
Categories in the Design of Aldor

Stephen M. Watt
Stephen.Watt@uwo.ca

Ontario Research Centre for Computer Algebra
University of Western Ontario

Applied and Computational Category Theory (ETAPS ACCAT2007)

Univesidade do Minho, Braga, Portugal. March 25, 2007.

What is Computer Algebra?

• The study of algorithms and software so computers to do mathemat-

ics, producing equations and expressions rather than just numbers.

• E.g., polynomial factorization, trig simplification, integration.

• Successful commercial systems, e.g. Maple, Mathematica.

• Many special-purpose systems for research.

• We study this at ORCCA,

the Ontario Research Centre for Computer Algebra,

a joint laboratory involving Western, Waterloo and Maplesoft.

• Personal role: as an author of Maple, Axiom, Aldor, MathML.

What is Axiom?

• Axiom was a CAS designed in the 80s and early 90s at IBM research.

• Based on concepts of abstract algebra, e.g. the library is built on

such things as AbelianMonoid, Ring, Field, Module(R), etc.

• Initially disseminated by the Numerical Algorithms Group, Oxford.

Now open source.

What is Aldor?

• Initially conceived as extension language for Axiom.

• Required very expressive type system to model rich relations among

mathematical types.

• Higher order: types and functions first class values.

• Full support for dependent types, use of type categories.

• Optimizing compiler.

• Has users. Some libraries 200-400 Kloc.

Aldor Motivation

• Originally an extension language for the AXIOM system.

• Need to model rich relationships among mathematical structures.

• Emphasis on uniform handling of values independent of their type;

less emphasis on a particular object model.

• Primary considerations:

generality, composibility, efficiency, interoperability

• Express the requirements and the rich relationships among inputs.

Express guarantees on the results.

• Then have a language encouranging one to

weaken the requirements and strengthen the guarantees.

Context

• Scratchpad II (IBM) 1984-1990.

• A] as extension language to Axiom 1990-1994

Generate code to run in Lisp envorinment or linked into C applications.

• Available with Axiom 2 from NAG

• FRISCO 1996-1999 (NAG, INRIA, CNRS, U Cantabria, U Pisa)

C++ and Fortran interfaces, algebra libraries, etc

• www.aldor.org 2002

• Workshop on Categorical Programming Languages

(2001 London ON, 2002 Lille, 2004 Santander)

• Recent papers, e.g. Domain Specific Aspect Languages 2006,

Workshop on Generic Programming 2006.

Why Math in Prog Language Research?

• Rich relationships among non-trivial concepts.

• Well-defined domain.

• Many programming langauge problems have had early use here:
algebraic expressions, arrays, big integers, garbage collection, pattern
matching, parametric polymorphism, ...

Why Prog Language Research in Math?

• Large libraries, requiring efficient code.

• Complex interfaces.

• Simple programming language ideas insufficient.

Aldor Language Characterization

• Imperative language, statically typed, strict.

• Blend of functional, OO and AO styles.

Both types and functions are first class:

can be constructed during execution and used as any other value.

Functional features: closures, currying, etc.

Pervasive use of dependent types – provide static information

about dynamic objects. Basis for OO features.

Ex post facto extensions of types.

• Does not support continuation passing,

to interoperate with C, Fortran, Java, etc.

A Problem in Computer Algebra Software

• Systems usually have several implementations of the same algorithm
for different structures.
E.g. Gaussian elimination over Q, Z/pZ, Z(x),...

• Sometimes in alternative views
E.g. repeated squaring (fn) vs repeated doubling (n ∗ p).

• Difficult to implement improvements where needed.

• Difficult to extend system to work with new objects.

• Want to be able to:

– define algorithms for some specific category of objects

– impelement them efficiently, and

– compose constructions flexibly.

Aldor and Its Type System

• Types and functions are first class values

– May be created dynamically.

– Provide representations mathematical sets and functions.

• The type system has two levels

– Each value belongs to a unique domain that can be declared stat-

ically.

– Domains belong to the domain Type, and may additionally belong

to a number of type categories, which are subtypes of Type.

– Categories specify what exports (e.g. operations) a domain must

provide.

– Categories fill the role of interfaces or abstract base classes.

Types as Values

• When types can be used as values, dependent types become very

natural for generic programming.

identity: (n: Integer, R: Ring) -> Matrix(n, n, R)

identity(2, Float) ==> [1.0 0.0]
[0.0 1.0]

• Parametric polymorphism:

commutator(R: Ring)(p: R, q: R): R == p*q - q*p;

Type Categories vs OO

• Suppose we have

Semigroup: Category == with { *: (%, %) -> % }
DoubleFloat: Join(Semigroup, ...) == ...
Permutation: Join(Semigroup, ...) == ...

• In OOP we can multiply a DoubleFloat by a Permutation.

x, y ∈ DoubleF loat ⊂ Semigroup
p, q ∈ Permutation ⊂ Semigroup

}
OOP

Liskov recognized this problem with binary operations already with
CLU.

• In Aldor, the two levels allow x*y but prevent x * p.

x, y ∈ DoubleF loat ∈ Semigroup
p, q ∈ Permutation ∈ Semigroup

}
Aldor

Dependent types are fully supported

• Gives dynamic typing. E.g. with

f: (n: Integer, m: SquareMatrix(n, Integer)) -> IntegerMod(n)

If n = 3, then m has type SquareMatrix(3, Integer)
and f(n, m) has type IntegerMod(3).

• Recovers OO through dependent products. E.g.

prodl: List Record(S: Semigroup, s: S) == [
[DoubleFloat, x],
[Permutation, p],
[DoubleFloat, y]

]

• Mutually dependent products are useful in
expressing relationships among types.

Categories and Parametric Polymorphism

• Category- and domain-producing functions use the same language as
first-order functions.

-- A function returning an integer.
factorial(n: Integer): Integer == {

if n = 0 then 1 else n*factorial(n-1)
}

-- Functions returning a category and a domain.
define Module(R: Ring): Category == Ring with {

*: (R, %) -> %
}
Complex(R: Ring): Module(R) with {

complex: (%, %) -> R;
real: % -> R;
imag: % -> R;
conjugate: % -> %; ...

} == add {
Rep == Record(real: R, imag: R);
real(z:%): R == rep(z).real;
(w: %) + (z: %): % == ...

}

Conditional Types

• Type producing expressions may be conditional

UnivariatePolynomial(R: Ring): Module(R) with {
coeff: (%, Integer) -> R;
monomial: (R, Integer) -> %;

if R has Field then EuclideanDomain;
...

} == add {
...

}

Post facto extensions

• View existing domains in additional categories.

• Provides “aspect oriented” programming, or “separation of concerns”

extend Integer: FancyOutput == add {
box(n: Integer): BoundingBox == [1, ndigits n, 0, 0]

}

extend Integer: DifferentialRing == add {
differentiate(n: Integeger): Integer == 0;

constant?(n: Integer): Boolean == true;
}

• Allows well-structured libraries on the same types to be developed

independently.

Extending Constructions

• Categorical properties can be quite complex.

DirectProduct(n: Integer, S: Set): Set with {
component: (Integer, %) -> S;
new: Tuple S -> %;
if S has Semigroup then Semigroup;
if S has Monoid then Monoid;
if S has Group then Group;
...
if S has Ring then Join(Ring, Module(S));
if S has Field then Join(Ring, VectorField(S));
...
if S has DifferentialRing then DifferentialRing;
if S has Ordered then Ordered;
...

} == add { ... }

• Certain constructors are open-ended in their conditionalization

requirements.

Post Facto Extension of Functors

• Extending names bound to domain-producing functions.

F(a1: T01,...,ak: T0k): R0 == A0
extend F(a1: T11,...,ak: T1k): R1 == A1
...
extend F(a1: Tn1,...,ak: Tnk): Rn == An

gives

F(a1:Meet(T01...Tn1),...,an:Meet(T0k...Tnk)): with {
if a1 ∈ T01 and ... and ak ∈ T0k then R0;
if a1 ∈ T11 and ... and ak ∈ T1k then R1;
...
if a1 ∈ Tn1 and ... and ak ∈ Tnk then Rn;

} == add {
if a1 ∈ T01 and ... and ak ∈ T0k then A0;
if a1 ∈ T11 and ... and ak ∈ T1k then A1;
...
if a1 ∈ Tn1 and ... and ak ∈ Tnk then An;

}

Post Facto Extensions

• A better direct product:

DirectProduct(n: Integer, S: Set): Set with {
component: (Integer, %) -> S;
new: Tuple S -> %;

} == add { ... }

extend DirectProduct(n: Integer, S: Semigroup): Semigroup == ...
extend DirectProduct(n: Integer, S: Monoid): Monoid == ...
extend DirectProduct(n: Integer, S: Group): Group == ...
...
extend DirectProduct(n: Integer, S: Ring): Join(Ring, Module(S)) == ...
extend DirectProduct(n: Integer, S: Field): Join(Ring, VectorField(S)) == ...
...
extend DirectProduct(n: Integer, S: Field): Join(Ring, VectorField(S)) == ...
extend DirectProduct(n: Integer, S: DifferentialRing): DifferentialRing == ...
extend DirectProduct(n: Integer, S: Ordered): Ordered == ...
...

• Normally these extensions would all be in separate files.

Use in Library Design

• Staged Building of Libraries

1. Basic raw types without operations, as above.

2. Add the relevant primitive operations.

extend Boolean: with {
=: (%, %) -> Booelean;
convert: % -> String; ...

} == ...
extend Integer: with {

=: (%, %) -> Boolean;
<: (%, %) -> Boolean;
convert: % -> String; ...

} == ...
extend String: with {

=: (%, %) -> Boolean;
#: % -> Integer; ...

} == ...

Use in Library Design

• Staged Building of Libraries (cont’d)

3. Define data structure domains

4. Define data structure categories. Extend domains.

5. Define mathematical categories.

6. Extend basic domains.

7. Define mathematical domains.

Use in Library Design

• Adding callback algorithms to parameters

Old style: Fixed conditionalization.

LinearAlgebra(R:CommutativeRing, M:MatrixCategory R):
with {...} == add {

local Elim: LinearEliminationCategory(R, M) == {
R has Field =>

OrdinaryGaussElimination(R, M);
R has IntegralDomain =>

TwoStepFractionFreeGaussElimination(R,M);
DivisionFreeGaussElimination(R, M);

}

determinant(m:M):R == determinant(m)$Elim;
}

Use in Library Design

• Adding callback algorithms to parameters
New style: Open ended.

LinearAlgebraRing: Category == with {
determinant: (M:MatrixCategory %) -> M -> %;
rank: (M:MatrixCategory %) -> M -> Integer;
...

}

Modify LinearAlgebra package to use algorithms carried in on param-
eter. Replace the determinant function with

determinant(m:M):R == {
if R has LinearAlgebraRing then

determinant(M)(a)$R;
else

determinant(m)$Elim;
}

Now we can extend rings, e.g. Integer, IntegerMod(p), before passing
them to the LinearAlgebra package.

Aldor Implementation

• Optimizing compiler

• Interpreted interactive environment for

the same language

• Generates

– Stand-alone executable programs

– Object libraries in native OS formats

– Portable byte code libraries

– C or Lisp source

Foam: Intermediate Code

• First order: functions and types now explicit

• Target level:

Maps simply to register-based or stack-based

Maps simply to Lisp, C, or assembly level

• Primitive types:

Nil Char Bool Byte HInt SInt SFlo DFlo Word

Int8 Int16 Int32 Int64 Flo32 Flo64

Ptr Env Arr Rec Prog Clos

• Low-level operations, e.g. DFloPlus.

Optimization

• The most important ones:

– Procedural integration (inlining).

– Data structure elimination (including lexical environments).

– Constant propagation, common sub-expression elimination.

• Certain easy optimizations delegated to concrete code back end.

Optimization of Generators
generator(seg:Segment Int):Generator Int == generate {

i := a;
while a <= b repeat { yield a; a := a + 1 }

}
generator(l: List Int): Generator Int == generate {

while not null? l repeat { yield first l; l := rest l }
}

client() == {
ar := array(...);
li := list(...);
s := 0;
for i in 1..#ar for e in l repeat { s := s + ar.i + e }
stdout << s

}

B0

done

B3

B1

B2 B5

B6 B4

B7

B8

B12 B9

B11 B13

B16 B15

B10

B14

lab1 := B2
lab2 := B9

a > b

y n

a := a + 1

lab1 := B7

lab1 = B7
y

n

goto lab1

goto lab2

null?

yn

lab1 := B5

lab2 = B14

lab2 := B12 lab2 := B14

y n

B0

B2

a := a + 1

goto lab1 goto lab1

B7b

B1a B1b

lab = B7a lab = B7a

y y
n

n n
y

B5

a > b

B3

B16 B8

B12B9

B10

B13B11

B14

B15B17

lab1 := B2
lab2 := B9

B7a B7c

lab = B7a

B4

lab1 := B5

yn
B6

goto lab2

null?

lab2 := B14lab2 := b12

lab2 = B14

y n

lab1 := B7a

B0

B10

B11 B13

B14

B15

null?

yn

lab2 = B14

y n

a := a + 1

a > b a > b

done

B3a B3b

B17

y
n n

B4a B4b

goto lab2 goto lab2

B12

B17p

lab2 := B12 lab2 := B14

lab2 := B10

y

a > b

n

n

a := a + 1

a > b

n

null? l2

done l2:=rest l2

L2

y

y

y

L1

Aldor vs C (Part I)

Aldor vs C (Part II)

Example: Prime Number Sieve
include "axllib.as"

import from Boolean, SingleInteger;

sieve(n: SingleInteger): SingleInteger == {
prime?: PrimitiveArray Boolean := new(n, true);

np := 0;

for p in 2..n | prime? p repeat {
np := np + 1;
for i in 2*p..n by p repeat prime? i := false;

}
np

}

for i in 1..6 repeat {
n := 10^i;
print << "There are " << sieve n << " primes <= " << n;
print << newline;

}

Example: Multiple Values
#include "axllib.as"
import from Integer;

I ==> Integer;
MapIII ==> (I,I,I) -> (I,I,I);

(f: MapIII) * (g: MapIII): MapIII ==
(i:I, j:I, k: I): (I,I,I) +-> f g (i,j,k);

id: MapIII ==
(i:I, j:I, k: I): (I,I,I) +-> (i,j,k);

(f: MapIII) ^ (p: Integer): MapIII == {
p < 1 => id;
p = 1 => f;
odd? p => f*(f*f)^(p quo 2);
(f*f)^(p quo 2);

}

cycle(a: I, b: I, c: I): (I,I,I) == (c, a, b);

cycle(1,2,3); cycle cycle (1,2,3);
(cycle*cycle)(1,2,3); (cycle^10) (1,2,3);

Example: Constructing an alternate view
+++ This constructor creates the operator domain with the opposite ring
+++ multiplication. That is, as sets P == %, but a * b in P is b * a in %.

OppositeLinearOperator(P: LinearOperator R, R: Ring): LinearOperator(R) with {
op: P -> %;
po: % -> P;

}
== P add {

Rep == P;
import from Rep;

op(a: P): % == per a;
po(x: %): P == rep x;
(x: %) * (y: %): % == op(po y * po x);

}

extend OppositeLinearOperator(P: DifferentialRing, R: Ring): DifferentialRing == add {
deriv(x: %): % == op(deriv po x)

}

+++ This domain defines a ring of differential operators which act
+++ upon an A-module, where A is a differential ring.
+++ Multiplication of operators corresponds to functional composition:
+++ (L1 * L2).(f) = L1 L2 f
NNI ==> NonNegativeInteger;
SUP ==> SparseUnivariatePolynomial;

LinearOrdinaryDifferentialOperator(
A: DifferentialRing,
M: LeftModule(A) with differentiate: % -> %

): LinearOperator(A) with {
D: %;
apply: (%, M) -> M;
...
if A has Field then {

leftDivide: (%, %) -> Record(quotient: %, remainder: %);
rightDivide: (%, %) -> Record(quotient: %, remainder: %);

}
}

== SUP(A) add {

...

if A has Field then {
Op == OppositeMonogenicLinearOperator(%, A);

DOdiv == NonCommutativeOperatorDivision(%, A);
OPdiv == NonCommutativeOperatorDivision(Op,A);

leftDivide(a, b) == leftDivide(a, b)$DOdiv;
rightDivide(a,b) == {

qr := leftDivide(op a, op b)$OPdiv;
[po qr.quotient, po qr.remainder]

}
...

}
}

Working in Hom: Morphisms as Objects

• View, e.g., Poly(x), SqMat(n), Complex, etc as elements of Hom(Ring).

• Wish to compute on these, construct compositions, conversions.

• E.g. have many isomorphisms,

Poly(x) Complex R === Complex Poly(x) R
Poly(x) Poly(y) R === Poly(y) Poly(x) R
SqMat(n) Complex R === Complex SqMat(n) R
SqMat(n) SqMat(m) R === SqMat(m) SqMat(n) R

Wish to generically re-organize towers of functors.
E.g. If F,G: (R: Ring)→Module R, generically compute F G R → G F R.

• Construct and optimize compositions, e.g.

Pxy == Poly(x) Poly(y);

p: Pxy Integer := ...
f: Pxy IntegerMod(7) := ...

Optimization complicated by presence of post-facto extensions.

Example: Re-organizing Data Structures
#include "axllib"

Ag ==> (S: BasicType) -> LinearAggregate S;

-- This function takes two type constructors as arguments and
-- produces a new function to swap aggregate data structure layers.

swap(X:Ag,Y:Ag)(S:BasicType)(x:X Y S):Y X S == [[s for s in y] for y in x];

-- Form an array of lists:

al: Array List Integer := array(list(i+j-1 for i in 1..3) for j in 1..3);

print << "This is an array of lists: " << newline;
print << al << newline << newline;

-- Swap the structure layers:

la: List Array Integer := swap(Array,List)(Integer)(al);

print << "This is a list of arrays: " << newline;
print << la << newline

Recent and On-going Work

• Advanced libraries for polynomial and differential systems (triangular
decomposition, generic solution of ODE/O∆E/ODqE, ...)

• Maple/Aldor interface

• Parallel Aldor for QCD: Diff ops in cat of fiber bundles.
Code gen via Todd-Coxeter exploits problem and computer symmetry.

• Categorical framework to link C++ and Java templates with Aldor
functors (OOPSLA).

• Segue between concrete values and symbolic expression trees in a
general way. Relate concrete types to trees with adjoints.

• Extended construction: Construction in an extended computation.
Mutable during construction, then afterwards they are immutable.

• Distinguish coercions: embeddings, retractions, liftings.

• Support more kinds of arrows naturally and efficienlty.

• Optimizaiton of generics.

Conclusions

• It is possible to write mathematical algorithms at a high level of ab-

straction and to compile them to efficient code.

• Quantifing over categories solves a number of practical problems in

software specification, library construction and code optimization.

• Experience shows this approach leads programmers to try to write

code as generally as reasonable, minimizing assumptions.

Aldor Availability

• www.aldor.org

• Freely available by download

• Standard base and advanced math libraries

