array}\right]-\left[\begin{array}{lll}9 & 4 & 2\end{array}\right]\right)=(7-9)^{2}+(3-4)^{2}+(1-2)^{2}=6 \\ \operatorname{dist}\left(\left[\begin{array}{lll}7 & 3 & 1\end{array}\right]-\left[\begin{array}{lll}5 & 8 & 5\end{array}\right]\right)=(7-5)^{2}+(3-8)^{2}+(1-5)^{2}=45\end{array}\right] \begin{aligned} & {\left[\begin{array}{lll}7 & 3 & 1\end{array}\right] \text { goes }} \\ & \text { to pink cluster }\end{aligned}$
$\operatorname{dist}\left(\left[\begin{array}{lll}8 & 6 & 8\end{array}\right]-\left[\begin{array}{lll}9 & 4 & 2\end{array}\right]\right)=(8-9)^{2}+(6-4)^{2}+(8-2)^{2}=41$
[8 6 8] goes $\left.\operatorname{dist}\left(\left[\begin{array}{lll}8 & 6 & 8\end{array}\right]-\left[\begin{array}{lll}5 & 8 & 5\end{array}\right]\right)=(8-5)^{2}+(6-8)^{2}+(8-5)^{2}=22\right]$ to blue cluster

K-means Clustering: Example

- with $k=2$
- Initialize
- pick[942][5 8 5] as cluster centers
- assign each feature vector to closest center
- repeat for the rest of feature vectors

$$
\left.\begin{array}{lll}
8 & 2 & 4
\end{array}\right]\left[\begin{array}{lll}
5 & 8 & 5
\end{array}\right]\left[\begin{array}{lll}
3 & 7 & 2
\end{array}\right]
$$

initial clustering

K-means Clustering: Example

- Iterate
- compute cluster means

$$
\begin{aligned}
& \mu_{1}=\frac{\left[\begin{array}{lll}
9 & 4
\end{array}\right]+\left[\begin{array}{lll}
7 & 3 & 1
\end{array}\right]+\left[\begin{array}{lll}
8 & 2 & 4
\end{array}\right]+\left[\begin{array}{lll}
9 & 4 & 5
\end{array}\right]}{4}=\left[\begin{array}{lll}
8.25 & 3.25 & 3
\end{array}\right] \\
& \mu_{2}=\frac{\left[\begin{array}{lll}
8 & 6 & 8
\end{array}\right]+\left[\begin{array}{lll}
5 & 8 & 5
\end{array}\right]+\left[\begin{array}{lll}
3 & 7 & 2
\end{array}\right]+\left[\begin{array}{lll}
2 & 9 & 3
\end{array}\right]+\left[\begin{array}{lll}
1 & 4 & 4
\end{array}\right]}{5}=\left[\begin{array}{lll}
3.8 & 6.8 & 4.4
\end{array}\right]
\end{aligned}
$$

K-means Clustering: Example

- Iterate
- compute cluster means

$$
\begin{aligned}
& \mu_{1}=\left[\begin{array}{lll}
8.25 & 3.25 & 3
\end{array}\right] \\
& \mu_{2}=\left[\begin{array}{lll}
3.8 & 6.8 & 4.4
\end{array}\right]
\end{aligned}
$$

- reassign samples to the closest mean
initial clustering

9		7			8		
	4	2		3			6
				1			8
8			5			3	

$$
\begin{aligned}
& \operatorname{dist}\left(\left[\begin{array}{lll}
9 & 4 & 2
\end{array}\right]-\left[\begin{array}{llll}
8.25 & 3.25 & 3
\end{array}\right]\right)=(8.25-9)^{2}+(3.25-4)^{2}+(3-2)^{2} \approx 2 \\
& \operatorname{dist}\left(\left[\begin{array}{lll}
9 & 4 & 2
\end{array}\right]-\left[\begin{array}{lll}
3.8 & 6.8 & 4.4
\end{array}\right]\right)=\left(\begin{array}{lll}
9 & 4 & 2
\end{array}\right] \text { goes }
\end{aligned}
$$

K-means Clustering: Example

- Iterate
- compute cluster means

$$
\begin{aligned}
& \mu_{1}=\left[\begin{array}{lll}
8.25 & 3.25 & 3
\end{array}\right] \\
& \mu_{2}=\left[\begin{array}{lll}
3.8 & 6.8 & 4.4
\end{array}\right]
\end{aligned}
$$

- reassign samples to the closest mean

- repeat for

$$
\left.\begin{array}{l}
\\
\\
{\left[\begin{array}{lll}
8 & 2 & 4
\end{array}\right]}
\end{array} \begin{array}{lll}
7 & 3 & 1
\end{array}\right]\left[\begin{array}{lll}
{\left[\begin{array}{llll}
5 & 8 & 5
\end{array}\right]}
\end{array} \begin{array}{lll}
3 & 6 & 7
\end{array}\right]
$$

- Converged after one iteration
- for larger images, usually 10-20 iterations enough for convergence

K-means Clustering: Examples

$k=10$

K-means Properties

- Works best when clusters are spherical (blob like)

$$
\begin{array}{lll}
0_{0}^{0} & 0_{0}^{0} \\
0_{0}^{0} & 0_{0}^{0} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 \\
0 & 0 \\
0
\end{array}
$$

- Fails for elongated clusters
- $J_{\text {SEE }}$ is not an appropriate objective function in this case

- Sensitive to outliers

-

K-means Summary

- Advantages
- Principled (objective function) approach to clustering
- Simple to implement
- Fast
- Disadvantages
- Only a local minimum is found
- May fail for non-blob like clusters
- Sensitive to initialization
- Sensitive to choice of \boldsymbol{k}
- Sensitive to outliers

Back to FG Segmentation: Improving Data Term

user strokes

initial result

- Can improve segmentation with more user strokes
- But can we get a better initial result?
- We are not using color information in the image effectively

FG Segmentation: Improving Data Term

foreground D

background D

- Data terms are 0 for most pixels
- no preference to either foreground or background
- However
- background strokes are mostly green
- foreground strokes are mostly grey
- Can we push green non-seed pixels to prefer background?
- Can we push grey non-seed pixels to prefer foreground?

FG Segmentation: Improving Data Term

background D

Currently have:

$$
\begin{aligned}
& D_{p}(0)=0 \\
& D_{p}(1)=0
\end{aligned}
$$

$$
D_{q}(0)=0
$$

$$
D_{q}(1)=0
$$

Want to have:
$D_{p}(0)=$ small
$D_{p}(1)=$ large
$D_{\mathrm{q}}(0)=$ large
$D_{q}(1)=$ small

FG Segmentation: Color Distributions

- Build color distribution from foreground seeds

- Build color distribution from background seeds

FG Segmentation: Color Distributions

- Build color distribution from foreground seeds

- Build color distribution from background seeds

- Normalized histogram for distribution
$\boldsymbol{P}_{\text {foreground }}($ color $)=\frac{\text { number of foreground seeds of color }}{\text { total number of foreground seeds }}$

FG Segmentation: Color Distributions

- For green pixels $p, \boldsymbol{P}_{\text {background }}(p)$ is high, $\boldsymbol{P}_{\text {backrround }}(p)$ low
- We want just the opposite for the data term
- Convert to "opposite" using - $\log ()$

- Do the same for the foreground

FG Segmentation: Color Distributions

- $\boldsymbol{D}_{\mathrm{p}}($ foreground $)=-\log \boldsymbol{P}_{\text {foreground }}($ color of $\boldsymbol{p})$
- $\boldsymbol{D}_{\mathrm{p}}($ background $)=-\log \boldsymbol{P}_{\text {background }}($ color of $p)$
- Problem
- The number of colors is too high: 256^{3}
- too large to build a normalized histogram
- Cluster colors using kmeans clustering, and treat each cluster as the "new" color

FG Segmentation: Cluster Colors

- Need to reduce number of colors
- Group similar colors together and treat the group as the same color
- 10 color clusters with kmeans
- cluster 1 = color 1
- cluster 2 = color 2
- cluster $10=$ color 10
- Now we only have 10 colors
- Build foreground/background color models over 10 "new" colors

clusters visualized with random colors

pixels painted with average color of pixels in its cluster

Example

- In matlab, use kmeans([R(:),G(:),B(:)]) to get kmeans clustering, where R, G, B are image color channels
image with seeds

9			7			8		
	4	2		3			6	
		2		1		8		
8			5			3		
	2			8			7	
		4		5		2		
9					1			
	4			9			4	
		5		3		4		

- Foreground histogram

color index	1	2	3
count	0	2	1

- Normalized F-histogram

color index	1	2	3
count	0	$2 / 3$	$1 / 3$

kmeans

- Background histogram

color index	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
count	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{0}$

- Normalized B-histogram

color index	1	2	3
count	$2 / 2$	0	0

Example

- Normalized F-histogram

color index	1	2	3
count	0	$2 / 3$	$1 / 3$

- Foreground data cost (-log histF)

color index	1	2	3
count	∞	0.4	1.1

- Normalized B-histogram

color index	1	2	3
count	$2 / 2$	0	0

- Background data cost (-log histB)

color index	1	2	3
count	0	∞	∞

- Do not want infinity costs
- Problem? Zero counts in histogram
- Smooth histogram by adding 1 to every bin count

Example

- Foreground histogram

color index	1	2	3
count	0	2	1

- Smoothed F-histogram

color index	$\mathbf{1}$	$\mathbf{2}$	3
count	1	3	2

- Normalized F-histogram

color index	1	2	3
count	$1 / 6$	$3 / 6$	$2 / 6$

- Foreground data cost (-log histF)

color index	1	2	3
count	1.8	0.7	1.1

- Background histogram

color index	1	2	3
count	2	0	0

- Smoothed B-histogram

color index	1	2	3
count	3	1	1

- Normalized B-histogram

color index	1	2	3
count	$3 / 5$	$1 / 5$	$1 / 5$

- Background data cost (-log histB)

color index	1	2	3
count	0.5	1.6	1.6

FG Segmentation: Segmentation Result

user input

reduced colors

segmentation

foreground D

background D

blue pixels prefer foreground red pixels prefer background

