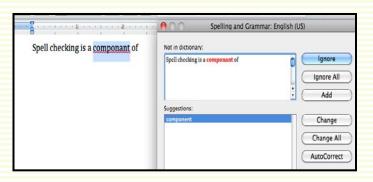
CS4442/9542b Artificial Intelligence II prof. Olga Veksler

Lecture 15 Natural Language Processing Spelling Correction


Many slides from: D. Jurafsky, C. Manning

Outline

- Types of spelling errors
 - 1. non word spelling errors
 - 2. real world spelling errors
- Spelling tasks:
 - 1. Detecting errors
 - non word spelling errors: dictionary + context
 - real word spelling errors: from context
 - 2. Correcting Errors
 - edit distance
 - Dynamic programming (DP) for computing minimum edit distance
 - noisy channel model

Applications for Spelling Correction

Word processing

Web search

Google	natura	l langge p	processing			
	Web	News	Images	Videos	Books	More 👻
	About 2	1,800,000	results (0.30	seconds)		
			l ts for nat or natural la			cessing

• Mobile devices, etc.

Types of Spelling Errors

- 1. Non-word errors (not in dictionary)
 - graffe \rightarrow giraffe
- 2. Real-word errors (in dictionary)
 - typographical errors
 - three \rightarrow there
 - cognitive errors (homophones)
 - piece \rightarrow peace
 - too → two

Non-Word Spelling Errors Detection/Correction

- Non-word spelling error detection
 - any word not in *dictionary* is an error
 - the larger the dictionary the better
- Non-word spelling error correction
 - generate *candidates*
 - real words that are similar to error
 - choose the one which is best
 - shortest weighted edit distance
 - highest noisy channel probability

Candidate Generation

- Words with similar spelling
- The user typed graffe
- Which is closest
 - graf, graft, grail, giraffe?
- Use edit distance to compute d(graffe,graf)

Damerau-Levenshtein Edit Distance

- The minimum edit distance between two strings is the minimum number of editing operations needed to transform one string into the other
- Editing operations
 - insertion
 - deletion
 - substitution
 - for spelling, also include transposition of two letters

Minimum Edit Distance

• Two strings and their **alignment**:

INTE * NTION | | | | | | | | | | * EXECUTION

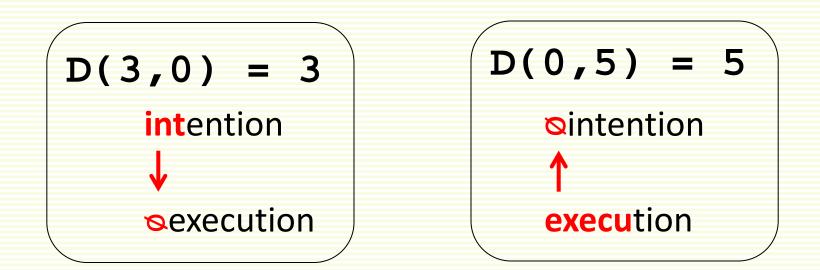
Minimum Edit Distance

INTE * NTION | | | | | | | | | | * EXECUTION d s s i s

- If each operation has cost of 1
 - distance between them is 5
- If substitutions cost more, say 2 (Levenshtein)
 - distance between them is 8

Minimum Edit as Search

- Naïve search is too expensive
- dynamic programming for efficiency


Defining Min Edit Distance

- For two strings
 - X of length n
 - Y of length m
- Define D(i,j)
 - the edit distance between X[1...i] and Y[1...j]
 - i.e., the first **i** characters of **X** and the first **j** characters of **Y**
 - the edit distance between **X** and **Y** is thus **D**(**n**,**m**)

Dynamic Programming for Min Edit Distance

- Tabular computation of D(n,m)
- Solve problems by combining solutions to subproblems
- Bottom-up
 - Initialize: compute D(i,j) for small i, j
 - Iterate: compute larger D(i,j) based on previously computed smaller values

- Initialization
 - for all i
 D(i,0) = i
 for all j
 D(0,j) = j

• Recurrence Relation (iteration)

for each i = 1...m
 for each j = 1...n

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 1 \\ 0 \text{ if } X(i) \neq Y(j) \\ 0 \text{ if } X(i) = Y(j) \end{cases}$$

The smallest of

D(int,exec) = del[t] + D(in,exec)
D(int,exec) = D(int,exe) + ins[c]
D(int,exec) = substitute[t,c] + D(in,exe)

• Recurrence Relation (iteration)

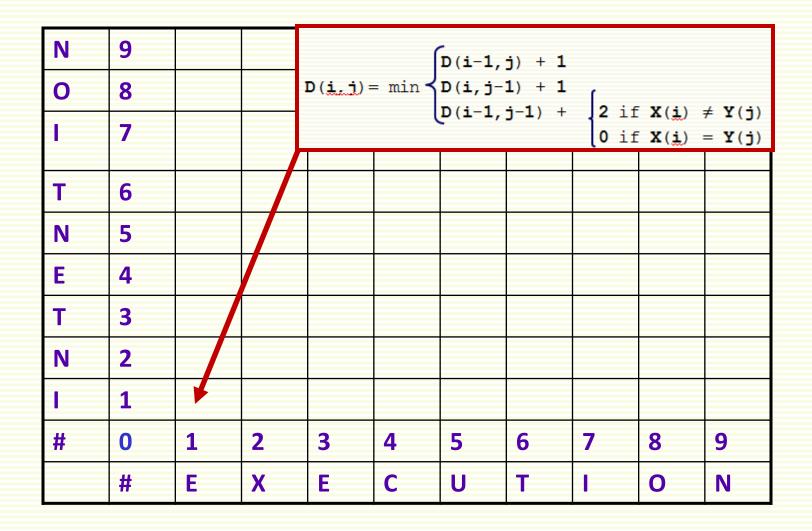
for each i = 1...m
for each j = 1...n $D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 1 \end{cases}$ $2 \text{ if } X(i) \neq Y(j) \\ 0 \text{ if } X(i) = Y(j) \end{cases}$

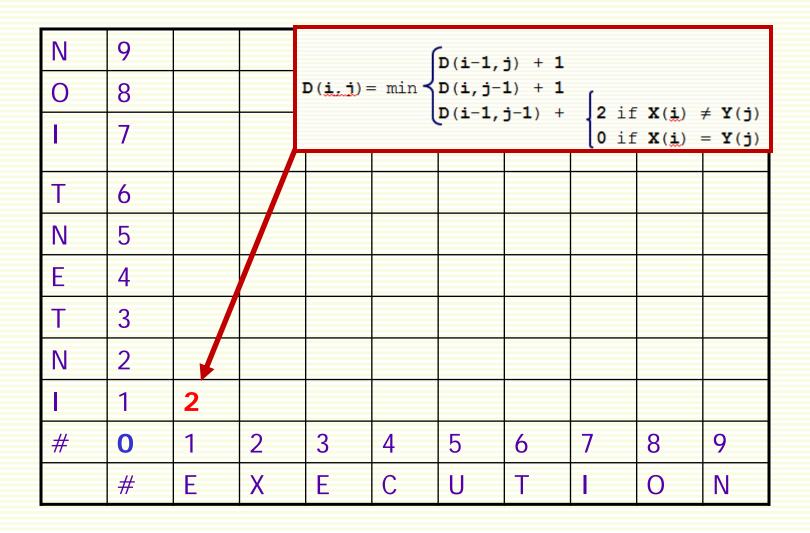
Initialization

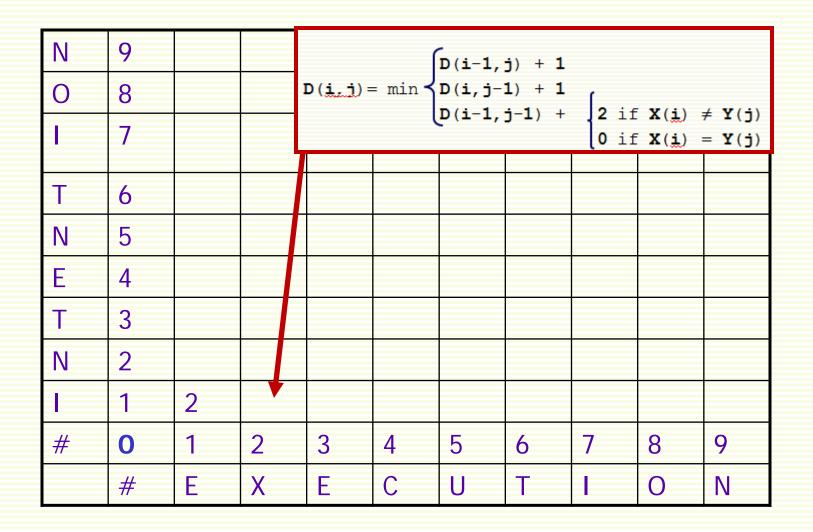
for all i, D(i,0) = i
for all j, D(0,j) = j

• Recurrence Relation (iteration)

for each **i** = **1**...**m** for each **j** = **1**...**n**

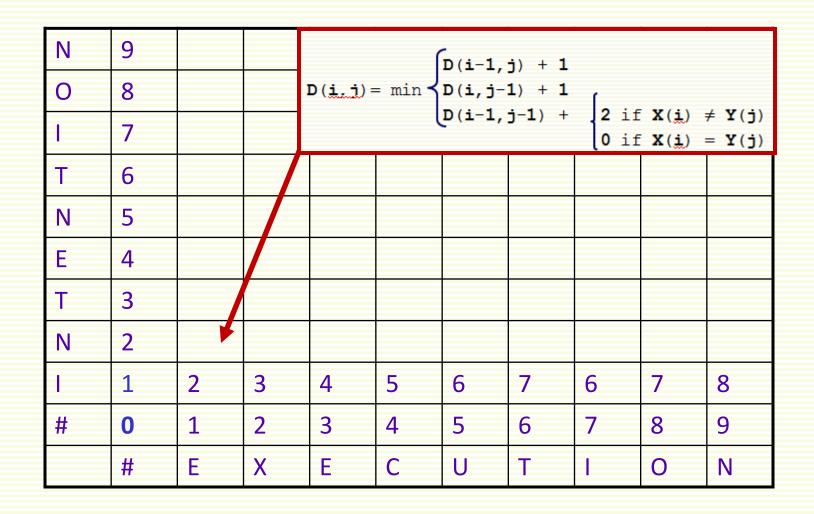

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 1 \\ 0 \text{ if } x(i) \neq y(j) \\ 0 \text{ if } x(i) = y(j) \end{cases}$$


Termination


D(**n**,**m**) is distance

Edit Distance Table: Initialization

Ν	9									
0	8									
I.	7									
т	6									
Ν	5									
E	4									
т	3									
Ν	2									
I	1									
#	0	1	2	3	4	5	6	7	8	9
	#	E	X	E	С	U	Т	I	0	Ν



Ν	9									
0	8									
I.	7									
Т	6									
Ν	5									
Е	4									
Т	3									
Ν	2									
1	1	2	3							
#	0	1	2	3	4	5	6	7	8	9
	#	E	Х	E	С	U	Т		0	Ν

Edit Distance Table: Termination

Edit Distance Table: Termination

Ν	9									
0	8									
1	7									
Т	6									
Ν	5									
E	4									
Т	3									
Ν	2	3								
1	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	E	Х	E	С	U	Т	1	0	Ν

Edit Distance Table: Termination

Ν	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
1	7	6	7	8	9	10	9	8	9	10
Т	6	5	6	7	8	9	8	9	10	11
Ν	5	4	5	6	7	8	9	10	11	10
Е	4	3	4	5	6	7	8	9	10	9
Т	3	4	5	6	7	8	7	8	9	8
Ν	2	3	4	5	6	7	8	7	8	7
1	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	E	Х	E	С	U	Т		0	Ν

MinEdit with Backtrace

• Keep pointer to extract the optimal alignment

n	9	↓ 8	.∠→↓9	∠←↓ 10	∠←↓ 11	∠←↓ 12	↓ 11	↓ 10	↓ 9	∠ 8	
0	8	↓ 7	∠←↓ 8	.∠←↓9	∠←↓ 10	∠←↓ 11	↓ 10	↓ 9	∠ 8	$\leftarrow 9$	
i	7	↓ 6	∠←↓7	.∠←↓ 8	9 ,,⊸∑	∠←↓ 10	↓ 9	∠ 8	$\leftarrow 9$	$\leftarrow 10$	
t	6	↓ 5	∠←↓6	∠←↓ 7	.∠←↓ 8	∠́⇔∖ 9	∠ 8	$\leftarrow 9$	÷ 10	←↓ 11	
n	5	↓ 4	∠←↓ 5	∠́←↓ 6	∠←↓7	.∠́←↓ 8	∠←↓ 9	∠←↓ 10	∠←↓ 11	∠↓ 10	
e	4	∠ 3	<i>←</i> 4	.∠← 5	← 6	<i>←</i> 7	$\leftarrow \downarrow 8$	9 ↓→∕	∠←↓ 10	↓9	
t	3	∠←↓4	∠←↓ 5	∠←↓6	∠←↓7	.∠←↓ 8	∠ 7	←↓ 8	.∠→↓9	↓ 8	
n	2	∠←↓3	∠←↓4	∠←↓ 5	.∠←↓6	∠←↓ 7	∠←↓ 8	↓ 7	.∠←↓ 8	∠7	
i	1	∠←↓2	∠←↓3	∠←↓4	∠←↓ 5	∠́←↓ 6	∠←↓ 7	76	<i>←</i> 7	← 8	
#	0	1	2	3	4	5	6	7	8	9	
	#	e	X	e	c	u	t	i	0	n	

Performance

- Time: O(nm)
- Space: O(nm)

Weighted Edit Distance

- Some letters are more likely to be mistyped than others, should cost less
- Collect statistics on how often
 - one letter is substituted with another
 - on deletions
 - on insertions
 - on transpositions

Confusion Matrix for Spelling Errors

x	1				S	ub[]	X, Y] =	Sub	stitı	ıtio			(inc) rrect)		ect) f	for	Y ((orr	ect)						
	a	b	с	d	e	f	g	h	i	j	k	1	m	n	0	р	q	r	s	t	u	v	w	х	У	z
a	0	0	7	1	342	0	0	2	118	0	1	0	0	3	76	0	0	1	35	9	9	0	1	0	5	Ō
b	0	0	9	9	2	2	3	1	0	0	0	5	11	5	0	10	0	0	2	1	0	0	8	0	0	0
с	6	5	0	16	0	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	0
d	1	10	13	0	12	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0
с	388	0	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
f	0	15	0	3	1	0	5	2	0	0	0	3	4	1	0	0	0	6	4	12	0	0	2	0	0	0
g	4	1	11	11	9	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
h	1	8	0	3	0	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
i	103	0	0	0		0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
j	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
k	1	2	8	4	1	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	. 4	0	0	3
I	2	10	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0
m		3	7	8	0	2	0	6	0	0	4	4	0	180	0	6	0	0	9	15 7	13	3	2	2 2	3	0
n	2 91	7 1	6	5 3	3 116	0 0	1 0	19 0	1 25	0	4 2	35 0	78 0	0	0	7 14	0 0	28 2	5 4	14	0 39	0 0	0	0	0 18	2 0
0	0	11	1	2	0	6	5	0	25	9	õ	2	7	6	15	0	0	1	3	6	0	4		0	0	
P		0	1	0	ő	0	27	Ő	õ	0	0	0	ó	0	0	0	0	0	0	0	ŏ	ō	1	0	ŏ	0
q	0	14	0	30	12	2	2	8	2	ŏ	5	8	4	20	1	14	0	Ő	12	22	4	ŏ	0	1	ŏ	ŏ
s	11	8	27	33	35	4	ő	1	õ	1	0	27	0	6	1	7	ŏ	14	12	15	0	Ő	5	3	20	i
t	3	4	9	42	7	5	19	ŝ	ŏ	i	ŏ	14	9	5	5	6	ŏ	11	37	ō	ŏ	2	19	õ	7	6
ů	20	ó	ó	Õ	44	ő	ó	ő	64	ò	ŏ	0	ó	2	43	ŏ	ŏ	4	Ő	ŏ	ŏ	õ	2	ŏ	8	ŏ
v	0	Õ	7	Õ	0	3	Õ	Ő	0	Õ	Õ	1	0	ō	1	0	Õ	0	8	3	0	0	ō	0	Ő	0
w	2	2	1	0	1	0	Ő	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
x	ō	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
y	0	0	2	ō	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
z	0	0	0	7	0	0	0	0	0	0	0	7	5	0	0	0	0	2	21	3	0	0	0	0	3	0

Confusion Matrix for Spelling Errors

x												su	ıb	[X	ζ,	Y]	-	S	uł	ō	w1	x 0	y 5		
			a		b		c		d		e		1	E		g		h		i	0 3 0	8 7 4	0 1 0	0 1 2	0 0 0	
a		(0		0		7		1	3	42	,	()	I	0		2	1	18	0	1 2	0	18 0	0	
b		(0		0		9		9		2	,	2	2		3		1		0	0	1 2	0	3 0	0	
с		(5		5		0		16		C)	9)	1	5		0		0	0	20	1 0	15 0	0	
d			I	1	0]	3		0		12	,	()	,	5		5		0	0 0 3	、4 0 2	0 0 2	0 0 3	3 0 0	
с		38	8)		0		3		11		0)	2	2		2		0	{	<u>89</u>	0	1 0	20	0 18	20	
f		(Ó	1	5		0		3		1		()		5		2		0	4 0	1 0	0 0	0 0	0 0	
g		4	4		1	1	1	i	11		9		2	2		0		0		0	0 0	0 5	1 3	0 20	01	
h			1		8		0		3		0)	()	(0		0		0	2 0	19 2	0 0	7 8	6 0	
w 2 x 0 y 0 z 0	2 0 0 0	1 0 2 0	0 2 0 7	1 0 15 0	0 0 0 0	0 0 1 0	2 0 7 0	0 0 15 0	0 0 0 0	1 0 0 0	0 0 0 7	0 0 2 5	0 0 0 0	0 0 6 0	7 0 1 0	0 0 0 0	6 0 7 2	3 9 36 21	3 0 8 3	1 0 5 0	0 0 0 0 0	0 0 0 0	0 0 0 1 0	0 0 0 3	0 0 0 0	

Weighted Min Edit Distance

Initialization

D(0,0) = 0 $D(i,0) = D(i-1,0) + del[x(i)] \qquad 1 < i \le n$ $D(0,j) = D(0,j-1) + ins[y(j)] \qquad 1 < j \le m$

• Recurrence Relation

$$D(i,j) = \min \begin{cases} D(i-1,j) + del[x(i)] \\ D(i,j-1) + ins[y(j)] \\ D(i-1,j-1) + sub[x(i),y(j)] \end{cases}$$

Termination

D(n,m) is distance

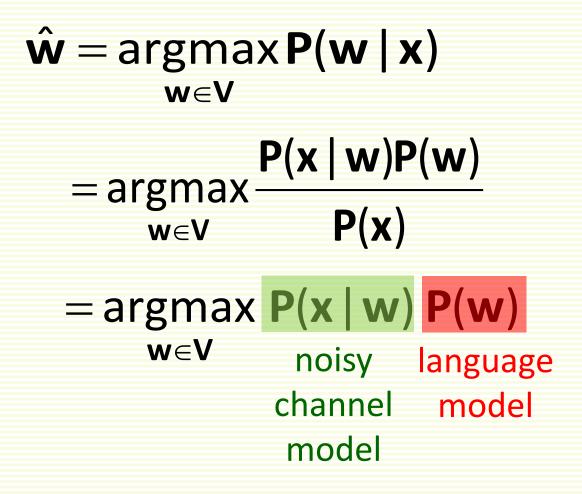
Noisy Channel Model: Intuition

send w noisy channel receive x

- We see an observation x of a misspelled word w
- Decode the correct word w

prob of w given misspelled x $\hat{w} = \operatorname{argmax} P(w | x)$ best guess w∈V search over vocabulary V

How to Model P(w | x)?


• **P**(**w** | **x**) is not easy to model

- But **P**(**x** | **w**) is easier to model
- Can study the properties of "noisy channel"
 - how often letters get transposed?
 - write "hte" instead of "the"
 - how often "i" and "e" are switched
 - write acheive instead of achieve

Noisy Channel

• Since **P**(**x** | **w**) is easier to model, rewrite:

Modeling P(w)

- Already learned how to model language
- Unigram model if w is just one word
- If have context (several words), bigram or trigram model
 - Sentence: Like ther books
 - Non-word = ther
 - Both there and their have edit distance of 1 to ther
 - Both **P**(their) and **P**(there), have high probability
 - Add context: P(like there books) vs. P (like their books)
- With smoothing if necessary
 - Add-Delta, Good-Turing, etc

Modeling Noisy Channel P(x | w)

- Also called error probability model
- Build model from marked training data, much like for modeling language
- Need texts with marked mistakes/corrections
- Misspelled word x has characters x₁ x₂...x_m
- Dictionary word **w** has characters **w**₁ **w**₂...**w**_n
- Assume one mistake per word for simplicity
 - can get from w to x with either one insertion, or one deletion, etc
- **P**(**x**|**w**) is probability of this one mistake

Modeling Noisy Channel P(x|w)

- Get counts from marked data
- Here y and z are characters

del[z,y]:	count(zy typed as z)
<pre>ins[z,y]:</pre>	count(z typed as zy)
<pre>sub[z,y]:</pre>	count(z typed as y)
<pre>trans[z,y]:</pre>	count(zy typed as yz)

- Generate confusion matrix from marked data
 - Peter Norvig, etc.

Confusion Matrix for Modeling P(x|w)

x	1					S	ıb[]	X, Y] =	Sub	stitı	ıtio			(inc) rrect)		ct) f	or	Y ((orr	ect)						
			b	с	d	e	f	g	ħ	i	i	k	1	m	n	0	р	q	r	S	t	u	v	w	х	у	z
a	()	0	7	1	342	0	0	2	118	0	1	0	0	3	76	0	0	1	35	9	9	0	1	0	5	0
b	()	0	9	9	2	2	3	1	0	0	0	5	11	5	0	10	0	0	2	I	0	0	8	0	0	0
c	6	;	5	0	16	0	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	0
d		1	0	13	0	12	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0
c	388	;	0	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
f	() 1	5	0	3	1	0	5	2	0	0	0	3	4	1	0	0	0	6	4	12	0	0	2	0	0	0
g	1		1	11	11	9	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
h			8	0	3	0	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
i	103		0	0	0	146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
j			1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
k			2	8	4	1	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	. 4	0	0	3
1			0	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0
m			3	7	8	0	2	0	6	0	0	4	4	0 0	180	0	6	0	0	9	15	13	3	2	2 2	3	0
n	91		7 1	6	5 3	3 116	0 0	1	19 0	1 25	0 0	4 2	35 0	78 0	0 0	0 0	7 14	0 0	28 2	5 4	7 14	0 39	0	1 0	0	0 18	2
0	(1	1	2	0	6	0 5	0	25	9	0	2	1	6	15	0	0	4	3	6	0	0 4	1	0	0	0
P			0	1	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	Ő	0	0	0	0	0
q			4	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	Ő	12	22	4	Ő	0	1	0	0
s			8	27	33	35	4	õ	1	õ	1	Ő	27	0	6	1	7	Ő	14	0	15	0	0	5	3	20	ĭ
ť			4	9	42	7	5	19	5	Ő	1	ŏ	14	9	5	5	6	ŏ	11	37	0	Ő	2	19	Õ	7	6
ů	20		ò	Ó	0	44	0	Ő	Ő	64	Ô	Ő	0	Ó	2	43	Õ	Ő	4	0	Ő	Õ	0	2	Õ	8	ŏ
v	(0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
w			2	1	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
x	(0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
у	()	0	2	0	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
z	()	0	0	7	0	0	0	0	0	0	0	7	5	0	0	0	0	2	21	3	0	0	0	0	3	0

Modeling Noisy Channel P(x|w)

• Assume can get from **x** to **w** with one error

$$P(\mathbf{x} | \mathbf{w}) = \begin{cases} \frac{del[w_{i-1}, w_i]}{count[w_{i-1}, w_i]} & \text{if deletion} \\ \frac{ins[w_{i-1}, x_i]}{count[w_{i-1}]} & \text{if insertion} \\ \frac{sub[x_i, w_i]}{count[w_i]} & \text{if substitution} \\ \frac{trans[w_{i-1}, w_i]}{count[w_{i-1}, w_i]} & \text{if transposition} \end{cases}$$

Non-Word Spelling Error Example

Non-Word Spelling Error Example

"acress"

- 80% of errors are within edit distance 1
- Almost all errors within edit distance 2
- Can also allow insertion of space or hyphen thisidea → this idea inlaw → in-law

Words within distance 1 of acress

Error	Candidate Correction	Correct Letter	Error Letter	Туре
acress	actress	t	-	deletion
acress	cress	-	a	insertion
acress	caress	ca	ac	transposition
acress	access	С	r	substitution
acress	across	0	е	substitution
acress	acres	-	S	insertion
acress	acres	-	S	insertion

Unigram Probability P(w)

word	Frequency of word	P(word)
actress	9,321	.0000230573
cress	220	.000005442
caress	686	.000016969
access	37,038	.0000916207
across	120,844	.0002989314
acres	12,874	.0000318463

 Counts from 404,253,213 words in Corpus of Contemporary English (COCA)

Noisy Channel Model P(x|w) for acress

Candidate Correction	Correct Letter	Error Letter	x w	P(x word)
actress	t	-	c ct	.000117
cress	-	a	a #	.00000144
caress	ca	ac	ac ca	.00000164
access	С	r	rc	.00000209
across	0	е	eo	.0000093
acres	-	S	es e	.0000321
acres	-	S	ss s	.0000342

Combining P(w) and P(w|x) for acress

Candidate Correction	Correct Letter	Error Letter	x w	P(x word)	P(word)	10 ⁹ *P(x w)P(w)
actress	t	-	c ct	.000117	.0000231	2.7
cress	-	а	a #	.00000144	.000000544	0.00078
caress	са	ac	ac ca	.00000164	.00000170	0.0028
access	С	r	r c	.000000209	.0000916	0.019
across	0	е	elo	.0000093	.000299	2.8
acres	-	S	es e	.0000321	.0000318	1.0
acres	-	S	ss s	.0000342	.0000318	1.0

Adding Context

"a stellar and versatile **acress** whose combination of sass and glamour"

- Adding context to misspelled word <u>really</u> helps
- Use bigram language model
- Counts from CCAE with add-1 smoothing

P(actress|versatile) = .000021 P(whose|actress) = .0010 P(versatile actress whose) = .000021*.0010 = 210 x10⁻¹⁰

P(across | versatile) = .000021 P(whose | across) = .000006 P(versatile across whose) = .000021*.000006 = 1 x10⁻¹⁰

Using Bigram Language Model

• Now multiply by noisy channel probabilities

P(acress | actress) = .000117

P(acress | across) = .0000093

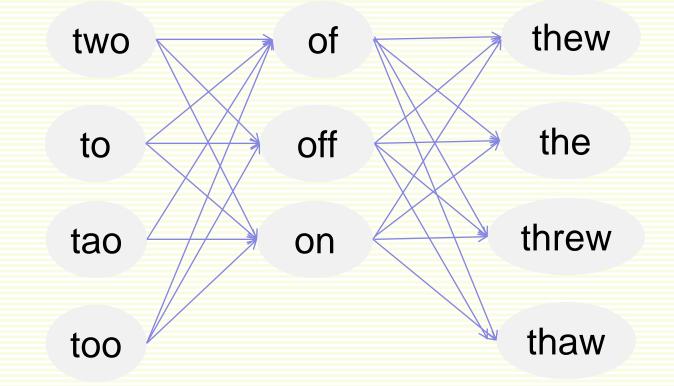
• To finally get

P(versatile actress whose)P(acress|actress) = .000117 x 210 x10⁻¹⁰ = .002457 x 10⁻¹⁰

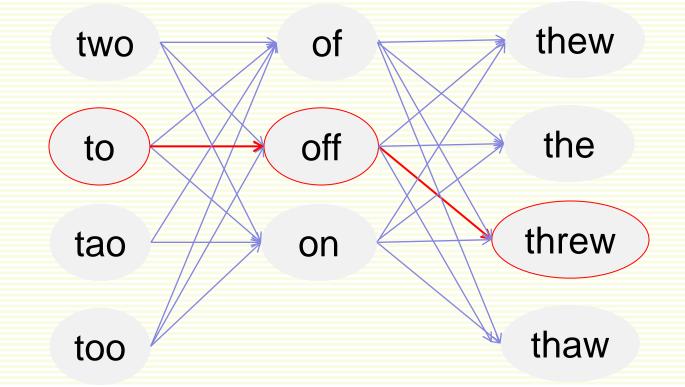
- P(versatile across whose)P(acress | across) = .0000093 x1 x 10⁻¹⁰
 - $= .0000093 \times 10^{-10}$

Real-Word Spelling Errors

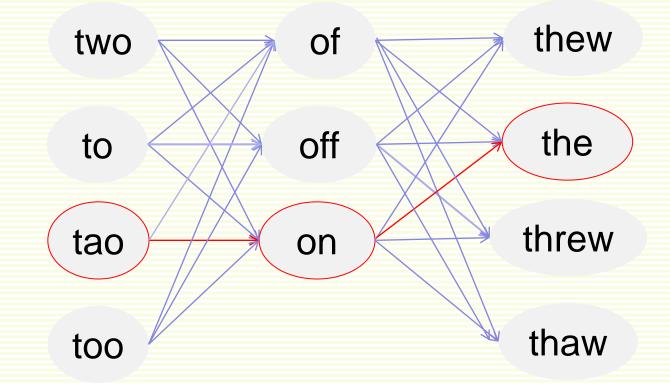
leaving in about fifteen **minuets** to go to her house. The design **an** construction of the system. Can they **lave** him my messages? The study was conducted mainly **be** John Black.

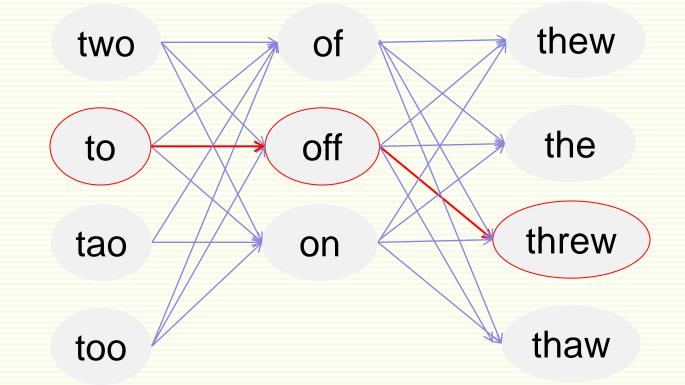

- Spelling errors that are words in dictionary
- 25-40% of spelling errors are real words
 - from [Kukich 1992]
- Use context of in this case

Solving Real-World Spelling Errors

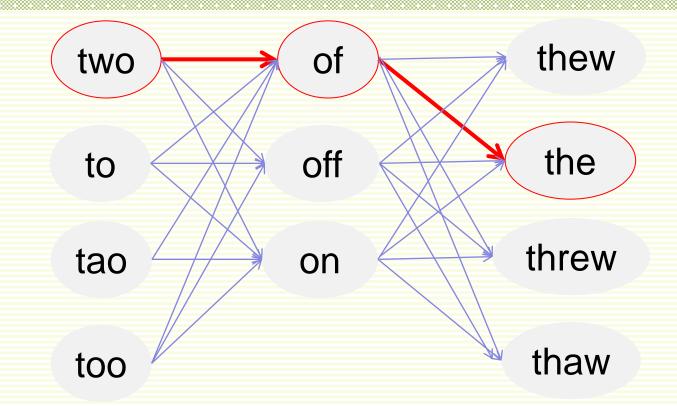

- For each word **w** in the sentence
 - Generate *candidate set*
 - the word itself
 - all single-letter edits that are English words
 - homophone words (similar pronunciations)
- Choose best combination word candidates
 - noisy channel model
 - task-specific classifier

Example of Real-Word Spell Correction


- Example: "two of thew"
 - Candidate (two) = {two, to, tao, too}
 - Candidate (of) = {of, off, on}
 - Candidate (thew) = {thew, the, threw, thaw}


Each path corresponds to a possible sentence

One possible path (sentence)



Another possible path (sentence)

- Compute probability of each path (sentence)
- Choose the path (sentence) of highest probability

Noisy Channel for Real-Word Spell Correction

- The best probability path (sentence), hopefully
- Can use DP (dynamic programming) to speed up computation

Simplification: One Error per Sentence

- Or simplify to allow only one word to be replaced
 - assumes one error per sentence
- Example: "two of thew"
 - C(two) = {two, to, tao, too}
 - C(of) = {of, off, on}
 - C (thew) = {thew, the, threw, thaw}
- Check only 11 sentences:

Two of threw	Two <mark>of</mark> thew	Two of thew
To of thew	Two <mark>off</mark> thew	Two of the
Tao of thew	Two on thew	Two of threw
Too of thew		Two of thaw

Where to Get Probabilities

- Language model P(w)
 - Same as before
 - Bigram or trigram
 - should not use unigram as it gives no context
- Noisy Channel Model P(w|x)
 - same as for non-word spelling correction
 - plus need probability for no error, P(w|w)
- Choose sentence that maximizes P(w|x)P(w)

Probability of No Error

- Noisy channel probability for correctly typed word?
 - P(the|the)
 - i.e. probability of no error
- Depends on the application
 - .90 (1 error in 10 words)
 - for Olga
 - .95 (1 error in 20 words)
 - .99 (1 error in 100 words)
 - .995 (1 error in 200 words)
 - for English literature major

Peter Norvig's Example Continued

x	w	x w	P(x w)	P(w)	10 ⁹ P(x w)P(w)
thew	the	ew e	0.00007	0.02	144
thew	thew		0.95	0.0000009	90
thew	thaw	e a	0.001	0.000007	0.7
thew	threw	h hr	0.00008	0.00004	0.03
thew	thwe	ew we	0.00003	0.0000004	0.0001

HCI issues in spelling

- Autocorrect, if very confident in correction
 - Very common mistake: hte \rightarrow the
- Less confident
 - Give one best correction
- Less confident
 - Give a correction list
- Unconfident
 - Just flag as an error

Practical Issues

- Never just multiply the prior and the error model
- Independence assumptions→probabilities not commensurate
- Instead: weigh them

$$\hat{\mathbf{w}} = rgmax \mathbf{P}(\mathbf{x} \mid \mathbf{w}) \mathbf{P}(\mathbf{w})^{\lambda}$$

 $\mathbf{w} \in \mathbf{V}$

- Learn λ from a validation set

Classifier for Real-Word Spelling Correction

- Instead of just channel model and language model
- Use many features in a classifier
- Build a classifier for a specific pair like: whether/weather
 - "cloudy" within +- 10 words
 - ____ to VERB
 - ____ or not

Evaluation

- Some spelling error test sets
 - Wikipedia's list of common English misspelling
 - Aspell filtered version of that list
 - Birkbeck spelling error corpus
 - Peter Norvig's list of errors (includes Wikipedia and Birkbeck, for training or testing)