
CS4442/9542b
Artificial Intelligence II

 prof. Olga Veksler

Lecture 8

Computer Vision

Introduction, Filtering

Some slides from: D. Jacobs, D. Lowe, S.
Seitz , A.Efros , X. Li, R. Fergus, J. Hayes,
S. Lazebnik, D. Hoiem, S. Marschner

Outline

• Very Brief Intro to Computer Vision

• Digital Images

• Image Filtering

• noise reduction

Every Picture Tells a Story
• Goal of computer vision is to write computer programs that can

interpret images
• bridge the gap between the pixels and the story

1 2 0 2 2 1

9 2 2 7 1 2

2 8 2 3 2 2

4 2 2 7 2 8

2 2 2 6 0 2

8 3 2 5 2 2

7 2 4 2 1 9

what we see what computers see

Origin of Computer Vision: MIT Summer Project

The problem

real world
scene

sensing device interpreting
device

interpretations

• Want to make a computer understand images
• We know it is possible, we do it effortlessly!

 a person, a
person with
folded arms,
Pietro Perona

Just Copy Human Visual System?

• People try to but we don’t yet

have a sufficient understanding of

how our visual system works

• O(10
11

) neurons used in vision

• about 1/3 of human brain

• Latest CPUs have only O(10
8
)

transistors

• most are cache memory

• Very different architectures:

• Brain is slow but parallel

• Computer is fast but mainly serial

• Bird vs Airplane

• Same underlying principles

• Very different hardware

Why Computer Vision Matters

Safety Health Security

Comfort Personal Photos Fun

“Early Vision” Problems

• Edge extraction

• Corner extraction

• Blob extraction

“Mid-level Vision” Problems

• 3D Structure extraction • Motion and tracking

• Segmentation

“High-level Vision” Problems
• Face Detection

• Object Recognition

• Action Recognition

• Scene Recognition

Vision is inferential: Illumination

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html

• Vision is hard: even the simple problem of color
perception is inferential

Vision is inferential: Illumination

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html

• Vision is hard: even the simple problem of color
perception is inferential

Image Formation

Sampling and Quantization

Sensor Array

after quantization and sampling real world object

Digital Grayscale Image

• Image is array f(x,y)

• approximates continuous
function f(x,y) from R2 to R:

• f(x,y) is the intensity or
grayscale at position (x,y)

• proportional to brightness of
the real world point it images

• standard range: 0, 1, 2,…., 255

f(12,4)=75 f(10,6)= 170

x

y

(1,1)

Digital Color Image

• Color image is three
functions pasted together

• Write this as a vector-
valued function:

x,yb

x,yg

x,yr

y,xf

50
50

200

120
10
0

R G B

Digital Color Image
• Can consider color image as 3 separate images: R, G, B

Image Filtering
• Given f(x,y) filtering computes new image h(x,y)

• h(x,y) is a function of f(x,y) in a local neighborhood

around (x,y)

• example: h(x,y) = f(x,y)+f(x-1,y) f(x,y-1)

1 2 4 2 8

9 2 2 7 5

2 8 1 3 9

4 3 2 7 2

2 2 2 6 1

8 3 2 5 4

h(4,2) = 3 + 4 8 = 35

h(6,5) = 4 + 5 1 = 9

h(2,4) = 7 + 24 - 39 = -12

• Linear filtering: function is a weighted sum
(or difference) of pixel values

 h(x,y) = f(x,y) + 2f(x-1,y-1) - 3f(x+1,y+1)

 • Many applications
• Enhance images

• denoise, resize, increase contrast, …

• Extract information from images

• texture, edges, distinctive points …

• Detect patterns

• template matching

Filtering for Noise Reduction: Motivation

• Multiple images of even the same static scene are not identical

Common Types of Noise

 Salt and pepper noise: random
occurrences of black and white pixels

 Gaussian noise: variations in intensity
drawn from a Gaussian distribution

 original image

 Impulse noise: random occurrences of
white pixels

 G(0,25) noise

 original image

Gaussian Noise Most Commonly Assumed

Noise Reduction

• Noise can be reduced by averaging

• If we had multiple images, simply average them

ffinal (x,y) = (f1(x,y) + f2(x,y) + … + fn(x,y)))/n

• But usually there is only one image!

= + … + +

First Attempt at a Solution

• Replace each pixel with an average of all the
values in its neighborhood

• Assumptions:

• expect a pixel to have intensities similar to its
neighbors

• noise is independent at each pixel

Average Filter in 1D

• Replace each pixel with an average of all the
values in its neighborhood (= 5 pixels, say)

• Moving average:

Average Filter in 1D

• Replace each pixel with an average of all the
values in its neighborhood (= 5 pixels, say)

• Moving average in 1D

Average Filter in 1D

• Replace each pixel with an average of all the
values in its neighborhood (= 5 pixels, say)

• Moving average in 1D

Average Filter in 1D

• Replace each pixel with an average of all the
values in its neighborhood (= 5 pixels, say)

• Moving average in 1D

Average Filter in 1D

• Replace each pixel with an average of all the
values in its neighborhood (= 5 pixels, say)

• Moving average in 1D

Average Filter in 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

f(x,y) g(x,y)

Average Filter in 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

f(x,y) g(x,y)

Average Filter in 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

f(x,y) g(x,y)

Average Filter in 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

f(x,y) g(x,y)

Average Filter in 2D

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

f(x,y) g(x,y)

Average Filter in 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

f(x,y) g(x,y)

Average Filter in 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

f(x,y) g(x,y)

sticking out not sticking out

sharp border border washed out

Average Filter in 2D

• Write as equation, averaging in window of size (2k+1)x(2k+1)

k

ku

k

kv

vyuxf
k

yxg ,
12

1
,

2

loop over all pixels in
neighborhood around pixel f (i,j)

normalizing factor

2
k+1

-k,-k

k,k

• Window indexing

Average Filter in 2D

• Bring normalizing factor inside the sum

k

ku

k

kv

vyuxf
k

yxg ,
12

1
,

2

k

ku

k

kv

vyuxf
k

yxg ,
12

1
,

2

• Visualize with mask H
• also called filter, kernel

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

H[u,v]

1 1 1

1 1 1

1 1 1

1/9

=

k

ku

k

kv

vyuxfvuH ,,

Average Filter in 2D

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

box filter

H[u,v] g(x,y) f(x,y)

• Apply mask H to every image pixel

Correlation Filtering

• Generalize by allowing
different weights for
different pixels in the
neighborhood

k

ku

k

kv

vyuxfvuHyxg ,,,

H[u,v]

H[u,v]

• Box filter

1 2 1

2 4 2

1 2 1

16

1

1 1 1

1 1 1

1 1 1

9

1

Filtering in 2D

0 6 20 23 23

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

H[u,v] g(x,y) f(x,y)

• Apply the more general mask as before

16

1

Correlation filtering

k

ku

k

kv

vyuxfvuHyxg ,,,

• This is called correlation, denoted g = H f

• The result of applying mask H to the whole image

• Filtering an image: replace each pixel with a linear
combination of its neighbors

• The filter kernel or mask H is gives the weights in linear
combination

Smoothing by Averaging

original filtered

• What if the mask is larger than 3x3 ?

• Pictorial representation of box filter:

• white means large value, black means low value

Effect of Average Filter

7 7

9 9

11 11

Gaussian noise Salt and Pepper noise

Gaussian Filter

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

• Nearest neighboring pixels to have the most influence
• helps to lessen the effect of boundary smoothing

This kernel H is an
approximation of a 2d

Gaussian function:

H[u,v] f(x,y)

16

1

Gaussian Filters: Mask Size
• Gaussian has infinite domain, discrete filters use finite mask

• set mask size to exclude non-useful (effectively zero) weights

σ = 5 with 30 x 30 mask σ = 5 with 10 x 10 mask

blue weights
are so small
they are
effectively 0

Gaussian filters: Variance
• Variance (σ) contributes to the extent of smoothing

• larger σ gives less rapidly decreasing weights

• can construct a larger mask with non-negligible weights

σ = 2 with 30 x 30 kernel σ = 5 with 30 x 30 kernel σ = 8 with 30 x 30 kernel

Matlab

>> hsize = 10;

>> sigma = 5;

>> h = fspecial(‘gaussian’, hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> outim = imfilter(im, h); % correlation

>> imshow(outim);

outim im

Average vs. Gaussian Filter

mean filter Gaussian filter

More Average vs. Gaussian Filter

mean filter Gaussian filter

5 5

15 15

31 31

Gaussian Filter with different Ϭ

Ϭ=3 Ϭ=10 Ϭ=20

original image

corrupted by
noise Ϭ = 10

corrupted by
noise Ϭ = 20

corrupted by
noise Ϭ = 30

filtered with different Ϭ

Boundary Issues

• What is the size of the output?

• MATLAB: output size / “shape” options

• shape = ‘full’: output size is sum of sizes of f and g

• shape = ‘same’: output size is same as f

• shape = ‘valid’: output size is difference of sizes of f and g

f

g g

g g

f

g g

g g

f

g g

g g

full same valid

Boundary issues
• What about near the edge?

• the filter window falls off the edge of the image

• need to extrapolate image

clip filter (black) copy edge

reflect across edge wrap around

Properties of Smoothing Filters

• Values positive

• Sum to 1

• constant regions same as input

• overall image brightness stays unchanged

• Amount of smoothing proportional to mask size

• larger mask means more extensive smoothing

Filtering an Impulse Signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

• What is the result of filtering the impulse signal
(image) with arbitrary kernel H?

H[u,v]

g(x,y)=? f(x,y)

 =

Filtering an Impulse Signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

• What is the result of filtering the impulse signal
(image) with arbitrary kernel H?

H[u,v]

g(x,y)=? f(x,y)

 =
i h g

f e d

c b a

Convolution
• Convolution:

• Flip the mask in both dimensions
• bottom to top, right to left

• Then apply cross-correlation

k

ku

k

kv

vyuxfvuHyxg ,,,

2
k+1

-k,-k

k,k

f
H H

flipped

• Notation for convolution: g = H*f

Convolution vs. Correlation

• Convolution: g = H*f

k

ku

k

kv

vyuxfvuHyxg ,,,

• Correlation: g = H f

k

ku

k

kv

vyuxfvuHyxg ,,,

• For Gaussian or box filter, how the outputs differ?

• If the input is an impulse signal, how the outputs differ?

Practice with Correlation Filtering

0 0 0

0 1 0

0 0 0

original

? =

Practice with Correlation Filtering

0 0 0

0 1 0

0 0 0

original filtered (no change)

 =

Practice with Correlation Filtering

0 0 0

1 0 0

0 0 0

original

? =

Practice with Correlation Filtering

0 0 0

1 0 0

0 0 0

original shifted left
by 1 pixel with
correlation

 =

Practice with Correlation Filtering

Original

?
1 1 1

1 1 1

1 1 1

 =

Practice with Correlation Filtering

original

1 1 1

1 1 1

1 1 1

blur (with a box filter)

 =

Practice with Correlation Filtering

original

1 1 1
1 1 1
1 1 1

0 0 0
0 2 0
0 0 0

- ? =

apply one mask
after the other,
or subtract masks
and apply one
resulting mask

-1/9 -1/9 -1/9

-1/9 17/9 -1/9

-1/9 -1/9 -1/9

Practice with Correlation Filtering

original

1 1 1
1 1 1
1 1 1

0 0 0
0 2 0
0 0 0

- ? =

 sharpened

Practice with Correlation Filtering

1 1 1
1 1 1
1 1 1

0 0 0
0 2 0
0 0 0

-

 • Why sharpens?

=

+

original f

=

sharpened detail

original f original f

+ -

smoothed

Sharpening Example

before after

Separability

• Sometimes filter is separable, can split into
two steps:
• Convolve all rows with 1D filter

• Convolve all columns with 1D filter

• Both box and Gaussian filters are separable

• Great for efficiency!

Box Filter
0 0 0 0 0 0

0 90 90 90 90 0

0 90 90 90 90 0

0 90 90 90 90 0

0 90 90 90 90 0

0 0 0 0 0 0

0 0 0 0 0 0

0 90 90 90 90 0

0 90 90 90 90 0

0 90 90 90 90 0

0 90 90 90 90 0

0 0 0 0 0 0

H Hc Hr

*H =

0 0 0 0 0 0

0 40 60 60 40 0

0 60 90 90 60 0

0 60 90 90 60 0

0 40 60 60 40 0

0 0 0 0 0 0

*Hc *Hr =

0 0 0 0 0 0

0 60 60 60 60 0

0 90 90 90 90 0

0 90 90 90 90 0

0 60 60 60 60 0

0 0 0 0 0 0

*Hr =

0 0 0 0 0 0

0 40 60 60 40 0

0 60 90 90 60 0

0 60 90 90 60 0

0 40 60 60 40 0

0 0 0 0 0 0

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

1/3 1/3 1/3

1/3

1/3

1/3

= *

Gaussian Filter: Example

• To convolve image with this:

• First convolve each row with:

• Then each column with:

H

Hc

Hr

Gaussian Filter: Example

• Straightforward convolution with 55 kernel

• 25 multiplications, 24 additions per pixel

• Smart convolution

• 10 multiplications, 9 additions per pixel

• Savings are even larger for larger kernels

• for nn kernel, straightforward convolution is O(n2)

• Smart convolution is O(n) per pixel

Median Filters

• A Median Filter selects median intensity in the window

• No new intensities are introduced

• Median filter preserves sharp details better than mean
filter, it is not so prone to oversmoothing

• Better for salt and pepper, impulse (spiky) noise

• Is a median filter a kind of convolution?

1 2 25

3 24 22

20 21 23

X X X

X 21 X

X X X

Median of {1,2,25,3,24,22,20,21,23} = {1,2,3,20,21,22,23,24,25} is 21

Median Filter

• Median filter is edge preserving

input:

average:

median:

Median filter

row of noisy image

Salt and pepper noise median filtered

row of filtered image

Comparison: Salt and Pepper Noise Image

5 5

7 7

Gaussian filter median filter

3 3

Comparison: Gaussian Noise Image

5 5

7 7

Gaussian filter median filter

3 3

Filtering Fun: Face of Faces

http://www.salle.url.edu/~ftorre/

http://www.salle.url.edu/~ftorre/

Salvador Dali, “Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the

portrait of Abraham Lincoln”, 1976

Summary

• Image “noise”

• Linear filters and convolution useful for

• Enhancing images (smoothing, removing noise)
• Box filter

• Gaussian filter

• Impact of scale / width of smoothing filter

• Detecting features (next time)

• Separable filters more efficient

• Median filter: a non-linear filter, edge-preserving

