CS342: Organization of Prog. Languages

Topic 13: Lazy Evaluation

- Lazy Evaluation — The main idea
- Evaluation order
- Avoiding extra work...
- Delay and Force in Scheme
- An Implementation of Delay and Force
- An extended example using lazy evaluation.

Lazy Evaluation — The main idea

- Why do computations we might not need?

```plaintext
// c may be zero, sometimes...
r = c * big_hairy_computation(x,y,z);

;; We only count the entries...
(length (cons (hairy) (cons (big) (cons (comp) '()))))
```

- How can we tell whether the computation will be needed?
A General Framework

- Consider a general function call

\[\text{funExpr}(\text{argExpr}_1, \ldots, \text{argExpr}_N) \]

We can write this in abstract syntax as

\[\text{call}(\text{funExpr}, \text{argExpr}_1, \ldots \text{argExpr}_N) \]

- The sub-expressions funExpr, argExpr1, ..., can themselves be function calls, e.g.

\[\text{call}(\text{call}(f_1, a_1, a_2), \text{call}(f_2, a_3, a_4), \text{call}(f_3, a_5, a_6)) \]
Evaluation Orders

- There are several different orders the functions can be called:
- If the calls are made from *innermost* to the outermost, then we have **eager evaluation**.

 Many languages (e.g. C, Java, Scheme, ...) specify innermost to outermost evaluation of calls, without specifying the order of the calls within each level.

- If the calls are made starting from the *outermost*, then we have implicit **lazy evaluation**. (As opposed to the explicit kind, with delay and force).

 If we further specify that, at each level, the *leftmost* call is made first (i.e. outermost-leftmost), then we have what is called **normal-order evaluation**, an order with useful theoretical properties.
Avoiding extra work...

- Static analysis – local:

  ```
  if (Monday) {
    int c = 0;
    return c * big_hairy_deal(x,y,z);
  }
  ```

 Uses techniques such as *peep-hole optimization* and *constant propagation* within basic blocks.

- Static analysis – global:

  ```
  int i = 0;
  for (i = 0; i < 10; i++) printf("!");
  return (i - 10) * big_hairy_deal(x,y,z);
  ```

 Uses techniques such as *data flow analysis*.
Avoiding extra work... part 2

- Run-time methods:

 Leave decision until the value is required for some operation.

 We can do this by hand with `delay` and `force` in some languages.

- `delay` takes an expression and returns a so-called “promise”. The expression is not evaluated in doing this.

- `force` takes a promise and evaluates the expression captured inside and returns the value.

 Subsequent uses of `force` on the same promise do not re-evaluate, they simply return the value.
Delay and Force in Scheme

(define (big) (write "big") (newline) (+ 1 1))
(define (hairy) (write "hairy") (newline) (+ 2 2))
(define (comp) (write "comp") (newline) (+ 3 3))

(define l (cons (delay (big))
 (cons (delay (hairy))
 (cons (delay (comp)) '()))))
l
(length l)
3

(force (cadr l))
hairy
4

(force (cadr l))
4
An Implementation of Delay and Force

- **delay** must capture an expression so it can be evaluated later.

 It can be implemented in terms of a macro which puts the expression inside a *lambda*.

 The resulting “promise” object would then refer to this function.

- **force** must be able to tell whether a promise needs to be evaluated (and then do the evaluation) or whether it simply contains the result (and then return it).

 Let us represent a promise, then, as a pair whose *car* is either `#t`, indicating the *cdr* is the value desired or `#f`, indicating that the *cdr* is the lambda to compute the value.
Then delay and force can be implemented as

(define-syntax delay (syntax-rules ()
 ((_ expr) (cons #f (lambda () expr)))))

(define (force p)
 (if (car p)
 (cdr p)
 (let ((x ((cdr p)))) ; Call the fn in (cdr p)
 (set-cdr! p x) (set-car! p #t) x))))

Example:

(define dd (delay (begin (write "Hello") (+ 1 1))))
; dd is (cons #f (lambda () (begin (write "Hello") (+ 1 1))))

(force dd)
; finds car dd is #f
; calls cdr dd, i.e. (lambda () ...)
; writes "Hello"
; computes (+ 1 1), giving 2
; saves 2 in f's variable x
; sets cdr of dd to be x, i.e. 2
; sets car of dd to be #t
; returns 2
Force and Delay – Recap

- Recall the two basic operators of explicit lazy evaluation:

- \((\text{delay } \text{<expr}>) \)
 creates a "promise" object without evaluating \(\text{<expr>} \).

- \((\text{force } \text{<promise>} \) \)
 takes a promise-valued expression and forces it to evaluate, giving its value (and causing whatever side effects it may have).

- Example:

```
> (define complaint
   (delay (begin
         (write "Gripe") (newline) (write "Gripe") (newline) (write "Gripe") (newline) 99 ))

> complaint
#<promise>

> (force complaint)
"Gripe"
"Gripe"
"Gripe"
"Gripe"
99
```
Lazy Lists

- We define the basic operators lazy-cons lazy-car lazy-cdr lazy-null?

  ```
  > (require-library "synrule.ss")
  
  > (define-syntax lazy-cons (syntax-rules ()
          ((_ <car-expr> <cdr-expr>)
           (delay (cons <car-expr> <cdr-expr>)))))
  
  > (define (lazy-null? ll) (null? (force ll)))
  > (define (lazy-car ll) (car (force ll)))
  > (define (lazy-cdr ll) (cdr (force ll)))
  ```

- Example

  ```
  > (define (say a)
          (write "Say") (write a) (newline) a)
  
  > (define ll (lazy-cons (say "My")
                      (lazy-cons (say "car")
                              (lazy-cons (say "drives!") '()))))
  
  > ll
  #<promise>
  ```
> (lazy-car ll)
"Say""My" -- Printed as side effect
"My" -- Value

> (define b (lazy-car (lazy-cdr ll)))
"Say""car" -- Side effect

> b
"car" -- Value
Lazy Series

- This uses some math.

 We will eventually use the following facts

 $\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + ...$

 $\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} - ...$

- Represent an infinite series as a lazy list of coefficients.

 E.g. $\sin(x)$ would be the lazy list of

 $0 \ 1 \ 0 \ -1/3! \ 0 \ 1/5! \ 0 \ -1/7! \ ...$

 which is

 $0 \ 1 \ 0 \ -1/6 \ 0 \ 1/120 \ 0 \ -1/5040 \ ...$
Making Infinite Lazy Series

- This function makes a series, given a function to compute the i-th coefficient.

 \[
 \text{(define (series-from-coef-fun f)}
 \begin{align*}
 \text{(define (make-tail i)} & \\
 \text{\quad (lazy-cons (f i) (make-tail (+ i 1)))} & \\
 \text{\quad (make-tail 0))} & \\
 \end{align*}
 \]

- Note the inner recursive function has \textit{no if statement}, and so has \textit{no base case}!!

- We use lazy-evaluation to delay the infinite recursion when making an infinite list.

Printing Lazy Series

- This fn converts the first \(n \) terms of the series to a string. Must give \(n \), otherwise fn would never reach end of the infinite list!

\[
\text{(define (series->string s n)}
\begin{align*}
\text{(let ((r '()))} & \quad ; \text{Collected parts in reverse order} \\
\text{(do ((ll s (lazy-cdr ll))} & \quad ; \text{Current tail} \\
\text{\quad (i 0 (+ i 1)))} & \quad ; \text{Current exponent} \\
\text{\quad ((> i n))} & \quad ; \text{End when } i > n. \\
\text{(let ((ci (lazy-car ll))))} & \quad ; \text{Current coefficient} \\
\text{(cond ((> ci 0) (set! r (cons " + " r)))} \\
\text{\quad (((< ci 0) (set! r (cons " - " r)) (set! ci (- ci))) }) \\
\text{(if (not (= ci 0)) (begin} \\
\text{\quad (set! r (cons (number->string ci) r))} \\
\text{\quad (if (> i 0) (set! r (cons " x" r)))} \\
\text{\quad (if (> i 1) (set! r (cons (number->string i) (cons "^" r)))))}) \\
\text{;; Now the parts are collected, finish up.} \\
\text{(if (null? r) (set! r '("0")))} \\
\text{(set! r (cons " + ..." r))} \\
\text{(apply string-append (reverse r))})
\end{align*}
\]

13
Lazy Series Example

- Example:

```scheme
> (define s (series-from-coef-fun (lambda (i) (* i i)) ))

> (series->string s 4)
" + 1 x + 4 x^2 + 9 x^3 + 16 x^4 + ..."
```
Question: How to implement \(+ \)?

- How would you go about writing an addition function which makes a new series by adding two existing ones coefficient by coefficient?
Answer:

- This program adds series:

 \[
 \text{(define (series+- sa sb)}
 \text{ (lazy-cons (+ (lazy-car sa) (lazy-car sb))}
 \text{ (series+- (lazy-cdr sa) (lazy-cdr sb))))}
 \]

- Again, note that with lazy evaluation we can have a recursive function with no base case.

- Example:

 \[
 \text{(define s1 (series-from-coef-fun (lambda (i) (* 2 i))))}
 \text{(series->string s1 4)}
 > " + 2 x + 4 x^2 + 6 x^3 + 8 x^4 + ...
 \]

 \[
 \text{(define s2 (series-from-coef-fun (lambda (i) i)))}
 \text{(series->string s2 4)}
 > " + 1 x + 2 x^2 + 3 x^3 + 4 x^4 + ...
 \]

 \[
 \text{(define s3 (series+- s1 s2))}
 \text{(series->string s3 4)}
 > " + 3 x + 6 x^2 + 9 x^3 + 12 x^4 + ...
 \]
Another Example: Multiplication

- The coefficient of x^n in the product $s_1 \times s_2$ is given by
 \[
 \text{coef}(s_1,n) \times \text{coef}(s_2,0) + \text{coef}(s_1,n-1) \times \text{coef}(s_2,1) + \ldots + \text{coef}(s_1,0) \times \text{coef}(s_2,n)
 \]
- We will need a program to find the coefficient of x^i of a given series:

  ```scheme
  (define (series-coef s i)
    (if (= i 0) (lazy-car s)
      (series-coef (lazy-cdr s) (- i 1))))
  
  (define (series-*-term n s1 s2)
    (do ((i 0 (+ 1 i)) (sum 0))
      ((> i n) sum)
      (set! sum (+ sum (* (series-coef s1 (- n i)) (series-coef s2 i))))))
  
  (define (series-* s1 s2)
    (define (make-tail i)
      (lazy-cons (series-*-term i s1 s2) (make-tail (+ i 1)))
    )
    (make-tail 0)
  )
  ```
Tying it all together

• Let’s test our package by seeing whether

\[\sin^2(x) + \cos^2(x) = 1 \]

• The functions below calculate the coefficients of \(\sin \) and \(\cos \).

```scheme
> (define (fact i) (if (= i 0) 1 (* i (fact (- i 1)))))
> (define (sin-coef i)
  (if (even? i) 0 (/ (expt -1 (/ (- i 1) 2)) (fact i))))
> (define (cos-coef i)
  (if (odd? i) 0 (/ (expt -1 (/ i 2)) (fact i))))
```

• See that the series for \(\sin \) and \(\cos \) are right:

```scheme
> (define s (series-from-coef-fun sin-coef))
> (series->string s 8)
" + 1 x - 1/6 x^3 + 1/120 x^5 - 1/5040 x^7 + …"

> (define c (series-from-coef-fun cos-coef))
> (series->string c 8)
" + 1 - 1/2 x^2 + 1/24 x^4 - 1/720 x^6 + 1/40320 x^8 + …"
```
• Compute $\sin^2 + \cos^2$.

```scheme
> (define ssc (series+ (series-* s s) (series-* c c)))
> (series->string ssc 10)
" + 1 + ...

> (series->string ssc 100)
" + 1 + ...
```
Summary – Lazy Evaluation

- Lazy evaluation can be used when dealing with conceptually infinite data structures.
- Lazy evaluation can be used to avoid un-necessary computation even with finite data structures.
- There is an overhead to delay a computation.
- Either eager evaluation or lazy evaluation may be more useful/efficient depending on the circumstances.