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Abstract

We presenta methodfor extracting densefeatuesfrom
steleo and motionsequencesOur densefeature is defined
symmetricallywith respectto both images, and it is ex-
tractedduring the correspondenc@rocess,not in a sepa-
ratepreprocessingtep.For densdeatuie extractionweuse
the graph cutsalgorithm, recentlyshownto be a powerful
optimizationtool for vision. Our algorithm producessemi-
denseansweywith veryaccumateresultsin areaswhele fea-
tures are detectedand no matdesin featuelessregions.
Unlike spaisefeature basedalgorithms,we are able to ex-
tractaccuiate correspondenceis someuntexturedregions,
providedthat there are texture cueson the boundary Our
algorithmis robustand doesnot require parametertuning

1 Intr oduction

Visual correspondencis a key taskin mary vision ap-
plications. Two imagesof the samesceneare given, and
thetaskis to find pixelsin differentimageswhich arepro-
jectionsof the sameworld point. We developanalgorithm
for sterecandmotioncorrespondencén stereojmagesare
takensimultaneouslyrom differentview points,andcorre-
spondencgivesdepthcues.In motion,imagesaretakenat
differenttimes,andcorrespondencgivesmotioncues.

Therehasbeena wealth of approacheso visual corre-
spondenceMost give denseestimatesthatis they establish
correspondenctor all or almostall pixels. Theseinclude
methodshasedn opticalflow [6], correlation[4], dynamic
programmind8], graph-cutg2], etc. While mary of these
algorithmsperformwell undergoodconditions suchaslow
noiseandreasonablyextureddata,they fail underunfavor-
ableconditions.Indeed,in mary realisticscenest may be
impossibleto find reliablecorrespondencés someregions
no matterwhich algorithmis used. A robust vision sys-
temneeddo disregardary correspondences suchregions.
Many densemethodshowever do not provide a confidence
measuran their correspondencest all. If they do provide

aconfidencemeasuret usuallysomethingsimplewhichin
essencenarkscorrespondenceaseartexture as morereli-
able. Dependingon scenetexture, sucha confidencenea-
suremay dismissmostof the correspondences.

Therearealsomethodswhich establishcorrespondence
only for partsof the scene,in orderto gain a more reli-
ableperformanceFor examplemostfeaturebasednethods
matchsparseimagefeatures like edgepixels [5] or edge
segmentg7]. Thesemethodsaremorerobust, but canpro-
ducequite sparsaesults.

Similar to the methodsin the previous paragraphwe
wantto developahighly accuratebut notnecessarilylense
algorithm.We wantcorrespondencemly in regionswhere
reliablecorrespondencesanbefound. To achieve thisgoal,
we look for densdeatureswhich areeasyto matchreliably.
Comparedo sparsdeaturealgorithms,we producedenser
resultsandin additionfind correspondencés someuntex-
turedregions,if thereis reliabletexture on their boundary

Our algorithmis basedon theideain [11]. In [11] they
introduceda notion of densefeaturesfor stereo. They de-
fine a densefeatureasa connectedsetof pixelsin the left
imageandthe correspondingetof pixelsin therightimage
suchthatintensityedgeson the boundaryof thesesetsare
strongerthan the matchingerror on the boundary(which
is the absoluteintensity differencebetweencorresponding
boundarypixels). They call this “the boundarycondition”.
Theideais thatevenfor untexturedregion, its boundarycan
give a cuefor correspondenceThe boundarycueis good
enoughif the intensitychangeon the boundaryis stronger
thannoise,andnoiseis reflectedby the matchingerror. In
addition, the insidesof the left andright pixel setsshould
match, as checled throughthresholds. Note that a dense
featureis associateavith a disparityequalto the displace-
mentbetweertheleft andright pixel sets.

Themainlimitation of [11] is theway they extractdense
features.They areextractedusinga local algorithmwhich
processegachscanlineindependenthfrom the other As
aresult,in [11] areableto enforcethe boundarycondition
only on the left andright boundary but not on the top and
bottom, which reducesreliability. We borrav the idea of
densefeaturesand the boundaryconditionfrom [11], but



our overall densefeaturedefinitionis different. Our main
adwantageover [11] is that we use graph cuts for dense
featureextraction,whichis a globaloptimizationalgorithm
shavn to be a powerful tool for vision [2]. As aresultwe
are able to enforcethe boundarycondition for the whole
boundaryof a densefeature,which significantlyimproves
accurag comparedo [11]. Also usingoptimizationframe-
work we avoid hardthresholdghatarenecessarjn [11]. In
additionwe extendour algorithmto handlemotiondata.

Ourdenséeatureshave all of thedesirablepropertiesof
thedensefeaturedn [11]. Thatis they areextractedduring
the correspondencerocess,not a separatereprocessing
step,andthey are symmetricwith respectio bothimages.
Unlike sparsdeaturespur densedeaturesarevery descrip-
tive, sothat after all densefeaturesare computedthereis
little disambiguatiorto be done. Thatis if a pixel belongs
to morethanonedensdeaturejt is likely thateitheroneof
thesedensdeatureds dueto noiseandis very smallin size,
or thatthe pixel is in arepeatedextureregion.

2 Optimization with Graph Cuts

Let P be a setof pixels andsupposewne wantto assign
abinarylabelto eachpixel p € P. Let f, denotethe label
assignedo pixel p, andlet f = {f,|p € P}. In this paper
we needto optimizethefollowing binaryfunction.

E(f) = ZDp(fp) + Z )T (fp # fq) 1)

(P Q) EN

HereD,(f,) is afunctionwhich dependon theindividual
labelassignedo pixel p. It is usedto encodea labelprefer
encefor pixel p. A is aneighborhoodystemdefinedon P,
consistingof pairsof pixels. In this paper/\ is thestandard
4-neighborhoodsystem thatis eachpixel hasits top, left,
bottomandright pixels asneighbors.FunctionT'(-) is 1 if
its agumentis true,and0 otherwise.Summatioris over all
orderedneighborpairs(p, ¢), andfinally u,,) is aconstant
dependingn theorderedpair (pq).

This type of enegy is commonlyusedin vision, andit
is a balanceof two terms. The first sumencouragetabel-
ings whereeachpixel is assignedhe label it likesaccord-
ing to D, thusencouragindabelingsconsistenwith the
obsereddata.Thesecondsumencouragekbelingswhere
mostnearbypixels have the samelabel, thus encouraging
spatialconsisteng frequentlyexhibited by visualdata.

Equation(1) canbe optimizedexactly with a minimum
graphcut [2]. We usethe new fast max-flov algorithm
in [1]. Therunningtimeis nearlylinearin practice.

3 DenseFeature Moti vation

In this sectionwe motivate our densefeatures. Our
densefeatureis associateavith a certaindisplacementec-

tor which is onedimensionafor stereq(it is usuallycalled
disparity)andtwo dimensionafor motion. Thatis a dense
featureis a connectedsetof pixels which arelikely to un-

dego the samedisplacemenbetweerthe two images.Our

goalis to find the propertiesof a connectedset of pixels
which male it a goodcandidatdor a densefeature thatis

propertieghatallow reliablematchingof this pixel set.

Hereis the overall idea. Densefeaturesexist at some
displacementsofirst we fix a displacementTexture gives
agoodcuefor correspondencéJsingtexture cuesfor each
pixel we decideif it is likely to undego the fixed displace-
mentbetweenthe two images. If yes,thenthereis a pos-
itive cue at that pixel. We alsoevaluatewhethera pixel is
notlikely to undego thefixed displacementin which case
thereis anegative cueatthatpixel. A concentratiorf posi-
tive cuesindicatesa possibledenseeaturepresencén their
neighborhood.A concentratiorof negative cuesindicates
thatthereshouldbenodensdeaturesn theirneighborhood.
Now we facea binary segmentationproblem,dividing all
pixelsinto two groups:thosewhich undego the fixed dis-
placementndthosewhich do not. To find a suitableplace
for densefeatureboundarieswe usethe boundarycondi-
tion. Finally we corvert the binary segmentationproblem
into the enegy minimizationproblemin equation(1), and
we segment(or label)all pixelsusingagraphcut.

Hereis roughly how we computepositive and negative
cues. Let p be a pixel, p; its left neighbor d a fixed dis-
placementand L(p), R(p) the intensitiesof p in the left
andright images. Our basicmeasureof texture is simply
|L(p) — L(py)] in theleft imageand |R(p) — R(p;)| in the
rightimage.In additionto texturecue thereis alsoamatch-
ing error for p at the displacementl. This matchingerror
is e(p,d) = |L(p) — R(p + d)|. If thetexture cuesof p
in the left imageandof p + d in therightimagearelarger
thane(p,d) ande(p;, d), thenthereis a positive cue (its
strengthis actuallyvariable detailsin Section4.1). Thein-
tuition is that a texture cueis reliableonly if it is stronger
thanthe noisein the images,and noiseis reflectedin the
matchingerror. For example,if L(p) = 55, L(p;) = 65,
R(p+d) = 60, andR(p; + d) = 67, thenthereis a pos-
itive cue, sincetexture cuesare 10 and 7 for the left and
right images,ande(p,d) = 5 ande(p;,d) = 2, which
aresmallerthanboth texture cues. If R(p + d) = 65 and
R(p; + d) = 70, thenthereis no positive cue. Definition of
a ngjative cueis simpler Roughlya negative cueis given
by ary pixel whosematchingerroris toolarge.

We found that with our definition of positive and nega-
tive cuesthe algorithmworks quite well. It is possibleto
comeup with a totally differentdefinition of positve and
negative cues. They shouldwork well provided thatit is
significantly more likely for a pixel to give a positive cue
ratherthannegative cueatthe pixel’s correctdisplacement.

Considera stereascenewhoseleft imageis in Fig. 1(a).



Figure 1. (a) Left image; (b) positive and negative cues; (c) dense features

We fix adisplacemenat the disparitysix, which is the dis-
parity of thetableleg, oneof thebottlesandpartof thetable.
ConsiderFig. 1(b). Positve cuesarein white, negative cues
arein black, and gray pixels give neitherpositive no neg-

ative cues. In Fig. 1(c) arethe extracteddensefeaturesin

white. They correspondpretty accuratelyto the tableleg,

one of the bottlesandtable edge. The inside of the table
leg is almostcompletelytexturelesshowever we areableto

extractthewholeleg asadensefeature.

4 Extraction via Graph Cuts

In this sectionwe translatedensefeatureextractioninto
enegy minimizationof theform in equation(1), which can
beminimizedexactly with agraphcut[2].

Let adisplacementl befixed. We will divide all pixels
into two groups:thosewhich undepgo displacement! and
thosewhich do not. We approachthis asa labeling prob-
lem. Eachpixel p is assigned binarylabel. If p haslabel
1,thenp undegoesdisplacement, andif p haslabelOthen
p doesnot undego displacemend. Now we needto define
Dy(fp)'sandu,, in equation(1). D, (f,)’'s encodeposi-
tiveandnegative cues. ThesmallerD, (1) is, themorelikely
is alabell for p. Thelikely placesfor densdeaturebound-
aryareencodedhroughu,,)’s. A smalleru,,) meanghat
adensdeatureboundaryis likely betweerp andg.

After D, (fp)'s andu,,)'s are defined,one graph cut
labelsall pixels with 0’s and 1's. The connectedsetsof
pixelslabeledl areour densdeatures Noticethatwith one
graphcutwe usuallyextractmultiple densefeatures.

4.1 Definition of D,(f,)’'s

Recallthatwe useD,( f,) to encodepixel p's preference
for labelsO and1. Label 1 correspondso a positive cueat
pixel p, andlabel 0 correspondso a negative cue. We first
describeD,,(f,)'s for the stereocase. Let L(p), R(p) be
asdefinedin Section3. Let usfix a displacement!. First
let us considera positive cue, thatis D,(1). Sincewe are
minimizingtheenepy, thesmallerD,,(1) is, themorelikely
labellis for pixel p. Therearetwo componentshatgointo

D, (1). Firstthereis atexturecueat pixel p, andsecondve
make surethatthe matchingerroris nottoo largefor p.

Firstconsidetthetexturecue. For stereoyerticaltexture
is morereliablethanthe horizontalone,sincethe displace-
mentis horizontal. Let p; be the left neighborof p. There
is a goodtexture cueif theintensitychangebetweerp and
p; is largerthantheir matchingerror. We first measureghe
intensity changebetweenpixel p andp; in the left image:
& = |L(p) — L(p;)|- For symmetry we alsomeasurdn-
tensitychangeébetweerthecorrespondingixelsin theright
image:d, = |R(p+d)—R(p;+d)|. Thesymmetrioneasure
of intensitychangeis 6 = min{d;, J,}. Thenwe compute
thematchingerrorfor p andp;: e(p) = |L(p) — R(p + d)|,
e(p) = |L(m) — R(p + d)|. Finally the texture cueis
t_cue =10 — h(6 — e(p)) — h(6 — e(p1)), where

10 ifz <0
hz)={ 10-22/25 f0<z<5
0 ifx >5

Thatis t_cue < 0if & < e(p) orif § < e(p;), thenit
increasegjuadraticallyand stopsincreasingat 10, whené
is sufficiently largerthanbothe(p) ande(p;).

Another componentfor a positive cueis the matching
error, which shouldnot be too large. We definem_cue =
g(e(p)) + gle(pr)), whereg(xz) = 10 — x2/160. Finally
we have to corvertfrom cuesto penaltiessincethe smaller
D, (1) is, themorelikely label 1 is for pixel p:

D, (1) = max{0, min{10, (10 — t_cue) + (10 — m_cue)} }.

Noticethat0 < D, (1) < 10.

The definition of D,,(0) is lessinvolved, sincewe just
look at the matchingerror To make D, (0) slightly more
robust,in additionto looking atthe matchingerrorfor p, we
alsolook at the matchingerrorfor p;, sinceif a pixel does
notundego displacementl, in mostcasesits left neighbor
alsodoesnot undego displacement/, and shouldhave a
large matchingerroraswell. Sowe d2efine ,

D, (0) = max{o, 10 — € (g())’e (PO}
With suchadesignfor D, (0) to below for pixel p, notonly
e(p) hasto belarge, but alsoe(p;) hasto be large. Notice
that0 < D,(0) < 10, whichis onthesamescaleasD,(1).
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Figure 2. (a) left image; (b) dense features at disparity 14; (c) dense features at disparity 5

Sofarwe definedD, ( f,)’s for the stereccase.Themo-
tion caseis very similar, exceptthat we have to look not
only for verticaltexture cues(for stereowe looked for tex-
turecuebetweerpixel p andp;), but alsofor horizontaltex-
ture cue, sincein motion displacements two dimensional
andverticaltexture cuesalonearenot reliableenough.We
will notgointo detailsfor thelack of spacebutfor D, (1) to
besmallfor motion,in additionto makingsuretheintensity
differencebetweerp andyp; is largerthanthe matchinger-
ror, we alsomale surethattheintensitydifferencebetween
p andits top neighboris largerthanthe matchingerror.

4.2 Definition of u,q's

We useu,,'s to enforcethe segmentatiorboundaryto
lie at pixels which satisfy the boundarycondition, and so
U(pq)’'S Shouldbe smallfor suchpixels. The boundarycon-
dition stateghatif theintensitychangebetweentwo pixels
is larger thanthe matchingerror, thanthis is a goodplace
for theboundarysincethetexture cuehereis strongerthan
thenoise.Dueto variousartifacts thereis oftenno contigu-
oussetof pixels satisfyingthe boundarycondition. Sowe
actuallyallow the boundaryto lie not necessarilyat pixels
satisfyingthe boundarycondition,but closeto suchpixels.

First for eachpixel p we computehow well the bound-
ary betweenp andits left neighborp; satisfiesthe bound-
ary condition. Similar to computingD,,(1) in section4.1,
first we computethe minimum intensity difference: § =
min{|L(p) — L(p)|.|R(p + d) — R(pr + d)[}. Then:

00 if 0 < e(p)
Bilp) = { h(6 — e(p)) otherwisz

Heree(p), h(x) aredefinedasin section4.1. Thus B;(p)
hasa low valueif it is likely that a left densefeaturebor-
der goesbhetweenp andp;. Similarly we computeB, (p),
B.(p), Ba(p) which have alow valueif it is likely thata
right, up, down denseeaturebordergoesbetweerp andits
right, up, anddown neighborsrespectiely.

Next we usethe generalizeddistancetransformon the
array B;(p) to computehow far eachpixel is from a suit-
ableplacefor aleft boundary Thatis we computel;(p) =

mingep (Bi(q) + dist(p,q)), wheredist is the standard
Manhattandistance.In [3] they shav how to computethe
generalizedlistancdransformin two passesver all pixels.
Similarly we computer’,., T,,, Ty.

Finally, for eachorderedpair (pq), if ¢ is to theleft of p,

I L+ Bi(p) if Bi(p) # o0
(re) = 1+ (T;(p))® otherwise

Caseswhen ¢ is to the right, up, down of p are handled
similarly with thecorrespondingrraysB,., T,., By, Ty, Ba,

T4. Notethathaving orderedpairs (pq) is importanthere,
sinceit is possiblethatthe left boundarybetweery andits

left neighborp, is likely andthusu,,,,) is low but theright

borderbetweerp; andp is notlikely, andthusu,,, ) is high.

5 Final Step: Disambiguation

In this sectionwe describethelaststepof our algorithm.
After densefeaturesfor all displacementsare computed,
eachpixel getsassigned particulardisplacement.There
are threecases. If a pixel doesnot belongto ary dense
feature,thenit is left without correspondencin the final
answer If a pixel belongsto only one densefeature,then
it getsassignedhe displacemenof thatdensefeature. Fi-
nally if a pixel belongsto morethanonedensefeature,we
needto disambiguatdetweerthesedensefeatures.

Therearetwo mainreasonsavhy a pixel canbein more
thanonedensdeature.Firsttherearesomesmall spurious
densefeatureswhich are not reliable and canbe ignored.
Thuswe we ignoreall denseeaturessmallerthan10.

Secondreasonis repeatedexture. Fig. 2(a) shows the
left image of a stereoscene,Figs. 2(b,c) shav in white
densefeaturesat disparity 14 and>5, respectiely. Consider
Fig. 2(b). The largestdensefeaturefoundis the lamp, and
14 is its correctdisparity The next in sizeis anerroneous
densefeatureto the left of thelamp. It is dueto repeated
texture of the books,andits correctdisparityis actually5.
ConsiderFig. 2(c) now. At the correctdisparity the pixels
in erroneouslensdeaturebelongto alargerdensefeature.

In principle, we could detectand declareambiguous
large overlapsbetweendensefeatures.However we found



Figure 3. (a) Our algorithm;

(b) windo w based algorithm; (c) graph-cuts algorithm

Tsukuba Sawtooth \Venus Map
Algorithm error density time | error density time | error density time | error density time
ouralgorithm | 0.36 75 6 0.54 87 13 | 0.16 73 13 | 0.01 87 6
methodin [11] | 0.38 66 1 1.62 76 6 1.83 68 5 0.22 87 2
methodin [9] 14 45 - 1.6 52 - 0.8 40 - 0.3 74 -

Figure 4. Results on Middlebury stereo database

thattheapproachn [11] workswell. If apixel p belongsto
morethanonedensefeature,thenp getsthe displacement
of the“densest’feature.Thatis p chooseshefeaturewhich
hasmorepixelsin theimmediatesurroundingof p. Hereis
how they measurehe densityof a featurearoundp. Let
H™"(d,p) bethe Manhattandistancefrom p in the north-
westdirectionto thenearespixel ¢ s.t. ¢ is notin ary dense
feature. H™* canbe computedn onepassover theimage
for all pixels. Similarly defineH "¢, H*", and H *“ to bethe
Manhattardistancdrom p to thenearest s.t. ¢ isnotin ary
densefeature.Let Fy; bethe densefeatureat displacement
d containingp. Thenthedensityof Fy; with respecto p is:
density(p, Fq) = H™ + H™ + H** 4+ H*°. In words,
this densitymeasures the dimensionof the largestpiece-
wise rectangularegion aroundp which lies completelyin
F,. Soif pisin morethanonedensefeature it chooseshe
featurewith thelargestdensity This will tendto placethe
repeatedexture regionsathe correctdisplacementsincea
the correctdisplacementhe repeatedexture region tends
to bein alarger densefeature(at the wrong disparity not
all repeatedextureregion pixelsgetmatched).

6 Experimental Results

All experimentsareperformedwith parametergixed as
in Sectiongt.1and4.2on600MhzPentiumlll PC.Therun-
ningtimesfor otheralgorithmsareasgivenby theirauthors.

Considera stereopair whoseleft imageis in Fig. 1(a).
This is a very challengingscenesincemostof it is untex-
tured. Figs. 3(a,b,c)shav the resultsof our algorithm, a
standardfixed window algorithm, and the global method
of [2]. The pixels for which our algorithm doesnot find

ananswerarein black. Therunningtime was25 seconds.
Our algorithmfinds the disparityfor the bottles,tableedge
and leg, and partsof the background. All the correspon-
dencest findsareaccurateaschecled by hand.We do not
extract the texturelesstable top even thoughit hastexture
cueson the boundary This is becausehe table overlaps
several disparitiesand partsof it are occludedby bottles.
Thelocal window algorithmproducesa lot of errors.Even
theglobalalgorithmin [2], oneof the bestaccordingto the
Middlebury evaluationt producedarge regionswith gross
errors,suchasbetweerthe two largestbottles,for mostof
the table,andbelav the table. For the algorithmsin (b,c),
varying the parameterghangeshe resultssomevhat, but
doesnotleadto moreaccurateanswers.

We tried several standardvaysto extractreliablecorre-
spondencefrom the denseestimatesFirst we take dispar
ity estimatesonly neartextured pixels. We tried this with
both the window and graph-cutsalgorithms. The results
are accurate but significantly sparserthan our algorithm.
Anotherway is to take pixels with high local scorefor the
window algorithm. This doesnot work for the sceneabove
sincein mostuntexturedareasvrongcorrespondencdsve
high local scores.Yet anotherway is to take pixels whose
bestlocal scoreis significantlyhigherthanthe secondbest
score. This essentiallyreducesto the first approach tak-
ing pixels neartexture. Lastthing we tried is the left and
right consisteng principle, that is the correspondencés
performedfirst for the left, thenfor the right images,and
only correspondencesonsistentacrossthe two resultsare
retained We tried thiswith boththewindow andgraph-cuts
algorithms.Theresultsimprove, but not significantly

Thttp://vwwmiddletury.edu/stereo



Figure 6. (a) taxi sequence; (b) horizontal motion; (c) vertical motion

Figure 5. Our algorithm

Next we evaluate our algorithm on the Middlebury
databasewvith groundtruth. The resultsof our algorithm
versughosein [11] andanothersemi-densalgorithmin [9]
arein table4. Thelastfour columnsnameeachof thefour
stereopairsin the databaseEachof thesecolumnsis bro-
keninto threeparts.The“error” columngivesthetotal error
in theunoccludedegions. The “density” columngivesthe
percentag®f matchedpixels,andthe“time” columnholds
the runningtime in seconds.Resultsin [9] are olbviously
muchworsethanours. We are significantly betterbothin
densityandaccurag than[11], especiallyfor the Venusand
the SawtootrscenesThisis dueto the useof graphcutsfor
featureextraction,our densdeaturesaremorereliablethan
thosein [11]. Fig. 5 shavs theresultsof our algorithmon
the Tsukubascenewhoseleft imageis in Fig. 2(a). Oural-
gorithmmatchessomeuntexturedregions,like partsof the
tableandstatueheadstand.This is becauseét takesadwan-
tageof the texture cueson the boundarief theseregions
to extract them as densefeatures. Notice that we do not
find correspondenceés theoccludedareas For thetsukuba
scene[10] reportssemi-denseesults.At density73%,they
have 4.0%errors whichis significantlyworsethanwhatwe
have at 75%density

Fig. 6 shavstheresultsof our methodon thetaxi motion
sequenceTherunningtime was13 secondsy2% of pixels
are matched. The algorithmlocatescorrectly two moving
carsand mostof the background.For the last experiment,

we have run ouralgorithmfor two completelyunrelatedm-
ages.As expected no correspondenceaserefound.

7 FutureWork

Our biggestlimitation is that a densefeaturecan only
overlaponedisplacement.f atexturelessregion overlaps
several displacementye cannotextractit evenif thereis a
strongtexture cue on the boundary Anotherimprovement
is occlusionreasoningCurrentlyif someregion occludesa
texturelessregion, we cannotextractthe occludedtexture-
lessregion, evenif thereis atexturecueonits boundary
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