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Why Model Language? 
• Design probability model P() such that 
• Spell checker:  

• P(I think there are OK) < P(I think they are OK) 

• Speech recognition:  
• P(lie cured mother) < P(like your mother) 

• Optical character recognition 
• P(thl cat) < P(the cat) 

• Machine translation: “On voit Jon à la télévision” 
• P(In Jon appeared TV) < P(Jon appeared on TV) 

• Many other applications 



Language Model for Speech Recognition 



Language Model for Speech Recognition 



Language Model for Speech Recognition 



Language Model for Speech Recognition 



Basic Probability 
• P(X) is probability that X is true 

• P(baby is a boy) = 0.5 (1/2 of all babies are boys) 
• P(baby is named John) = 0.001 (1 in1000 babies  named John) 

                                          Babies Baby boys 
 

John 



Joint probabilities 
• P(X,Y) is probability that X and Y are both true 

 

 P(brown eyes, boy) = (number of all baby boys with 
brown eyes)/(total number of babies) 

 

                                          Babies Baby boys 
 

John Brown eyes 



Conditional probability 
• P(X|Y) is probability that X is true when we already 

know Y is true 

                                          Babies Baby boys 
 

John 



Conditional Probability 
• P(X|Y) = P(X, Y) / P(Y) 
• P(baby is named John | baby is a boy) = 

     

                                          Babies Baby boys 
 

John 

P(baby is a boy) 
P(baby is named John, baby is a boy) = 002.0

5.0
001.0 =

•  P(baby is a boy | baby is named John ) = 1 



Chain Rule 
• Conditional Probability 

 P(Y|X) =P(X,Y) / P(X) 
• Rewrite                  

P(X,Y) = P(Y|X) P(X) 
 

• Extend to three events 
P(X,Y,Z) = P(Y,Z|X)P(X) = P(Z|X,Y)P(Y|X)P(X) 

 

• Extend to multiple events 
  P(X1,X2,…,Xn) = P(X1)P(X2|X1)P(X3|X1X2)…P(Xn|X1,…,Xn-1) 
 



Language Modeling 
• Start with vocabulary  

• words vocabulary  V = {a, an, apple,…, zombie} 
• or character vocabulary V = {a, A,…., z, Z,*,…, -} 

• In LM, events are sequences of words (or characters) 
• Example “an apple fell” or “abracadabra!!!+” 
• P(an apple fell) is the probability of the joint event that  

• the first word in a sequence is “an” 
• the second word in a sequence is “apple”  
• the third word in a sequence is “fell” 

• P( fell | an apple ) is probability that the third word in a 
sequence is “fell” given that the previous 2 words are 
“an apple” 



Probabilistic Language Modeling 
• A language model is a probability distribution over 

word or character sequences    
  P(W) = P(w1w2w3w4w5…wk) 

• Want: 
•  P(“And nothing but the truth”)  ≈ 0.001 
•  P(“And nuts sing on the roof”) ≈ 0.000000001 

• Related task: probability of an upcoming word: 
P(w5|w1,w2,w3,w4) 

• A model that computes either of these: 
          P(W)    or    P(wk|w1,w2…wk-1)     

is called a language model 
• Build model P from observed texts (corpora) 

 



Probabilistic Language Modeling 
• Get lots of training text (corpora) 
• Use it to estimate P(w1w2w3w4w5…wk) : 

 

• Naïve idea: ( ) ( )
N
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• where  C(w1w2…wk) is the number of times (count) sentence 
w1w2…wk   appears in training data 

• N is number of sentences in training data  

• Problem: language is infinite, many reasonable English 
sentences do not  appear in training data 
• “A happy new mother first put on a purple polka-dot dress on 

her baby daughter,  and then kissed her tiny left toe. ” 
• Do not want any sentence to have probability 0 
 



Markov Assumption 
• Can we make some simplifying assumptions? 
• Consider  

P(computer | instead of listening to this boring 
lecture, I would like to play on my ) 

• Probability that  “computer” follows  “Instead 
of listening to this boring lecture, I would like 
to play on my” is intuitively almost the same 
as probability that “computer” follows words 
“play on my” 

• Probability of the next word depends most 
strongly on just a few previous words 

     



Shannon Game (1951) 

“I am going to make a collect …” 
 

• Predict next word/character given n-1 previous words/characters 
• Human subjects were shown a few characters of text and were 

asked to guess the next character 
• As context increases, entropy decreases  

• the smaller the entropy => the larger probability of predicting next letter 

• But only a few words is enough to make a good prediction on the 
next word, in most cases 

• Evidence that we only need to look back at n-1 previous words  

Context 0 1 2 3 
Entropy (H) 4.76 4.03 3.21 3.1 



n-grams 
• n-gram model: probability of a word depends only 

on the n-1 previous words (the history) 

P(wk |w1w2…wk-nwk+1-n…wk-1) ≈ P(wk |wk+1-n…wk-1) 

• This called Markov Assumption: only the closest n 
words are relevant 

• Special cases: 
• Unigram (n=1): previous words do not matter 
• Bigram    (n=2): only the previous one word matters 
• Trigram   (n=3): only the previous two words matter 



Example: Trigram Approximation (n = 3) 

• Each word depends only on previous two words  
• three words total with the current one 
• tri means three 
• gram means writing 

 
• P(the|… whole truth and nothing but) ≈  

P(the|nothing but) 
 

• P(truth|… whole truth and nothing but the) ≈  
P(truth|but the) 



Chain Rule 
 

 
• First Decompose using the chain rule 
     P(and nothing but the truth) =      

x P(but|and nothing)  

x P(the|and nothing but)   

x P(truth|and nothing but the)   

   P(and)   

x P(nothing|and)  

• P(and nothing but the truth) ≈  
           P(and)P(nothing|and) P(but|and nothing)                                                

.      P(the|nothing but) P(truth|but the)     



How Compute Trigram Probabilities? 
• P(w3 | w1 w2) ≈ ? 

• these probabilities are usually called parameters 
 

• First rewrite 
P(w3 | w1 w2) =  

P(w1 w2 w3) 
P(w1 w2)  

• Need to estimate P(w1 w2 w3), P(w1 w2), P(w1), etc. 
•  call these trigram, bigram, unigram, etc. 

• Get lots of real text, and approximate based on counts 
 

P(w1 w2w3) =  C(w1 w2 w3 ) 
number of trigrams in text 

 

•  C(w1 w2 w3) is number of times w1 w2 w3 observed in training text 
 



Small Trigram Example 
• Training text 

 “and nothing but the truth when nuts and nothing on the roof” 
 

• Training text has 12 unigrams, 11 bigrams, 10 trigrams 
 

P(but |and nothing) = 
P(and nothing but ) 

P(and nothing) 

P(and nothing but) = 
C(and nothing but ) 

10 
                                    = 

1 
10 

P(and nothing) = 
C(and nothing ) 

11 
                                    = 

2 
11 

1/10 
2/11 

11 
20 = = 



How Compute Trigram Probabilities? 
• In practice in a file with N words 

• N unigrams  
• N-1 bigrams 
• N-2 trigrams, etc. 

• For large N  dividing by N, or N-1, or N-2 makes no 
difference in practice 
 

5/10,000,006  =almost  5/10,000,005 =almost 5/10,000,004 
 

• For previous example 
 

P(but |and nothing) =             = 
1/12 
2/12 

1 
2 



How Compute Trigram Probabilities? 
• Calculations simplify 

P(w3 | w1 w2) =  
C(w1 w2 w3)/N 

C(w1 w2)/N 
                         =  

C(w1 w2 w3) 
C(w1 w2) 

• This also avoids P > 1 
• Consider training text again 

“and nothing but the truth when nuts and nothing on the roof” 

 
 

• With exact arithmetic, i.e. N-2, N-1 

P(truth |but the) =              C(but the truth) /10  
C(but the) /11  

1/10 
1/11 

11 
10 

=             =              



Computing Trigrams 

P(w3 | w1 w2) =  
C(w1 w2 w3)  

C(w1w2)  

   P(w1 w2 w3) =  C(w1 w2 w3)  
N 

• where N is number of words in training text 

• From now on 



Trigrams, continued 

• N is the number of words in training text 
 

• P(and nothing but the truth) ≈  
           P(and)P(nothing|and) P(but|and nothing)      
    .      P(the|nothing but) P(truth|but the)     

C(and nothing) 

C(and) 
 

 
 

C(and) =  
 
 
 

      N 
 
 
 
 

    C(and nothing but) 

    C(and nothing) 

 C(nothing but the) 

 C(nothing but) 

    C(but the truth) 
    C(but the) 



Text Generation with n-grams  
• Trained on 40 million words from WSJ (wall street journal) 
• Generate next word according to the n-gram model 
• Unigram  

• Months the my and issue of year foreign new exchange’s September were 
recession exchange new endorsed a acquire to six executives. 

• Bigram  
• Last December through the way to preserve the Hudson corporation 

N.B.E.C. Taylor would seem to complete the major central planner one 
point five percent of U.S.E. has already old M. X. corporation of living on 
information such as more frequently fishing to keep her. 

• Trigram  
• They also point to ninety point six billion dollars from two hundred four 

oh six three percent of the rates of interest stores as Mexico and Brazil on 
market conditions. 



Example with Sentence Start/End 
<s> I am Sam </s> 
<s> Sam I am </s> 
<s> I do not like green eggs and ham </s> 

• Training text: 

• Bigram model:    P(wi|wi-1) = 
    C(wi-1wi) 

    C(wi-1) 

• Some bigram probabilities 
P(I|<s>) = 2/3 = 0.67  P(Sam|<s>) = 1/3 = 0.33 
P(</s>|Sam) = 1/2 =0.5 P(Sam|am) = 1/2  = 0.5 
P(am|I) = 2/3 = 0.67  P(do|I) = 1/3 = 0.33 

 



Raw Bigram Counts 
• Can construct V-by-V matrix of probabilities/frequencies  
• V = size of the vocabulary we are modeling 
• Used 922 sentences 

 
 

1st
 w

or
d 

2nd word 



Bigram Probabilities 
• Normalize by unigrams to get conditional  P(second|first) 

 

• Result 

P(<s> I want chinese food </s>) = P(I|<s>)    
      ×  P(want|I)   
     ×  P(chinese|want)    
     ×  P(food|chinese)    
     ×  P(</s>|food) 
            =  .000031 

P(want|I) 



Practical Issue 
• Use log space 

• to avoid underflow 
• also adding is faster than multiplying 
• instead of P(a)×P(b)×P(c) compute log[P(a)]+ log[P(a)] +log[P(a)] 

• Example, instead of  
 P(<s> I want chinese food </s>) =P(I|<s>) ×  P(want|I)  ×  P(chinese|want)    
     ×  P(food|chinese)   ×  P(</s>|food) 
            =  .000031 

• Compute 
 log[P(<s> I want chinese food </s>)] = log[P(I|<s>)] +  log[P(want|I)] +   

              log[P(chinese|want)] + P(food|chinese) 
              + log[P(</s>|food)]  =  -4.501 

            
 



Google N-Gram Release, August 2006 

http://ngrams.googlelabs.com/ 

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html 

http://ngrams.googlelabs.com/
http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html


Which n-gram to Use? 
• “the large green ______ .” 

• “mountain”? “tree”? “pill”?  “broccoli”? …   
• “Sue swallowed the large green ______ .” 

• “pill”?  “broccoli”?   
• Knowing that Sue “swallowed” helps narrow down 

possibilities  
• Larger n gives more context, i.e. looking back further  
• But need more data to estimate larger n-grams  reliably 



Which n-gram to use?   
• Example: for a vocabulary of 20,000 words 

• number of bigrams = 400 million (20 0002) 
• number of trigrams = 8 trillion (20 0003) 
• number of four-grams = 1.6 x 1017 (20 0004) 

• number of n-grams is number of parameters to learn 
• Going from n-gram to (n+1)-gram, number of parameters  

grows by a factor of n 
• For reliable estimates, need much more data 
• But usually training data has fixed size of N words, it does 

not change when we go from n-gram to (n+1)-gram 
 



Unigram vs. Bigram Illustration 
• Suppose   

• vocabulary size is 10,000=104  
• training text has 100,000 = 105 words 

• For Unigrams 
• need to estimate unigram counts for each vocabulary word, i.e.  C(‘place’), 

C(‘apple’), etc.  
• number of parameters (unigram counts) to estimate is 104 
• on average, 105/ 104  = 10 training samples  per parameter, reasonable 

• For Bigrams 
• need to estimate bigram counts for 10 4* 104 = 108 possible bigrams 
• number of parameters (bigram counts) to estimate is 108 
• number of training samples is still 105   
• on average, have 105 /108 =10-3 training samples to fit per parameter 
• highly insufficient, need much more data 



Reliability vs. Discrimination 
• Larger n   

• greater discrimination: more information about the context  
• but less reliability: 

• cannot estimate parameters reliably from limited data (data sparseness) 

• Smaller n   
• less discrimination, not enough history to predict next word very well model 

is not as accurate 
• but more reliability 

• more instances in training data, better statistical estimates of 
parameters 

• Bigrams or trigrams are most often used in practice 
• works well, although there are longer-range dependencies not captured 



Reducing number of Parameters  
• with a 20 000 word vocabulary 

• bigram needs to store 400 million parameters 
• trigram needs to store 8 trillion parameters 
• using a language model > trigram is impractical 

• to reduce the number of parameters 
• use stems instead of word types 

• help = helps = helped 
• group words into semantic classes 

• {Monday,Tuesday,Wednesday,Thursday,Friday} = one 
word 

• seen once --> same as unseen 
 

 



Statistical Estimators 
• Count-based  parameter estimation is called 

Maximum Likelihood Estimation (MLE)  
• Not reliable due to data sparseness 

• Smoothing 
• Add-one -- Laplace 
• Add-delta   

• Lidstone’s  
• Jeffreys-Perks’ Laws (ELE) 

• Good-Turing 



Maximum Likelihood Estimation  
• Let C(w1...wn) be the frequency of n-gram w1...wn 

 

 
 
 

 

)...wC(w
)...wC(w  )...ww|(wP
1-n1

n1
1-n1nMLE =

• Maximizes probability of the training corpus 
• However, interested in good performance on test data 

 
 

 



Data Sparseness Example  
• In  training corpus, have 10 instances of “come 

across” 
• 8 times, followed by “as” 
• 1 time, followed by “more” 
• 1 time, followed by “a” 

 

10
8

across) C(come
as) across C(come  across) come |(asPMLE ==

 

• Therefore   
•   
• PMLE(more | come across) = 0.1  
• PMLE(a | come across) = 0.1  
• PMLE(X | come across) = 0  where X ≠ “as”, “more”, “a” 

 

 



• From [Balh et al 83]  
• training with 1.5 million words  
• 23% of the trigrams from another part of the same 

corpus were previously unseen 
• in Shakespeare’s work  

• out of all possible bigrams, 99.96% were never used  
• So MLE alone is not good enough estimator 

 

Problem with MLE: Data Sparseness   



Problem with MLE: Data Sparseness   
• MLE assigns a probability of zero to unseen events  
• Most likely no trigram “and nuts sing” in training data 
• Therefore estimate P(and nuts sing) = 0 
• Any sentence which has “and nuts sing” has probability 0 

•  want P(“and nuts sing”) to be small, but not 0 

• Even for unigram, probability of any unigram involving an 
unseen word will be zero  

• but … most words are rare  
• n-grams involving rare words are even more rare… data 

sparseness 
 



Discounting or Smoothing 
• MLE alone is unsuitable for NLP because of the 

sparseness of the data  
• We need to allow for possibility of seeing events not 

seen in training 
• Must use a Discounting or Smoothing technique 
• Decrease the probability of previously seen events to 

give a little bit of probability for previously unseen 
events 



Smoothing 

• Smoothing flattens spiky distributions so they generalize better 
 P(w|denied the) 
  2.5 allegations 
  1.5 reports 
  0.5 claims 
  0.5 request 
  2 other 
  7 total 

• Increase P(unseen event) → decrease P(seen event) 
• P(w|denied the) 
  3 allegations 
  2 reports 
  1 claims 
  1 request 
  7 total 



Many smoothing techniques 
• Add-one 
• Add-delta  
• Good-Turing smoothing 
• Many others 

 



 
Add-one Smoothing (Laplace’s Law 1814) 

 • Give a little bit of  probability space to unseen events 
• Pretend we have seen every n-gram at least once  
• Intuitively appended all possible n-grams to training data  

B  N
1  )w w (w C  )w w (wP n1 2

n21Add1
+

+…=…

• Training data has N n-grams 
•  The “new” size is N+B,where B is # of all possible n-grams 
• If V words in vocabulary, then: 

• B= V*V for bigrams 
• B=V*V*V for trigrams 
• etc. 

• We get:   

real data 
N bigrams 

fake data 
all possible bigrams 



Add-One Example 

B  N
1  )w w (w C  )w w (wP n1 2

n21Add1
+

+…
=…• Character model 

• Training data = “abraabr” 
• N = 7 
• bigrams = ab,br,ra,aa,ab,br 

• Let V = 256 
• With bigram approximation  (n = 2), B = 2562 

5
22Add1 106.4

256  7
3

256  7
1  (ab) C  (ab)P −×≈

+
=

+
+

=

 



How well does Add-One Smoothing Works? 

• Works ok if sparsity problem is mild 
• not a lot of missing nGrams 
• problems if  many missing nGrams 

 

 



Example Allocation to Unseen Bigrams 

111.33875x10
,75674,674,306  22,000,000

1  
BN

1 −=







+
=

+

• Data from the AP from (Church and Gale, 1991) 
• N = 22,000,000 
• V = 273,266 
• B = V2 = 74,674,306,756 
• 74,671,100,000 unseen bigrams 
• Add One probability of unseen bigram: 

 

• Portion of probability mass given to unseen bigrams: 
number of unseen bigrams x P(unseen bigram) = 

( ) 96991033875100010067174 11 ..,,, ≈×× −



Problem with add-one smoothing 
MLE          want this get this 

• each individual unseen n-gram is given a low probability 
• but there is a huge number of unseen n-grams  
• Instead of giving small portion of probability to unseen events, 

most of the probability space is given to unseen events 



Add-delta smoothing (Lidstone’s law) 
• instead of adding 1, add some smaller positive value δ   

 

B   N
  )w w (w C  )w w (wP n1 2

n21AddD
δ+

δ+…
=…

B 0.5  N
0.5  )w w (w C  )w w (wP n1 2

n21ELE
+

+…
=…

• better than add-one, but still not very good 

• This is called Lidstone’s law 
• most widely used value for δ = 0.5, in this case it’s called 

• the Expected Likelihood Estimation (ELE)  
• or the Jeffreys-Perks Law 

 
 
 
 



Add-Delta Example 
• Let us use character model 
• Training data = “abraabr” 

• N = 7 
• trigrams = abr, bra, raa, aab, abr 

• Let V = 256 
• With trigram approximation  (n = 3), B = 2563 

8
33AddD 109.5

2560.1  7
0.1

2560.1  7
0.1  (aba) C  (aba)P −×≈

⋅+
=

⋅+
+

=

B   N
  )w w (w C  )w w (wP n1 2

n21AddD
δ+

δ+…
=…



Evaluation: How good is our model? 
• Train parameters of our model on a training set 
• How to choose delta in Add-Delta smoothing? 
• Use validation or cross-validation 
• Choose model that maximizes probability of validation 

data 
 
 



Good Turing Smoothing, Preparation 
• Nr is  the number of different n-grams in training data occurring 

exactly r times 
• Example  

• training data =“catch a cow, make a cow sing, make a cow dance“ 
• bigrams  

•  “catch a” occurs 1 time 
•  “a cow” occurs 3 times 
•  “cow make” occurs 1 time  
•  “make a” occurs 2 times 
•  “cow sing” occurs 1 time 
• “sing make” occurs 1 time 
• “cow dance” occurs 1 time 

• N1 = 5 ,   N2 = 1,   N3 = 1 
• Assume  vocabulary  

 V = {a, cow, catch, sing, make,  dance, UNKNOWN} 
• Then  N0 = 72  - (N1  +  N2 +  N3 ) = 42 

 



Good Turing Smoothing, 1953 
• Nr number of different n-grams that occur  r times  
• Under MLE, N0 has no probability space 

N1 

N2 

N3 

N4 

Nmax 

old space 

• Thus probability for any n-gram with rate r is estimated 
from space occupied by n-grams with rate r+1 

• Space occupied by n-grams with rate r+1 is 

N
N)r( r 11 ++

• Spread it evenly among n-grams with rate r 

NN
N)r(

r

r 11 ++

• If n-gram x has rate r, Good Turing estimate is  ( )
r

r
GT NN

N)r(xP
⋅

+= +11

new space 

N0 

N1 

N2 

N3 

Nmax-1 

N0 Nmax 

• Good Turing idea 
• N0 steals space from N1 

• N1 steals space from N2 

• N2 steals space from N3 

• etc… 



• If n-gram x that occurs r times: ( )
r

r
GT NN

N)r(xP
⋅

+= +11

• Does not work well for high values of r 
• Nr is not reliable estimate of the number of n-grams that occur 

with rate r 
• in particular, fails for the most frequent r since Nr+1=0 

Fixing Good Turing 

N1 N2 N3 N4 N444 N443 N442 N441 N440 

just bigram 
‘it is’ 

just bigram 
‘he is’ 



 • MLE is reliable for higher values of r 
• choose threshold t, say t = 6 

• best threshold depends on data 

• for r ≥ t, use PMLE(w1…wn) = C(w1…wn)/N 
• for  r < t, use PGT  

• if using GT for rate r,  make sure Nr+1 > 0 
• also make sure 

 

Fixing Good Turing 

N1 N2 N3 N4 N444 N443 N442 N441 N440 

just bigram 
‘it is’ 

just bigram 
‘he is’ 

)1(
1

+
<+

r
r

N
N

r

r

r

1+r

N
N)1+r(

=*r• otherwise the new rate                             is larger than old rate r 



Smoothing: Fixing Good Turing  
• Have to normalize our estimates  so that they add up to 1 
• There are various ways to normalize 
• We change only the observed ngrams 

• unobserved bigrams occupy the same space as GT says they 
should occupy 
• suppose the total space for unseen n-grams is 1/20 
• normalize the weight of the observed n-grams so that the total is 19/20 



Good-Turing (GT) Example 
• PGT(n-gram occuring r times) =  

r

r

NN
N

)r( 1+1+

• Vocabulary is {a,b,c} 
• Possible bigrams: {aa,ab,ba,bb,ac,bc,ca,cb,cc} 
• Corpus: babaacbcacac 

• observed bigrams are {ba, ab, ba, aa, ac, cb, bc, ca, ac, ca, ac} 
• unobserved bigrams: bb,cc 

• Observed bigram counts  
• ab: 1, aa: 1,cb: 1, bc: 1, ba: 2, ca: 2, ac: 3 

• N0=2, N1=4, N2=2, N3=1, N = 12 
• Threshold  t = 3 

• GT up to and including r = 2, MLE starting with r = 3 and higher 

• GT:  P(bb) = P(cc)= (0+1)×(N1/(N×N0))=4/(12×2) = 1/6 
• GT:  P(ab) = P(aa)=P(cb)=P(bc)= (1+1)×(N2/(N×N1)) = 1/12 
• GT:  P(ba) = P(ca)= (2+1)×(N3/(N×N2)) = 1/8 
• MLE:  P(ac) = 3/12 = 1/4 



• Before normalization 
• Unseen bigrams 

• P’(bb) = P’(cc) = 1/6 

• Observed bigrams 
• P’(ab) = P’(aa) = P’(cb) = P’(bc) = 1/12 
• P’(ba) = P’(ca) = 1/8 
• P’(ac) = 1/4 

• P’(·)  to indicate that the above are not true probabilities, they don’t add up to 1 
• Unseen bigrams should occupy P’(bb) + P’(cc) = 1/3 of space after normalization 
• Weight of observed bigrams should be 1 – 1/3 = 2/3 

• P’(ab) + P’(aa) + P’(cb) + P’(bc) + P’(ba) + P’(ca) + P’(ac) = 10/12 = 5/6 
• Solve for y equation:   

• (5/6) × y = 2/3  
•  y = 4/5 

• Multiply  P’(·) for the observed bigrams by 4/5 
• P(ab) = P(aa) = P(cb) = P(bc)= (1/12)×(4/5) = 1/15  
• P(ba) = P(ca) = (1/8)×(4/5) = 1/10 
• P(ac) =  (1/4)×(4/5) =1/5 

Good-Turing (GT) Example, Normalization 



Good-Turing (GT) Example 
• Let’s calculate P(abcab) using our model 
• Probabilities, normalized 

• P(bb) = P(cc)= 1/6 
• P(ab) = P(aa) = P(cb) = P(bc)= 1/15  
• P(ba) = P(ca) = 1/10 
• P(ac) =  1/5 

• Also need probabilities for unigrams a,b,c, compute with MLE 
• Corpus = “babaacbcacac” 
• P(a) = 5/12, P(b) = 3/12, P(c)=4/12  

• Recall bigram approximation 
P(abcab) ≈  P(a) P(b|a) P(c|b) P(a|c) P(b|a) 

 
 

0008533.0
12/5
15/1

12/4
10/1

12/3
15/1

12/5
15/1

12
5

≈=   

  P(a)   P(b)   P(c)   P(a) 
            P(ab) P(bc) P(ca) P(ab) = P(a)  



Applications of LM: Language Identification 
• Texts in the same language share similar characteristics   

• In English  “ing”  is more probable than in French   

• Character based model 
• 26 letters (case insensitive) 
• dan also add punctuation 

• Training phase  
• pre-classified documents (known language/author) 
• construct the language model for each document class 

separately 

• Testing phase  
• compute probability of a sentence under English, Greec, etc. 

languages 
• assign to the language that gives maximum probability to the 

sentence 



• Construct character based model for ham and 
separately for spam from training data 
• use all 256 characters 
• punctuation is important 

• For new email, evaluate its character sequence using 
spam character model and ham character model 

• Highest probability model wins 
 

Spam/Ham Classification 
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