CS4442/9542b Artificial Intelligence II prof. Olga Veksler

Lecture 7
Machine Learning

Neural Networks

Outline

- Motivation
 - Non linear discriminant functions
- Introduction to Neural Networks
 - Inspiration from Biology
 - History
- Perceptron: 1 layer Neural Network
- Multilayer Neural Networks
 - also called Artificial Neural Network (ANN), ,perceptron (MLP), Feedforward Neural Network
- Training Neural Networks
 - backpropagation algorithm
 - practical tips for training

Need for Non-Linear Discriminant

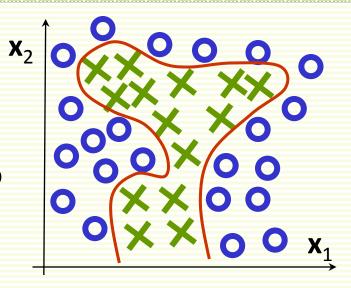
- May need highly non-linear decision boundaries
- This would require too many high order polynomial terms to fit

$$g(x) = w_0 + w_1 x_1 + w_2 x_2 + w_{12} x_1 x_2 + w_{11} x_1^2 + w_{22} x_2^2 + w_{111} x_1^3 + w_{112} x_1^2 x_2 + w_{122} x_1 x_2^2 + w_{222} x_2^3 + even more terms of degree 4 + super many terms of degree k$$

- For n features, there O(nk) polynomial terms of degree k
- Many real world problems are modeled with hundreds and even thousands features
 - 100¹⁰ is too large of function to deal with

Neural Networks

- Neural Networks correspond to some discriminant function $g_{NN}(x)$
- Can carve out arbitrarily complex decision boundaries without requiring so many terms as polynomial functions
- Neural Nets were inspired by research in how human brain works
- But also proved to be quite successful in practice
- Are used nowadays successfully for a wide variety of applications
 - took some time to get them to work



Brain vs. Computer

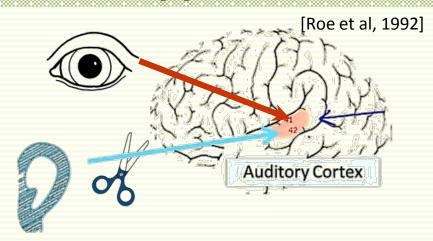
- usually one very fast processor
- high reliability
- designed to solve logic and arithmetic problems
- absolute precision
- can solve a gazillion arithmetic and logic problems in an hour

- huge number of parallel but relatively slow and unreliable processors
- not perfectly precise, not perfectly reliable
- evolved (in a large part) for pattern recognition
- learns to solve various PR problems

seek inspiration for classification from human brain

One Learning Algorithm Hypothesis

- Brain does many different things
- Seems like it runs many different "programs"
- Seems we have to write tons of different programs to mimic brain



- Hypothesis: there is a single underlying learning algorithm shared by different parts of the brain
- Evidence from neuro-rewiring experiments
 - Cut the wire from ear to auditory cortex
 - Route signal from eyes to the auditory cortex
 - Auditory cortex learns to see
 - animals will eventually learn to perform a variety of object recognition tasks
- There are other similar rewiring experiments

Seeing with Tongue

- Scientists use the amazing ability of the brain to learn to retrain brain tissue
- Seeing with tongue
 - BrainPort Technology
 - Camera connected to a tongue array sensor
 - Pictures are "painted" on the tongue
 - Bright pixels correspond to high voltage
 - Gray pixels correspond to medium voltage
 - Black pixels correspond to no voltage
 - Learning takes from 2-10 hours
 - Some users describe experience resembling a low resolution version of vision they once had
 - able to recognize high contrast object, their location, movement

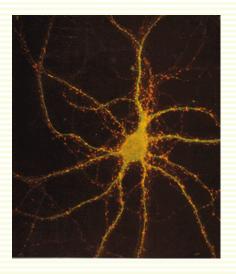
tongue array sensor

One Learning Algorithm Hypothesis

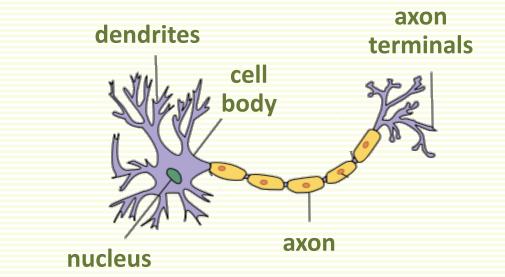
- Experimental evidence that we can plug any sensor to any part of the brain, and brain can learn how to deal with it
- Since the same physical piece of brain tissue can process sight, sound, etc.
- Maybe there is one learning algorithm can process sight, sound, etc.
- Maybe we need to figure out and implement an algorithm that approximates what the brain does
- Neural Networks were developed as a simulation of networks of neurons in human brain

Neuron: Basic Brain Processor

- Neurons (or nerve cells) are special cells that process and transmit information by electrical signaling
 - in brain and also spinal cord
- Human brain has around 10¹¹ neurons
- A neuron connects to other neurons to form a network
- Each neuron cell communicates to anywhere from 1000 to 10,000 other neurons



Neuron: Main Components



cell body

computational unit

dendrites

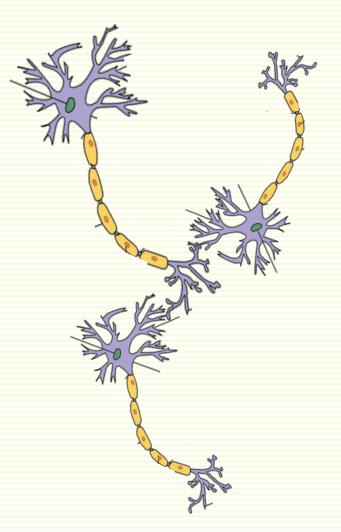
- "input wires", receive inputs from other neurons
- a neuron may have thousands of dendrites, usually short

axon

- "output wire", sends signal to other neurons
- single long structure (up to 1 meter)
- splits in possibly thousands branches at the end, "axon terminals"

Neurons in Action (Simplified Picture)

- Cell body collects and processes signals from other neurons through dendrites
- If there the strength of incoming signals is large enough, the cell body sends an electricity pulse (a spike) to its axon
- Its axon, in turn, connects to dendrites of other neurons, transmitting spikes to other neurons
- This is the process by which all human thought, sensing, action, etc. happens



ANN History: First Successes

- 1958, F. Rosenblatt, Cornell University
 - Perceptron, oldest neural network
 - studied in lecture on linear classifiers
 - Algorithm to train the Perceptron
 - Built in hardware to recognize digits images
 - Proved convergence in linearly separable case
 - Early success lead to a lot of claims which were not fulfilled
 - New York Times reports that perceptron is "the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence."



ANN History: Stagnation

- Early success lead to a lot of claims which were not fulfilled
- 1969, M. Minsky and S. Pappert
 - Book "Perceptrons"
 - Proved that perceptrons can learn only linearly separable classes
 - In particular cannot learn very simple XOR function
 - Conjectured that multilayer neural networks also limited by linearly separable functions
- No funding and almost no research (at least in North America) in 1970's as the result of 2 things above

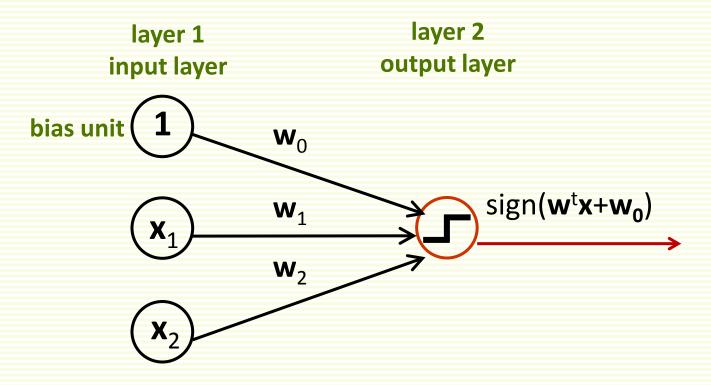
ANN History: Revival & Stagnation (Again)

- Revival of ANN in early 1980
- 1986, (re)discovery of backpropagation algorithm by Werbos, Rumelhart, Hinton and Ronald Williams
 - Allows training a MLP
- Many examples of mulitlayer Neural Networks appear
- 1998, Convolutional network (convnet) by Y. Lecun for digit recognition, very successful
- 1990's: research in NN move slowly again
 - Networks with multiple layers are hard to train well (except convnet for digit recognition)
 - SVM becomes popular, works better

ANN History: Deep Learning Age

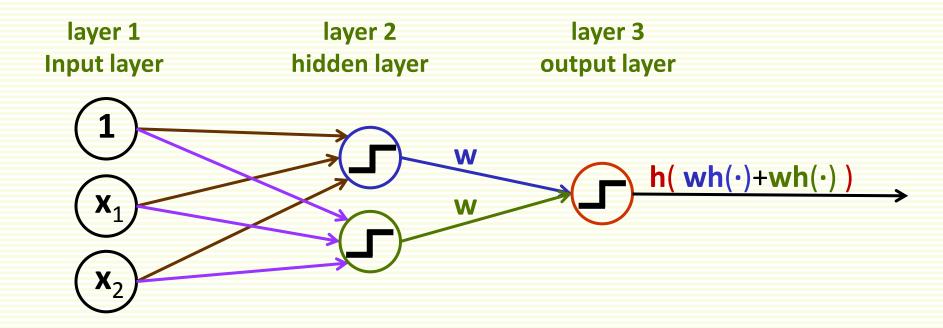
- Deep networks are inspired by brain architecture
- Until now, no success at training them, except convnet
- 2006-now: deep networks are trained successfully
 - massive training data becomes available
 - better hardware: fast training on GPU
 - better training algorithms for network training when there are many hidden layers
 - unsupervised learning of features, helps when training data is limited
- Break through papers
 - Hinton, G. E, Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554.
 - Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. (2007). Greedy Layer-Wise Training of Deep Networks, Advances in Neural Information Processing Systems 19
- Industry: Facebook, Google, Microsoft, etc.

Perceptron: 1 Layer Neural Network



- Linear classifier $f(x) = sign(w^t x + w_0)$ is a single neuron "net"
- Input layer units emits features, except bias emits "1"
- Output layer unit applies h(t) = sign(t)
- h(t) is also called an activation function

Multilayer Neural Network

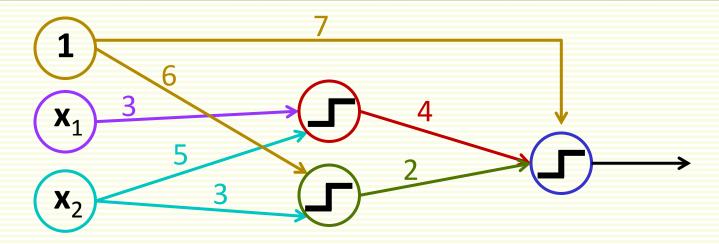


 $h(w_0 + w_1 x_1 + w_2 x_2)$

 $h(w_0 + w_1 x_1 + w_2 x_2)$

- First hidden unit outputs
- Second hidden unit outputs
- Network implements classifier f(x) = h(wh(·)+wh(·))
- More complex boundaries than Perceptron

Multilayer Neural Network: Small Example



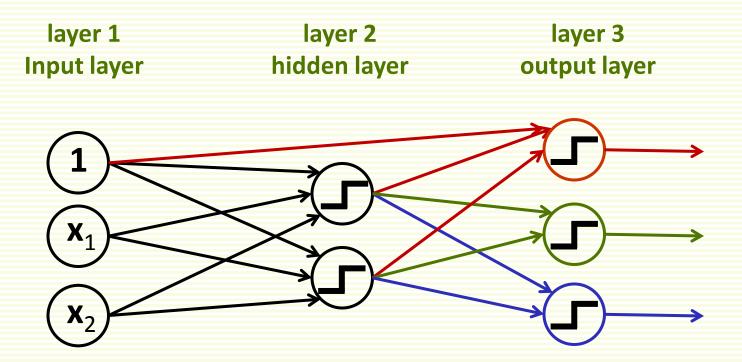
Implements classifier

$$f(x) = sign(4h(\cdot)+2h(\cdot)+7)$$

= sign(4 sign(3x₁+5x₂)+2 sign(6+3x₂)+7)

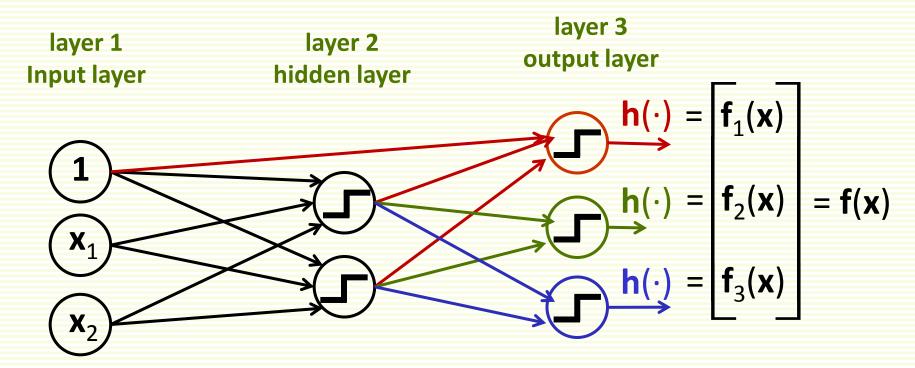
- Computing **f**(**x**) is called *feed forward operation*
 - graphically, function is computed from left to right
- Edge weights are learned through training

Multilayer NN: Multiple Classes



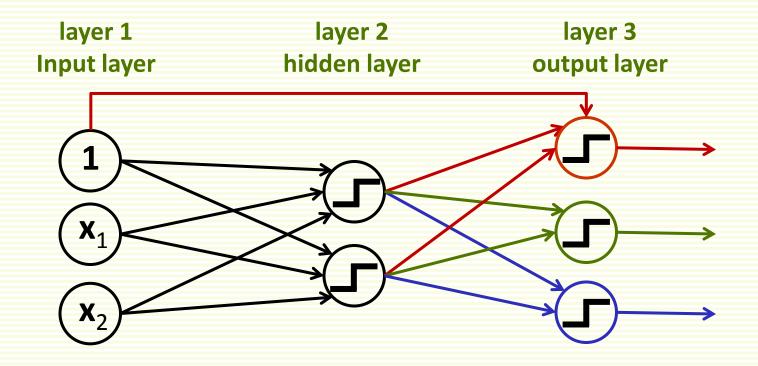
- 3 classes, 2 features, 1 hidden layer
 - 3 input units, one for each feature
 - 3 output units, one for each class
 - 2 hidden units
 - 1 bias unit, can draw in layer 1, or each layer has one

Multilayer NN: General Structure



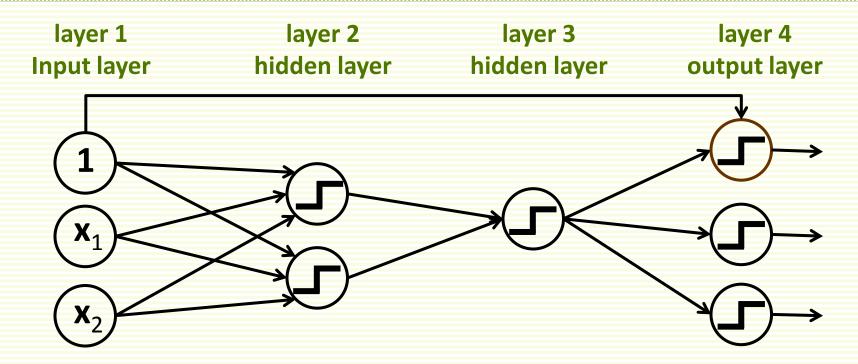
- f(x) is multi-dimensional
- Classification
 - If f₁(x) is largest, decide class 1
 - If $\mathbf{f}_2(\mathbf{x})$ is largest, decide class 2
 - If f₃(x) is largest, decide class 3

Multilayer NN: General Structure



- Input layer: **d** features, **d** input units
- Output layer: m classes, m output units
- Hidden layer: how many units?
 - more units correspond to more complex classifiers

Multilayer NN: General Structure



- Can have many hidden layers
- Feed forward structure
 - ith layer connects to (i+1)th layer
 - except bias unit can connect to any layer
 - or, alternatively each layer can have its own bias unit

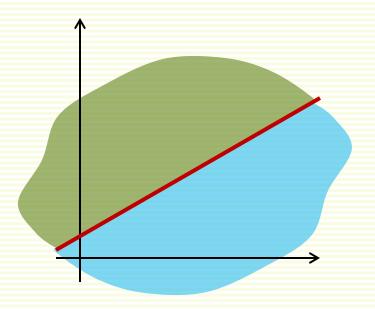
Multilayer NN: Overview

- NN corresponds to rather complex classifier f(x,w)
 - complexity depends on the number of hidden layers/units
 - f(x,w) is a composition of many functions
 - easier to visualize as a network rather than write out the functions
- To train NN, just as before
 - formulate per-sample loss function L(w)
 - optimize it with gradient descent
 - lots of heuristics to get gradient descent work well enough

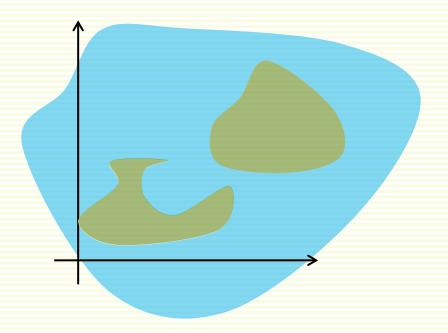
Multilayer NN: Expressive Power

- Every continuous function from input to output can be implemented with enough hidden units, 1 hidden layer, and proper nonlinear activation functions
 - easy to show that with linear activation function, multilayer neural network is equivalent to perceptron
- More of theoretical than practical interest
 - do not know the desired function in the first place, our goal is to learn it through the samples
 - but this result gives confidence that we are on the right track
 - multilayer NN is general (expressive) enough to construct any required decision boundaries, unlike the Perceptron

Multilayer NN: Decision Boundaries

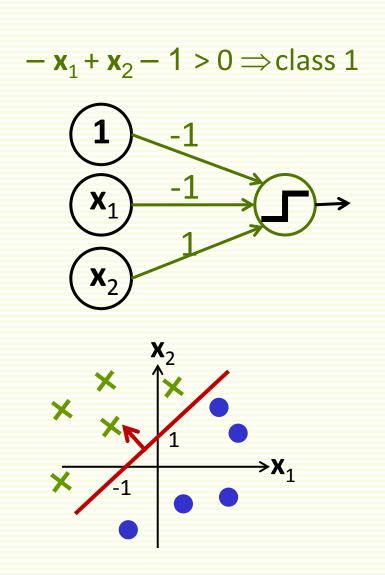


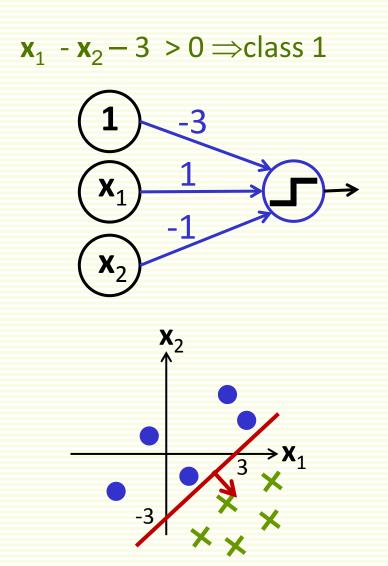
Perceptron (single layer neural net)



- Multilayer NN
- Arbitrarily complex decision regions
- Even not contiguous

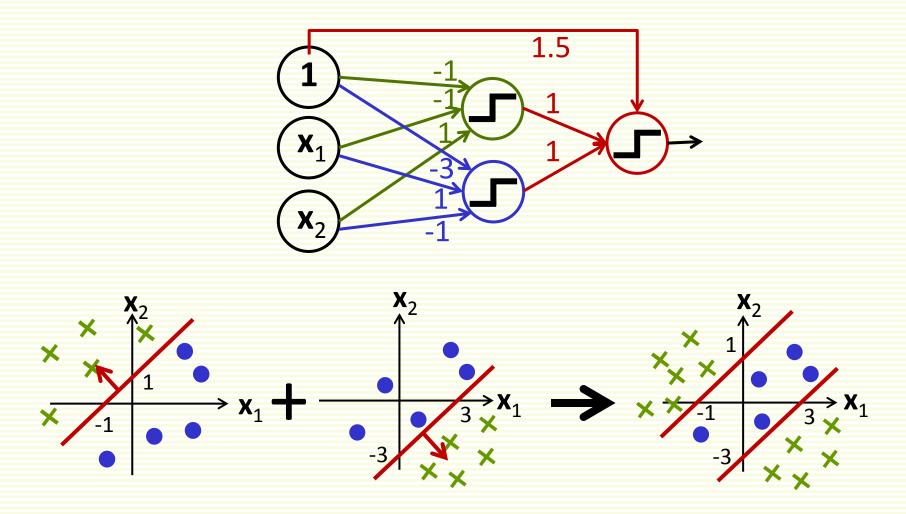
Multilayer NN: Nonlinear Boundary Example

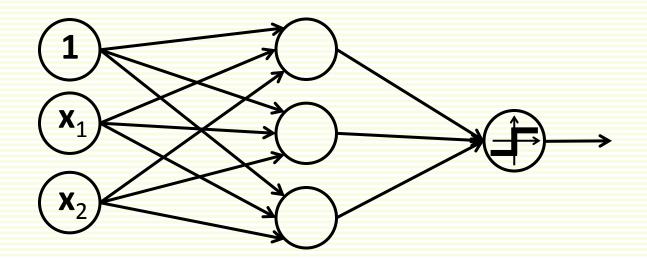




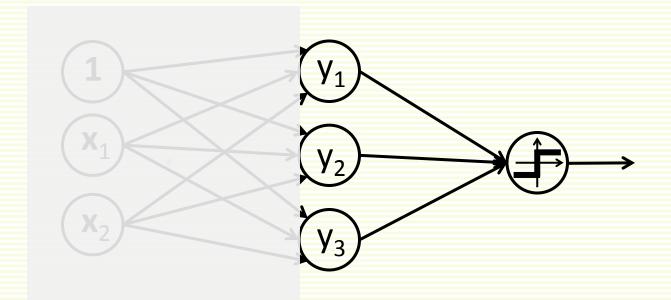
Multilayer NN: Nonlinear Boundary Example

Combine two Perceptrons into a 3 layer NN

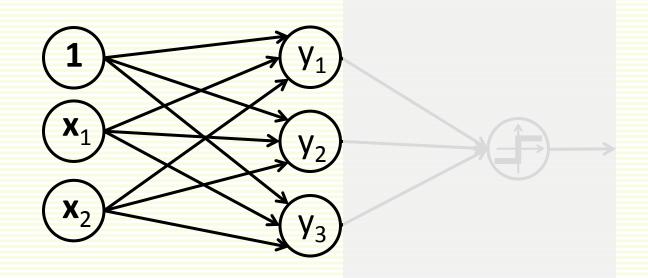




- Interpretation
 - 1 hidden layer maps input features to new features
 - next layer then applies linear classifier to the new features

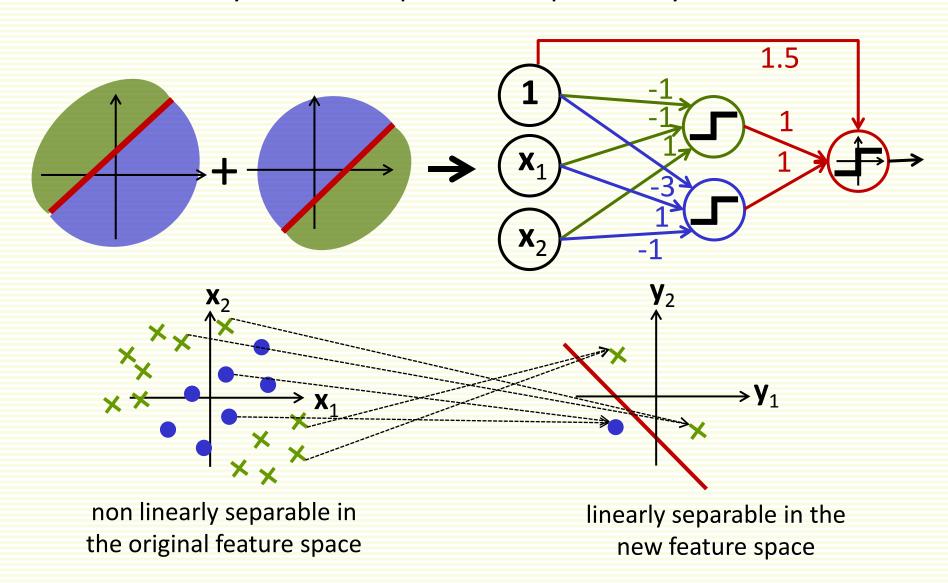


this part implements
Perceptron (liner classifier)



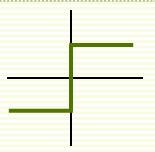
this part implements mapping to new features **y**

Consider 3 layer NN example we saw previously:



Multi Layer NN: Activation Function

 h() = sign() does not work for gradient descent



Can use tanh or sigmoid function

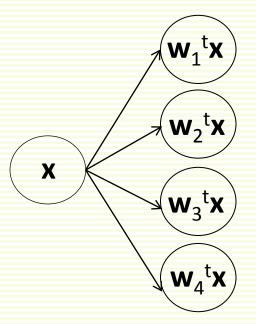
- Rectified Linear (ReLu) popular recently
 - gradients do not saturate for positive halfinterval
 - but have to be careful with learning rate, otherwise many units can become "dead", i.e. always output 0

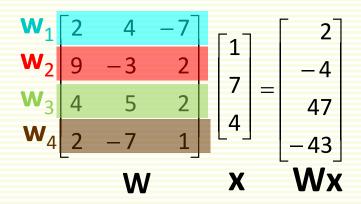
Multilayer NN: Modes of Operation

- Due to historical reasons, training and testing stages have special names
 - Backpropagation (or training)
 Minimize objective function with gradient descent
 - Feedforward (or testing)

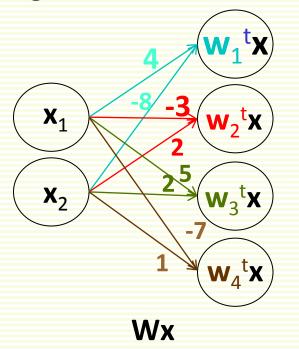
Multilayer NN: Matrix Notation

 Recall matrix notation for linear classifier





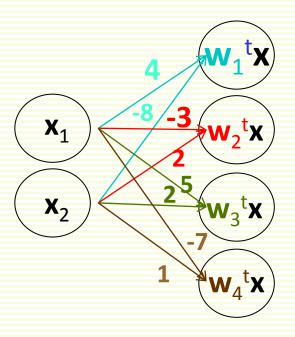
Full picture, ignoring bias weights



- This is subpart of neural network
- Need to add activation function

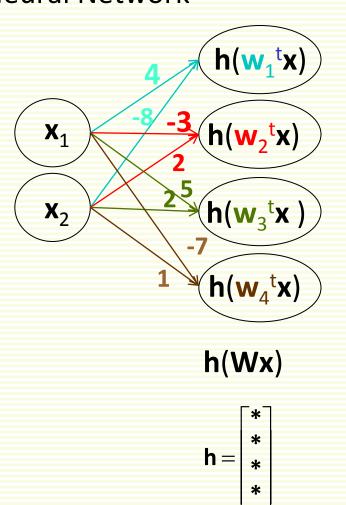
Multilayer NN: Matrix Notation

Full picture



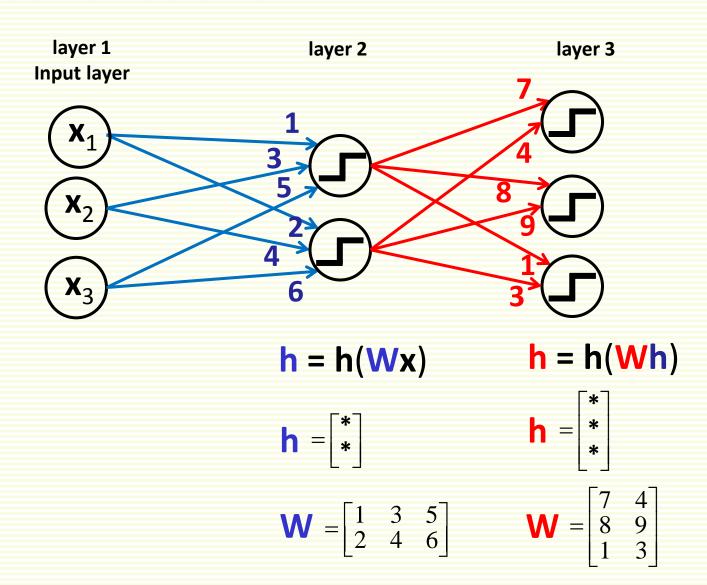
Wx

 This is subpart of neural network Need activation function h in Neural Network



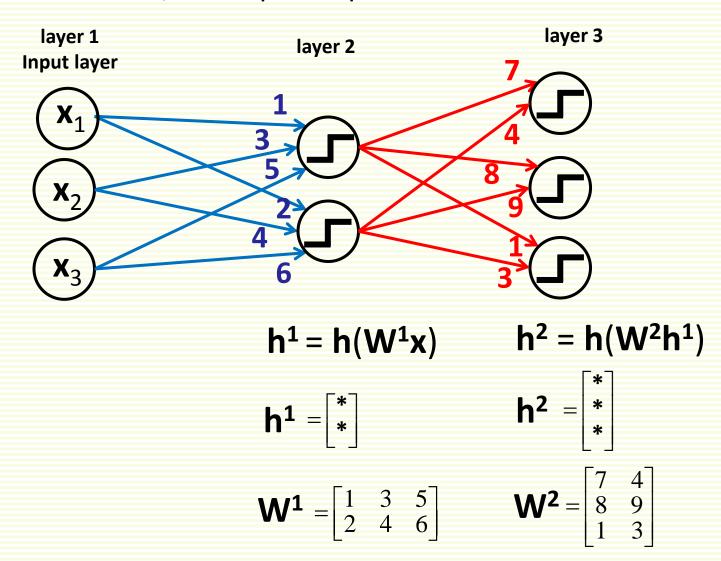
Multilayer NN: Matrix Notation

Use similar notation for NN



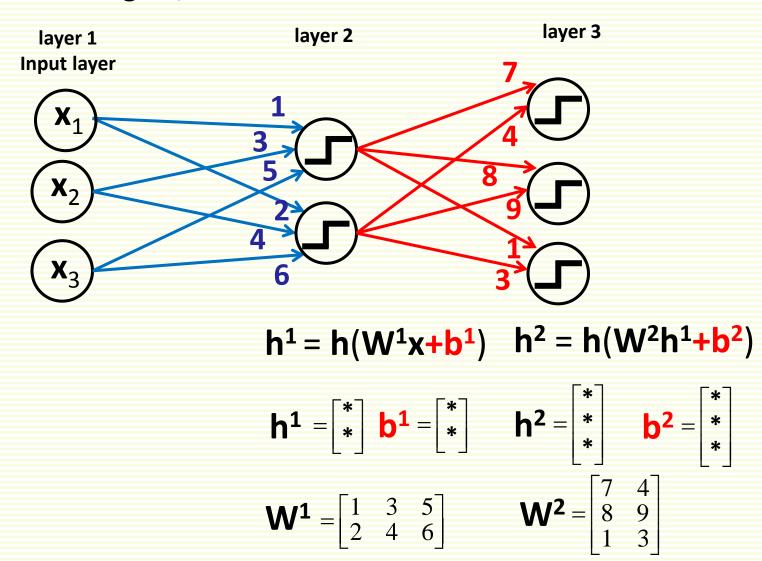
Multilayer NN: Matrix Notation

Instead of color, use superscripts

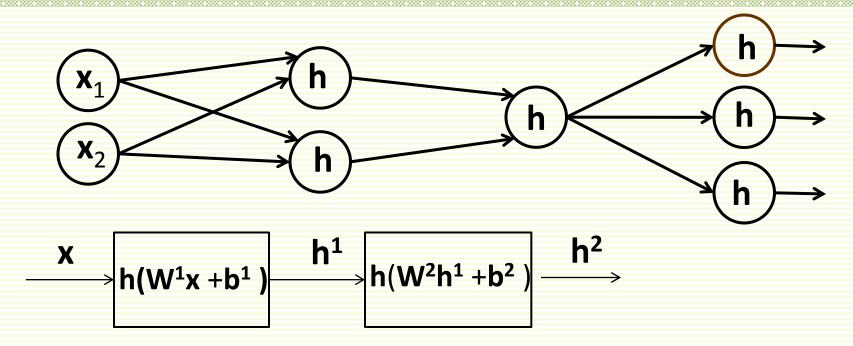


Multilayer NN: Matrix Notation

Add bias weights, also as vectors

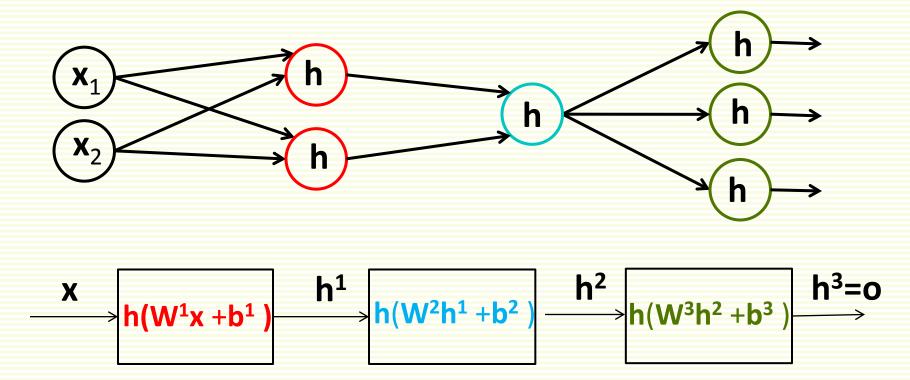


Multilayer NN: Vector Notation for Next Layer



- W² is a matrix of weights between hidden layer 1 and 2
 - W²(r,c) is weight from unit c to unit r
- **b**² is a vector of bias weights for second hidden layer
 - b²_r is bias weight of unit r in second layer
- h² is a vector of second layer outputs
 - h²_r is output of unit **r** in second layer

Multilayer NN: Vector Notation, all Layers



h³ is vector from the output layer and it is also called f(x,W)

```
• h^3 = h(W^3h^2 + b^3)

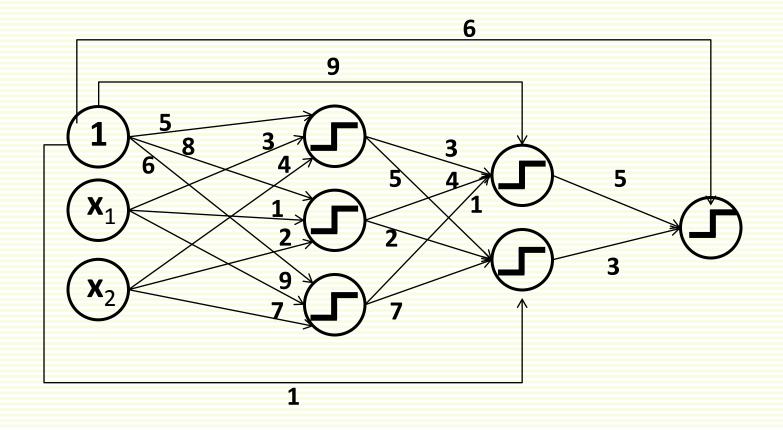
= h(W^3h(W^2h^1 + b^2) + b^3)

= h(W^3h(W^2h(W^1x + b^1) + b^2) + b^3)
```

Vector Notation, Example

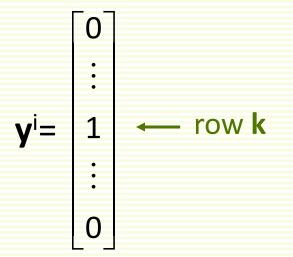
Assuming sign activation function, draw a NN given by

$$\mathbf{W}^{1} = \begin{bmatrix} 3 & 4 \\ 1 & 2 \\ 9 & 7 \end{bmatrix} \qquad \mathbf{b}^{1} = \begin{bmatrix} 5 \\ 8 \\ 6 \end{bmatrix} \qquad \mathbf{W}^{2} = \begin{bmatrix} 3 & 4 & 1 \\ 5 & 2 & 7 \end{bmatrix} \qquad \mathbf{b}^{2} = \begin{bmatrix} 9 \\ 1 \end{bmatrix} \qquad \mathbf{w}^{3} = \begin{bmatrix} 5 & 3 \end{bmatrix} \quad \mathbf{b}^{3} = \begin{bmatrix} 6 \end{bmatrix}$$



Multilayer NN: Output Representation

- Output of NN is a vector
- As before, if xⁱ be sample of class k, its label is



$$\mathbf{f}(\mathbf{x}^{i},\mathbf{W}) = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \longleftarrow \text{row } \mathbf{k}$$

wish to get this output

Training NN: Squared Difference Loss

- Wish to minimize difference between yⁱ and f(xⁱ)
- Let W be all weights (all matrices W^t and bias vectors b^t)
- With squared difference loss
- Squared loss on one example xⁱ:

$$L(\mathbf{x}^{i},\mathbf{y}^{i};\mathbf{W}) = ||\mathbf{f}(\mathbf{x}^{i},\mathbf{W}) - \mathbf{y}^{i}||^{2} = \sum_{j=1}^{m} (\mathbf{f}_{j}(\mathbf{x}^{i},\mathbf{W}) - \mathbf{y}_{j}^{i})^{2}$$

• For this example, squared loss is $3^2+2^2=13$

$$\mathbf{f}(\mathbf{x}^{\mathbf{i}},\mathbf{W}) = \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix} \qquad \mathbf{y}^{\mathbf{i}} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Training NN: Squared Difference Loss

• Let
$$X = x^1, ..., x^n$$

 $Y = y^1, ..., y^n$

• Loss on all examples:
$$\mathbf{L}(\mathbf{X},\mathbf{Y};\mathbf{W}) = \sum_{i=1}^{n} \|\mathbf{f}(\mathbf{x}^{i},\mathbf{W}) - \mathbf{y}^{i}\|^{2}$$

Gradient descent

Initialize W to random choose ε , α while $\alpha || \nabla L(X,Y;W) || > \varepsilon$ W = W - $\alpha \nabla L(X,Y;W)$

Training NN: Softmax Loss

- Squared error loss is not recommended for classification
- Softmax is a better loss function, seen before in linear classifier
- First put the output of the network through soft-max

$$\mathbf{f_k}(\mathbf{x}) = \frac{\exp(\mathbf{o_k})}{\sum_{j=1}^{m} \exp(\mathbf{o_j})}$$

$$\mathbf{o} = \begin{bmatrix} 0.6 \\ -1 \\ 5 \\ 8 \\ 4 \end{bmatrix} \qquad \begin{bmatrix} 0.006 \\ 0.0001 \\ 0.047 \\ 0.94 \\ 0.17 \end{bmatrix} = \mathbf{f}(\mathbf{x}) = \text{sofmax}(\mathbf{o})$$

Interpret f_k(x) as probability of class k

Training NN: Softmax Loss

• If sample **x** is of class **k**, the loss is

$$L(x, y; W) = -\log f_k(x)$$

- this loss function is also called –log loss, cross entropy loss
- minimizing –log is equivalent to maximizing probability
- Loss on all samples

$$L(X,Y;W) = \sum L(x,y;W)$$

Training NN: -Log Loss Function

Need to find derivative of L wrt every network weight w_i

$$\frac{\partial \mathbf{L}}{\partial \mathbf{w_i}}$$

 After derivative found, according to gradient descent, weight update is

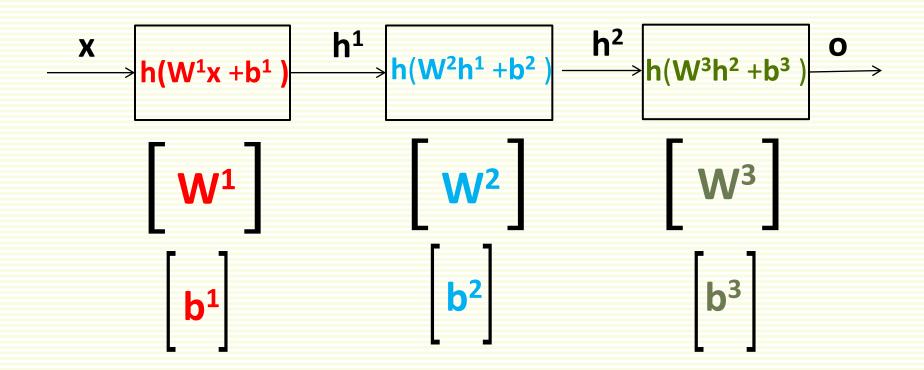
$$\Delta \mathbf{w}_{i} = -\alpha \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{i}}$$

- where α is the learning rate
- Update weight

$$\mathbf{w}_{i} = \mathbf{w}_{i} + \Delta \mathbf{w}_{i}$$

Training NN: -Log Loss Function

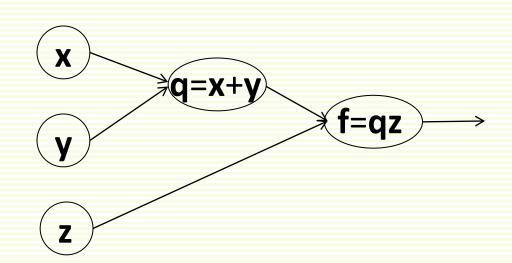
How many weights do we have in our network?



- Weights are in matrices W¹,W²,...,W^L
- And in matrices **b**¹,**b**²,...,**b**^L

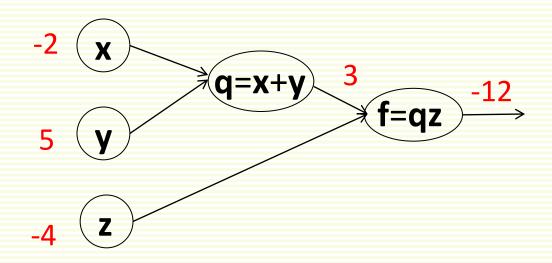
Computing Derivatives: Small Example

- Small network f(x,y,z) = (x+y)z
- Rewrite using
 - q = x + y
- f(x,y,z) = qz
- each node does one operation



Computing Derivatives: Small Example

- Small network f(x,y,z) = (x+y)z
- Rewrite using
 - q = x + y
 - f(x,y,z) = qz
- Example of computing **f**(-2,5,-4)



Computing Derivatives: Small Example

- Small network f(x,y,z) = (x+y)z
- Rewrite using $q = x + y \implies f(x,y,z) = qz$
- Want $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}, \frac{\partial \mathbf{f}}{\partial \mathbf{y}}, \frac{\partial \mathbf{f}}{\partial \mathbf{z}}$

chain rule for $\mathbf{f}(\mathbf{y}(\mathbf{x}))$ $\frac{\partial \mathbf{f}}{\partial \mathbf{y}} = \frac{\partial \mathbf{f}}{\partial \mathbf{y}}$

- Compute $\frac{\partial \mathbf{f}}{\partial}$ from the end backwards
 - for each edge, with respect to the main variable at edge origin
 - using chain rule with respect to the variable at edge end, if needed

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} = -4$$

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y} = -4$$

$$\frac{\partial f}{\partial q} = z = z = -4$$

$$\frac{\partial f}{\partial q} = z = z = -4$$

$$\frac{\partial f}{\partial q} = z = z = -4$$

$$\frac{\partial f}{\partial q} = z = z = -4$$

$$\frac{\partial f}{\partial q} = z = z = -4$$

$$\frac{\partial f}{\partial q} = z = z = -4$$

$$\frac{\partial f}{\partial q} = z = z = -4$$

$$\frac{\partial f}{\partial q} = z = z = -4$$

$$\frac{\partial f}{\partial q} = z = z = -4$$

$$\frac{\partial f}{\partial q} = z = z = -4$$

$$\frac{\partial f}{\partial q} = z = z = -4$$

$$\frac{\partial f}{\partial q} = z = z = -4$$

$$\frac{\partial f}{\partial q} = z = z = -4$$

$$\frac{\partial f}{\partial q} = z = z = -4$$

$$\frac{\partial f}{\partial q} = z = z = -4$$

$$\frac{\partial f}{\partial z} = z = z = -4$$

$$\frac{\partial f}{\partial z} = z = z = -4$$

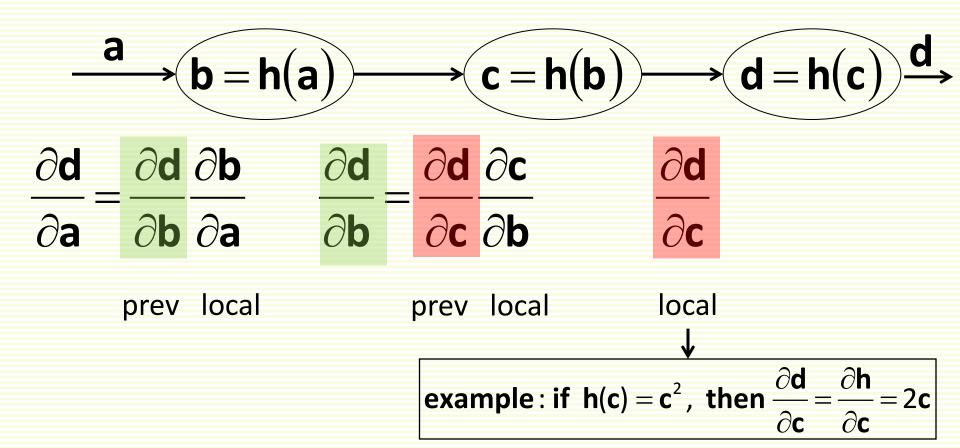
$$\frac{\partial f}{\partial z} = z = z = -4$$

$$\frac{$$

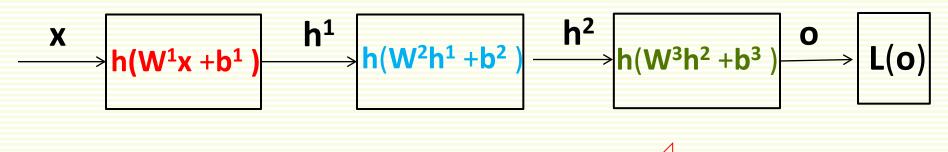
Computing Derivatives: Chain of Chain Rule

• Compute $\frac{\partial \mathbf{d}}{\partial}$ from the end backwards

- direction of computation
- for each edge, with respect to the main variable at edge origin
- using chain rule with respect to the variable at edge end, if needed



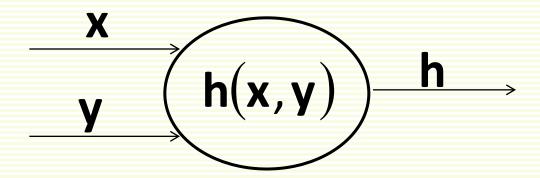
Computing Derivatives Backwards



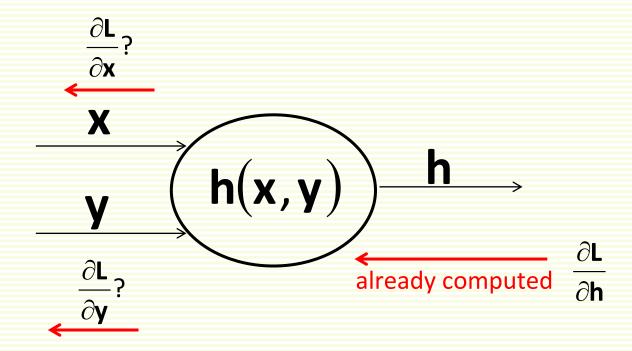
direction of computation

- Have loss function L(o)
- Need derivatives for all $\frac{\partial \mathbf{L}}{\partial \mathbf{w}}$, $\frac{\partial \mathbf{L}}{\partial \mathbf{b}}$
- Will compute derivatives from end to front, backwards
- ullet On the way will also compute intermediate derivatives $\dfrac{\partial {f L}}{\partial {f h}}$

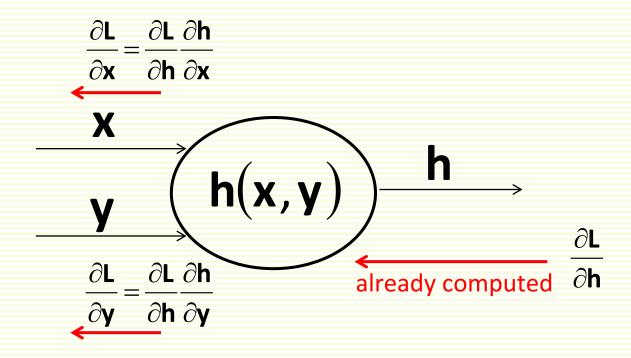
- Simplified view at a network node
 - inputs x,y come in
 - node computes some function h(x,y)



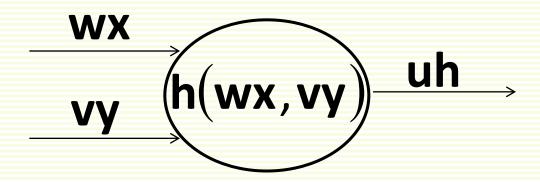
- At each network node
 - inputs **x**,**y** come in
 - nodes computes activation function h(x,y)
- Have loss function L(·)

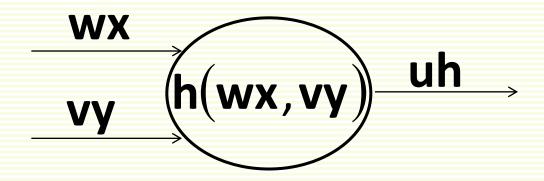


- Need $\frac{\partial \mathbf{L}}{\partial \mathbf{x}}, \frac{\partial \mathbf{L}}{\partial \mathbf{y}}$
- Easy to compute local node derivatives $\frac{\partial \mathbf{h}}{\partial \mathbf{x}}$, $\frac{\partial \mathbf{h}}{\partial \mathbf{y}}$

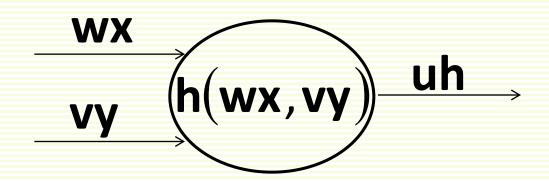


- More complete view at a network node
 - inputs x,y come in, get multiplied by weight w and v
 - node computes function h(wx,vy)
 - node output h gets multiplied by u

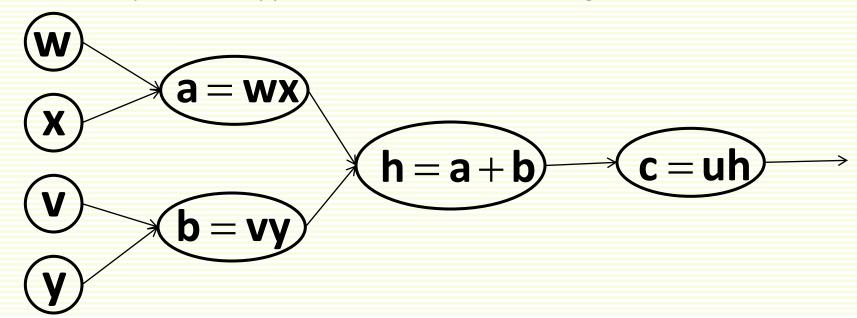


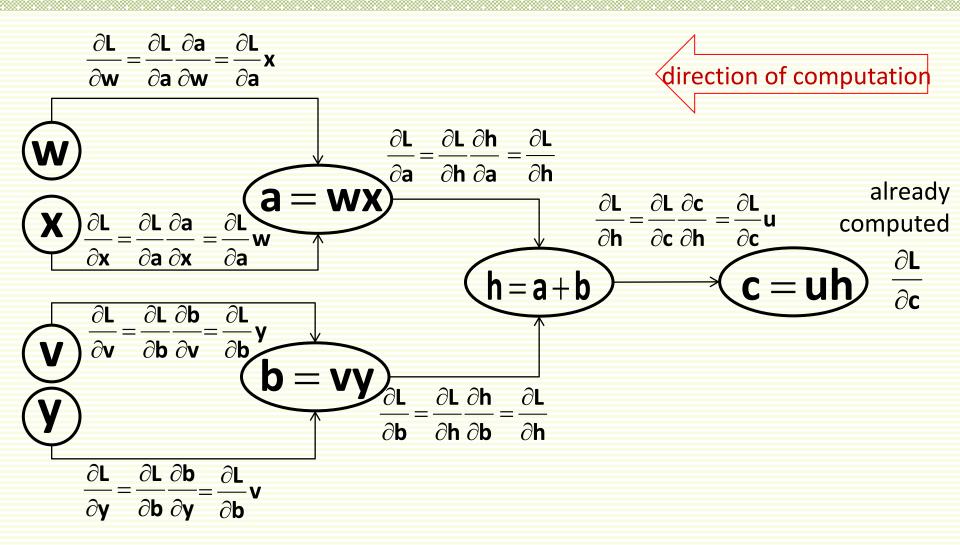


• To be concrete, let h(i,j) = i + j

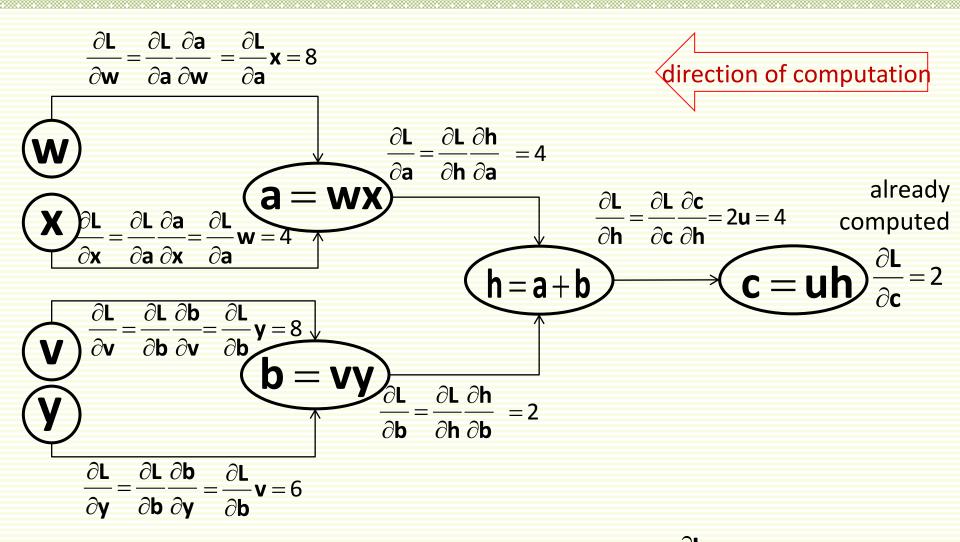


- h(i,j) = i + j
- Break into more computational nodes
 - all computation happens inside nodes, not on edges





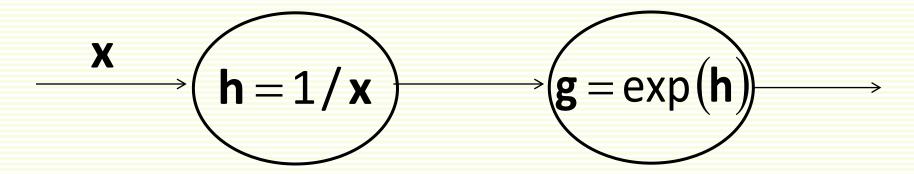
- Some of these partial derivatives are intermediate
 - their values will not be used for gradient descent



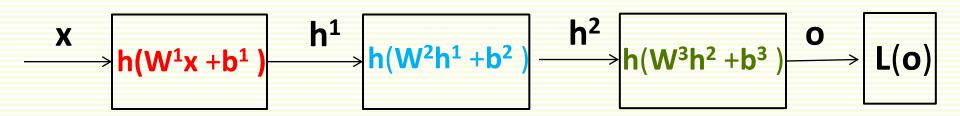
• Example when $\mathbf{w} = 1$, $\mathbf{x} = 2$, $\mathbf{v} = 3$, $\mathbf{y} = 4$, $\mathbf{u} = 2$, $\frac{\partial \mathbf{L}}{\partial \mathbf{c}} = 3$

Computing Derivatives: Staging Computation

- Each node is responsible for one function
- To compute exp(1/x)



Inputs and outputs are often vectors and/or matrices



- h(a) is a function from Rⁿ to R^m
- Chain rule generalizes to vector and matrix functions
- Will not derive it, but will give you the end result

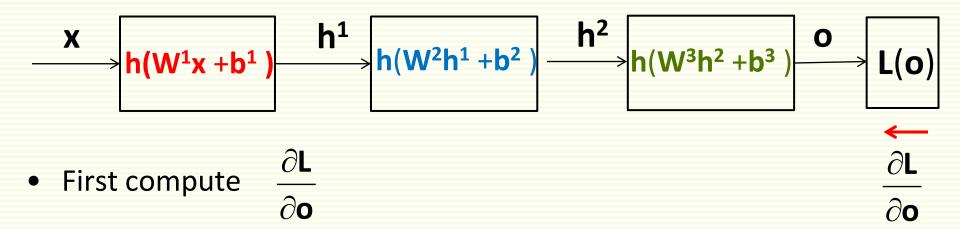
- Assume loss L is a scalar
 - if not, can do derivation for each component independently
- Assume W, X, and h are matrices
 - subsumes the case when they are vectors as well

$$\frac{\partial L}{\partial x} = W^{T} \frac{\partial L}{\partial h}$$

$$\frac{X}{h} = WX$$

$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial h} X^{T}$$
already computed
$$\frac{\partial L}{\partial h}$$

• $\frac{CL}{2M}$ is a matrix of partial derivatives of the same shape as **W**

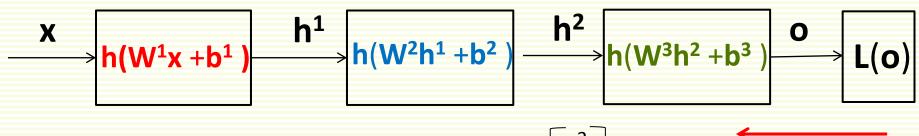


Under quadratic loss

$$\frac{\partial \mathbf{L}}{\partial \mathbf{o}} = \mathbf{f}(\mathbf{x}) - \mathbf{y}$$

Under softmax loss

$$\frac{\partial \mathbf{L}}{\partial \mathbf{o}} = \mathbf{softmax}(\mathbf{f}(\mathbf{x})) - \mathbf{y}$$



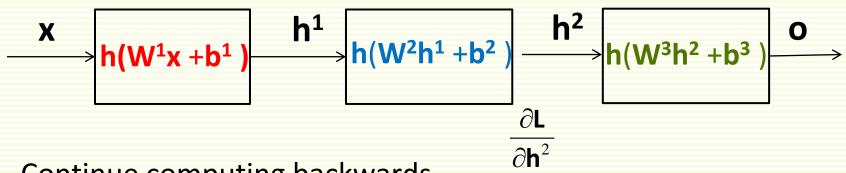
• Let vector $\mathbf{a}^3 = \mathbf{W}^3 \mathbf{h}^2 + \mathbf{b}^3$

$$\mathbf{a^3} = \begin{bmatrix} \mathbf{a^3}_1 \\ \mathbf{a^3}_2 \end{bmatrix} \qquad \frac{\partial \mathbf{L}}{\partial \mathbf{o}}$$

$$\frac{\partial \mathbf{L}}{\partial \mathbf{W}^3} = \mathbf{diag} \left(\mathbf{h}' \left(\mathbf{a}^3 \right) \right) \frac{\partial \mathbf{L}}{\partial \mathbf{o}} \left(\mathbf{h}^2 \right)^{\mathsf{T}}$$

$$\frac{\partial \mathbf{L}}{\partial \mathbf{h}^2} = \mathbf{diag}(\mathbf{h}'(\mathbf{a}^3))(\mathbf{W}^3)^{\mathsf{T}} \frac{\partial \mathbf{L}}{\partial \mathbf{o}}$$

$$\frac{\partial \mathbf{L}}{\partial \mathbf{b}^3} = \mathbf{diag}(\mathbf{h}'(\mathbf{a}^3)) \frac{\partial \mathbf{L}}{\partial \mathbf{o}}$$

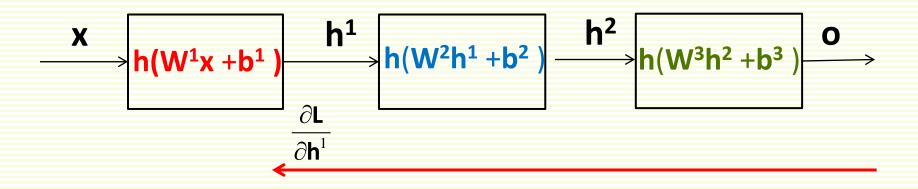


- Continue computing backwards
- Let vector a² = W²h¹ +b²

$$\frac{\partial \mathbf{L}}{\partial \mathbf{W}^2} = \mathbf{diag} \left(\mathbf{h}' \left(\mathbf{a}^2 \right) \right) \frac{\partial \mathbf{L}}{\partial \mathbf{h}^2} \left(\mathbf{h}^1 \right)^{\mathsf{T}}$$

$$\frac{\partial \mathbf{L}}{\partial \mathbf{h}^1} = \mathbf{diag}(\mathbf{h}^1(\mathbf{a}^2))(\mathbf{W}^2)^{\mathsf{T}} \frac{\partial \mathbf{L}}{\partial \mathbf{h}^2}$$

$$\frac{\partial \mathbf{L}}{\partial \mathbf{b}^2} = \mathbf{diag}(\mathbf{h}'(\mathbf{a}^2)) \frac{\partial \mathbf{L}}{\partial \mathbf{h}^2}$$



- Continue computing backwards
- Let vector a¹ = W¹x¹ +b¹

$$\frac{\partial \mathbf{L}}{\partial \mathbf{W}^{1}} = \mathbf{diag}(\mathbf{h}'(\mathbf{a}^{1})) \frac{\partial \mathbf{L}}{\partial \mathbf{h}^{1}} \mathbf{x}^{\mathsf{T}}$$

$$\frac{\partial \mathbf{L}}{\partial \mathbf{b}^{1}} = \mathbf{diag}(\mathbf{h}'(\mathbf{a}^{1})) \frac{\partial \mathbf{L}}{\partial \mathbf{h}^{1}}$$

Training Protocols

Batch Protocol

- full gradient descent
- weights are updated only after all examples are processed
- might be very slow to train

Single Sample Protocol

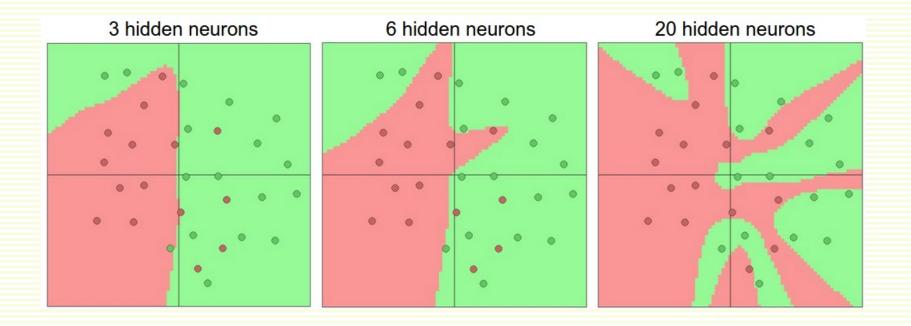
- examples are chosen randomly from the training set
- weights are updated after every example
- weighs get changed faster than batch, less stable
- One iteration over all samples (in random order) is called an **epoch**

Mini Batch

- Divide data in batches, and update weights after processing each batch
- Middle ground between single sample and batch protocols
- Helps to prevent over-fitting in practice, think of it as "noisy" gradient
- allows CPU/GPU memory hierarchy to be exploited so that it trains much faster than single-sample in terms of wall-clock time
- One iteration over all mini-batches is called an epoch

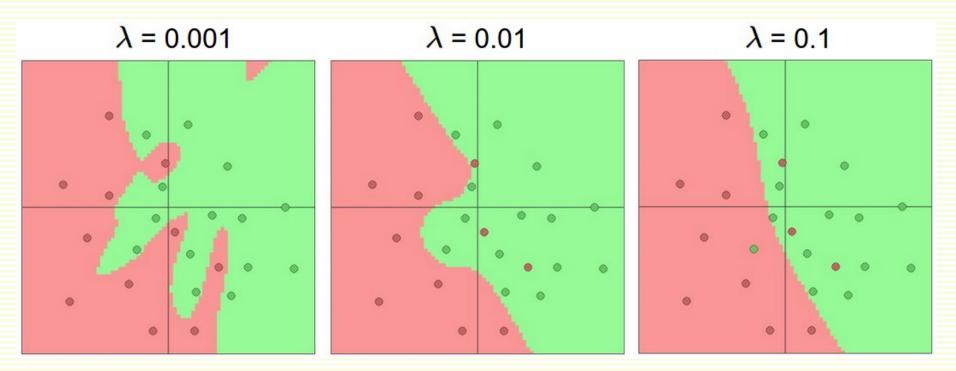
Regularization

Larger networks are more prone to overfitting



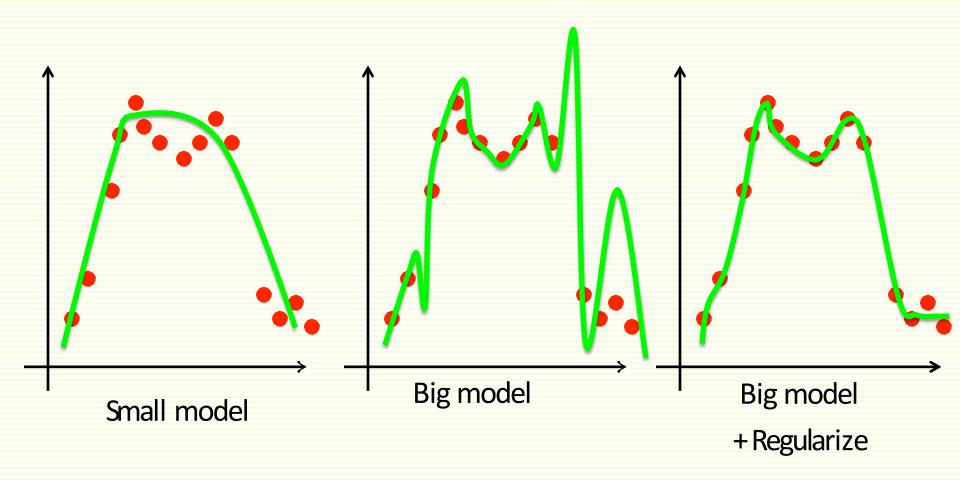
Regularization

- Can control overfitting by using network with less units
- Better if control overfitting by adding weight regularization $\frac{\lambda}{2} \|\mathbf{w}\|^2$ to the loss function



- During gradient descent, subtract λw from each weight w
 - intuitively, implements weight decay

Small model vs. Big Model+Regularize



Ensembles of Neural Networks

- Train multiple independent models, average their predictions
- Improvements are more dramatic with higher model variety
- Few approaches to forming an ensemble
 - Same model, different initializations
 - train multiple models with the best set of hyperparameters (found through cross validation) but with different random initialization.
 - drawback is that the variety is only due to initialization

Top models discovered during cross-validation

- Use cross-validation to determine the best hyperparameters, then pick the top few
- Improves ensemble variety but has the danger of including suboptimal models
- practical, does not require additional retraining of models after cross-validation

Different checkpoints of a single model

- Take different "checkpoints" of a single network over time
- Lacks variety, but very cheap

Running average of parameters during training

- Maintain a second copy of the network's weights in memory that maintains an exponentially decaying sum of previous weights during training
- This way you're averaging the state of the network over last several iterations

Practical Training Tips: Initialization

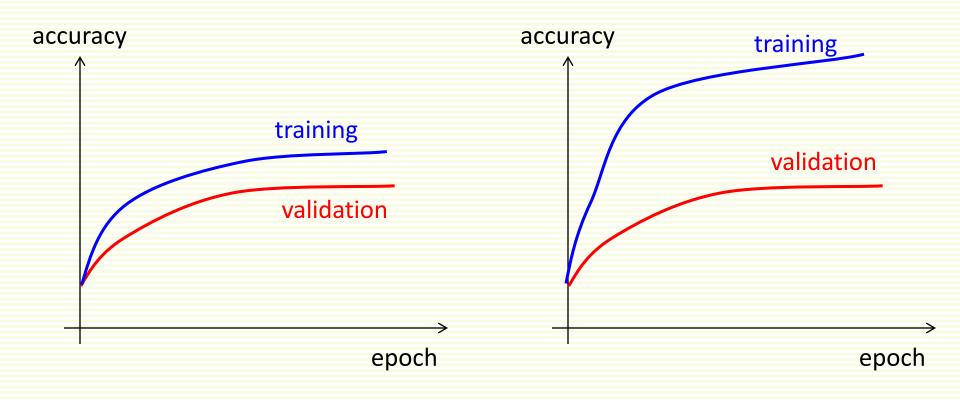
- Initialization parameters for W
 - do not set all the parameters W equal
 - all units compute the same output, gradient descent updates are the same
 - can initialize W to small random numbers
 - if using RELU, better initialize with $randn(n) \frac{2}{\sqrt{n}}$, where **n** is number of inputs to the unit
- Biases **b** usually initialized to 0
 - with ReLU often intialize to small positive number, like 0.1

Practical Training Tips: Learning Rate

- Loss L(w) should decrease during gradient descent
 - If L(w) oscillates, α is too large, decrease it
 - If L(w) goes down but very slowly, α is too small, increase it
- Typically cross-validate learning rates from 10⁻² to 10⁻⁵
- ullet Helps to adjust α at the training time, especially for many layered (deep) networks
 - Step decay
 - reduce learning rate by some factor every few epochs
 - i.e. by a factor 0.5 every 5 epochs, or by 0.1 every 20 epochs
 - Exponential decay
 - $\alpha = \alpha_0 e^{-kt} \alpha$, where α_0 , k are hyperparameters and t is epoch number
 - 1/t decay
 - $\alpha = \alpha_0/(1+kt)$ where a_0 , k are hyperparameters and t is epoch number
 - Err on the side of slower decay, if time budget allows

Practical Training Tips: Validation/Training Accuracy

Track number of epoch vs. validation/training accuracy

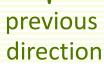


 Not much overfitting, increase network capacity? Strong overfitting, increase regularization?

Practical Training Tips: Momentum

- Add temporal average direction in which weights have been moving recently
- Parameter vector will build up velocity in direction that has consistent gradient
- Helps avoid local minima and speed up descent in flat (plateau) regions
- Previous direction: $\Delta \mathbf{w}^{t} = \mathbf{w}^{t} \mathbf{w}^{t-1}$
- Weight update rule with momentum
 - common to set $\beta \in (0.6,0.9)$, also can cross-validate

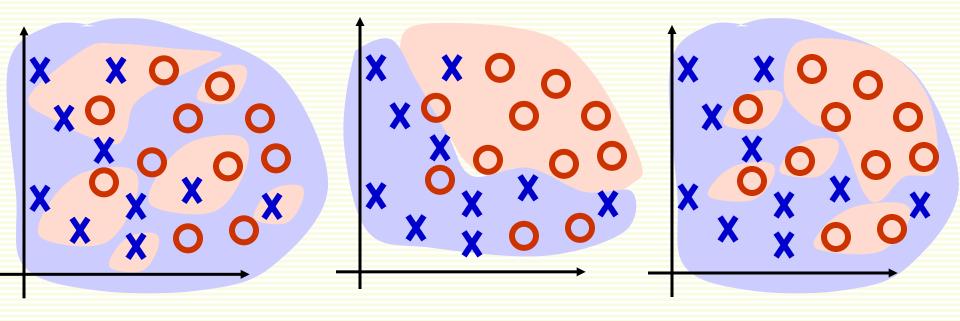
$$\mathbf{w}^{t+1} = \mathbf{w}^{t} + (1-\beta)\nabla \mathbf{L}(\mathbf{w}^{t}) + \beta \Delta \mathbf{w}^{t-1}$$



Practical Training Tips: Normalization

- Features should be normalized for faster convergence
- Suppose fish length is in meters and weight in grams
 - typical sample [length = 0.5, weight = 3000]
 - feature length will be almost ignored
 - If length is in fact important, learning will be very slow
- Any normalization we looked at before will do
 - test samples should be normalized exactly as training samples
- Images are already roughly normalized
 - intensity/color are in the range [0,255]
 - usually subtract mean image from training data, zero-centers data
 - mean computed on training data only
 - subtracted from test data as well

Training NN: How Many Epochs?



training time

Large training error: random decision regions in the beginning - underfit

Small training error: decision regions improve with time

Zero training error: decision regions fit training data perfectly - overfit

Learn when to stop training through validation

Other Practical Training Tips

- Before training on full dataset, make sure can overfit on a small portion of the data
 - turn regularization off
- Search hyperparameters on coarse scale for a few epoch, and then on finer scale for more epochs
 - random search might be better than grid search

