

•1

Notes adapted from Introduction to Computing and Programming with
Java: A Multimedia Approach by M. Guzdial and B. Ericson, and
instructor materials prepared by B. Ericson.

TOPIC 2
INTRODUCTION TO JAVA

AND DR JAVA

2

Outline
•2

�DrJava

�Memory and Variables

�Types

�Boolean expressions

�Strings

�Java statements

�Variables

�Constants

�Objects

�References variables

�Naming conventions

•3 Dr Java•3

Where you code.

4

What is DrJava?
•4

�DrJava is an IDE

Integrated Development
Environment for Java
Programming

�It has several panes

�Definitions pane

�Interactions pane

�Files pane

Files

Interaction

Definition

5

Interaction Window (pane)

�Where you can interact with code

�You can practice here

�To actually write code, you need certain “key words” and
brackets surrounding the code

�Here you don't need to know how to use those “key
words” and can try writing bits of code on your own

�This does NOT work in the “real world”, this is a feature of
DrJava

•5

6

Definitions Window (pane)
•6

�Used for creating (typing in, editing) complete Java
programs

�Need to use the “key words” and brackets to make it
work (more on this later)

�This is how you write real code!!!

�You will use this when creating complete programs in
your Labs, and for your assignments

•7

The beginning.

Memory and Variables•7

•8

Memory

� In the computer there are places where things can be
stored - “memory”

�You can put any “thing” you want in memory, but you must
tell the computer how to interpret it

�For example, if you place a number in a slot in memory,
you have to tell the computer it is a number so it knows how
to handle it

•8

•9

Variables

� When you place something in memory to be used
later, it is a variable

� For example if you want to add two numbers
together, you would tell the computer to store the
first number in some slot in memory, and tell it it is a
number

� You would do the same with the second, then add
them
� int number1 = 12;

� int number2 = 10;

� number1 + number2;

More on this later! :)

•10

Do some math.

Arithmetic expressions•10

•11

Definition

�To try out DrJava, we will begin with simple math

�An arithmetic expression consists of operands (values) and
operators (+ - * / %), and represents a numeric value

�Examples
(3 + 4) * 5 – 67 / 8
3.141592 * 5.0 * 5.0

•11

12

List of math operators
•12

�Addition
3 + 2 � 5

�Subtraction
3 – 2 � 1

�Multiplication
3 * 2 � 6

�Division
3 / 2 � 1

�Negation
-2

�Modulo (Remainder on Integer Division) *
10 % 2 � 0

11 % 2 � 1

•13

Sample exercise

�In DrJava, do the following
in the Interactions pane:

�subtract 7 from 9

�add 7 to 3

�divide 3 by 2

�multiply 5 by 10

�find the remainder when
10 is divided by 3

•13

14

Math operator order
•14

�Default evaluation order is

�parentheses

�negation

�multiplication, division, and modulo (remainder),
from left to right

�addition and subtraction, from left to right

�Examples:

 (3 + 4) * 2 versus 3 + 4 * 2

�We can use parentheses for readability: 3 + (4 * 2)

15

Sample exercise
•15

�Try evaluating the expression 2 + 3 * 4 + 5

�Add parentheses to make it clear what is happening

�How do you change it so that 2 + 3 is evaluated first?

�How do you change it so that it multiplies the result of

 2 + 3 and the result of 4 + 5?

•16

3/2=1

3.0/2=1.5

The notion of type•16

17

3/2 = 1
•17

�Java is what is a “strongly typed language”

�Each value has a type associated with it

�This tells the computer how to interpret a number:

�integers are of type int

�numbers with decimal points are called floating-point
numbers and are of type double

�ints do not have decimals!

18

3/2 = 1
•18

�Recall in the “memory and variables” section we learned
that we could store values in memory if we told the
computer what it was

�This means we must give the computer the “type”

�We just saw the types integer and float

�What type did we use on slide 9?

19

3/2 = 1
•19

�The Java compiler can determine the type of a number,
for example:

�3 is an integer
�3.0 is a floating point number

�Rule: the result of an operation is the same type as the
operands

�3 and 2 are integers, so the operation / is integer
division, and the answer is the integer 1

�What is the result of 3.0 / 2.0 ?
�What is the operation / here?

20

Type conversion
•20

�What happens if you divide 3.0/2 ?

�Rule: If the types of the operands differ, Java
automatically converts the integer to a floating point
number

�Why not the other way around?

�How else could you do the division 3/2 so that the result
is 1.5?

21

Casting
•21

�You can do the type conversion yourself: this is called
casting

�You cast an int value to a float or double, by putting that
type in parentheses before the integer you want to have
converted

�Examples:

�Cast 3 to a double: (double) 3 / 2

�Cast 2 to a double: 3 / (double) 2

22

Sample exercise
•22

�Use casting to get the values right for a temperature
conversion from Fahrenheit to Celsius

�Celsius is 5/9 * (Fahrenheit – 32)

�Try it first with a calculator

�Try it in DrJava without casting

�Try it in DrJava with casting

Try this at home!!!

•23

Integer, floating-point, characters, booleans

Primitive data types•23

24

Data types in Java
•24

� In Java, there are two kinds of data types:

�Primitive data types

�Used to store simple data values such as integers,
floats, doubles, characters in main memory

�Mainly for efficiency reasons

�They take up little room in memory and allow fast
computation

�Reference data types

�Used to refer to objects (more on this soon)

25

Java primitive data types
•25

�Integers

�types: int or byte or short or long
�examples: 235, -2, 33992093

�Floating point numbers

�types: double (15 digits) or float (7 digits)
�examples: 3.233038983, -423.9
�called “floating point” because they are stored in
scientific notation, for example:
52.202 is 0.52202 x 102

26

Java primitive data types
•26

�Characters

�type: char
�examples: ’a’, ’b’, ’A’, ’?’

�Boolean (true and false)
�type: boolean
�examples: true, false (the only possible boolean values)

27

Why so many different types?

•27

�They take up different amounts of space in memory

�Because the computer needs to know what to DO with them

�Numeric values have different precisions

�integer values:

�byte uses 8 bits (1 byte)

�short uses 16 bits (2 bytes)

�int uses 32 bits (4 bytes) (we usually use this)

�long uses 64 bits (8 bytes)

�floating point values:

�float uses 32 bits (4 bytes)

�double uses 64 bits (8 bytes) (we usually use this)

28

Why so many different types?

•28

� A character (type char) is stored in 16 bits, in Unicode format
(because computers only understand numbers)

�Unicode is an industry standard encoding for characters

�Examples:

Character Encoding

A 65

a 97
{ 123

1 49

29

Sizes of primitive types
•29

byte 8 bits

short

int

float

long

8 bits 8 bits

8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

double 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

char 8 bits 8 bits

•30

Expressions that represent true or false

Boolean expressions•30

31

List of relational operators

�Greater than >
4 > 3 is true

3 > 3 is false

3 > 4 is false

�Less than <
2 < 3 is true

3 < 2 is false

�Equal ==

3 == 3 is true

3 == 4 is false

�Not equal !=
3 != 4 is true
3 != 3 is false

�Greater than or equal >=
4 >= 3 is true
3 >= 3 is true
2 >= 4 is false

�Less than or equal <=
2 <= 3 is true
2 <= 2 is true
4 <= 2 is false

•31 32

Relational operators

�Relational operators compare two operands of the
same type

�The result of the operation is either true or false

�So the result is of type boolean

�The symbol for equality is ==

 (we will see later that = is used for something else)

•32

33

Sample exercise
•33

�Try out relational expressions in the Interactions pane

�With numbers
3 < 4

4 <= 4

5 < 4

6 == 6.0 (what is the reason for the result?)

�With characters (use single alphabet letters)

Rule: Put single quotes around a character
‘a’ < ‘b’

‘b’ < ‘a’

‘a’ == ‘a’

‘a’ == ‘A’

•34

Strings are not a primitive data type!

Strings•34

35

Strings in Java
•35

� A string is a sequence of characters, for example
Programming is fun!

� Text data is represented in computers as a string, i.e. a sequence of
characters in Unicode

�Example: The string CS1026 is represented by the sequence of
codes

� Java has a type called String for string data

� In Java a string is an object, so String is not a primitive type

67 83 49 48 50 54

36

Strings in Java
•36

�The Java compiler recognizes strings as beginning and
ending with " (a double quote)

�Rule: put double quotes around a string

�A string can have many characters, for example:
"This is one long string with spaces in it."

�A string can have no characters

�This is called the the null string

�It is represented by ""
(double quotes with nothing between)

37

Strings in Java
•37

�Java can add (or concatenate) strings to other strings, using the
concatenation operator +

�This returns a new string with the characters of the second
string appended after the characters of the first string

�Examples: what strings are formed by the string expressions
"CS1026" + "a" becomes CS1026a
"CS1026" + "b" becomes CS1026b
"CS1026" + "a" + "/" + "b" becomes CS1026a/b

38

Strings in Java
•38

�Now you see why it is important to tell the computer the
type you have stored in memory

� If you just stored 2 strings and didn't tell the computer
they were strings, and it thought they were numbers,

"CS1026" + "b"

Would give you a very different result than you were
looking for! An error would pop out!

39

Strings in Java
•39

�There is a special character \ in Java strings called the
escape character

�It is used to allow special characters to be embedded into
a string

�Examples:

\" Used to put a " into a string

\\ Used to put a \ into a string

\t Used to put a tab into a string

\n Used to force a new line in a string

40

Sample exercise
•40

�How would you print the following on the console with a
single println statement?

Course name is "CS026"
Directory is "koala\Homes\Students"

Try this at home – it is harder than it sounds!

•41

The example of System.out.println

Java statements•41

42

Statements
•42

�Java programs are made up of statements

�Like sentences in English

�But Java statements end in a semicolon, not a period

�Missing semicolons in a Java program lead to a lot of syntax
errors!

�Examples of Java statements:
 System.out.println(3*28);
 numPeople = 2; (an assignment statement)

43

Printing
•43

�We often want to output the value of something in a
program

�In Java, we print to the screen using

System.out.println(expression);

�To print the value of the expression in the parentheses,
and then go to a new line

System.out.print(expression);

�To print just the expression in the parentheses without a
new line afterwards

�These are Java statements.

44

Sample printing exercise
•44

�Use System.out.println() to print the
results of an expression to the console:

System.out.println(3 * 28);

System.out.println(14 – 7);

System.out.println(10 / 2);

System.out.println(128 + 234);

�Try using System.out.print(…) instead

�What is the difference?

•45 More on Variables•45

46

Variables
•46

�We’ve used Java to do calculations and concatenate strings,
but we haven’t stored the results

�The results are in memory somewhere, but we don’t know
where they are, and we don’t know how to get them back

�To solve this problem, we use variables

47

Variables
•47

�Variables are locations in memory containing a value,
labeled with a name

�They are called “variables” because their contents can vary
– recall, we need to tell the computer what the type is!

�We can store data in a variable
�We can perform a calculation and store the results in a
variable

�We access stored values by using their variable names

48

Variables
•48

�Suppose the variable total represents your total bill at a
coffee shop, and its contents was the result of adding the
price of coffee and a sandwich. If you wanted to calculate
what a tip of 15% would be, you could do this using the
expression
 total * .15
and storing that in a variable called tip

total

tip

6.25

.94

49

Variables in Java
•49

� In Java programs, variables are created and named by
declaring them

�To declare a variable you specify a type for the
variable, and give it a name
�Providing a type lets Java know how much memory to
set aside for the variable, and what operations can be
done on that variable

�Choose meaningful variable names so that it is easier
to write and read your program

�You must declare a variable before you use it

50

Variable declarations
•50

� In general, variables are declared like this:

type name;

�Type is a special “keyword” in Java and there are only a
few; name is something you pick (although there are some
rules)

�Example: we have several people in a restaurant, and we
want to know how much each should pay, including the tip.
We’ll start by declaring some variables:

int numPeople;

double bill, tip;

�Three variables: one integer variable (numPeople) and
two floating point variables (bill and tip)

�Java allows multiple variables to be declared at once.

51

Assignments
•51

�Values are stored to variables in Java using assignment

statements

 name = expression;

�This is a Java statement, so it ends with a semicolon

�We read = as assigning the value from the expression on
the right side to the variable named on the left

�Our restaurant example:

numPeople = 2;

This assigns the value 2 to the integer variable numPeople
that we declared earlier

52

Storing values in variables
•52

�One can declare variables and assign initial values to them
at the same time

�Example: we can combine the declaration of a variable
with an assignment:

int numPeople = 2;

double bill = 32.45;

53

Using variables
•53

�A variable name can be used wherever a constant value of
the same type could be used, but

�The variable must be declared first
Our example: bill and tip have already been declared

double total = bill + tip;

�The variable must have been assigned a value first

�Why? to ensure that it has a valid value stored in it

�Our example: bill and tip have already been
declared and initialized

54

Example: using variables
•54

int numPeople = 2;

double bill = 32.45;

double tip = bill * 0.20;

double total = bill + tip;

double totalPerPerson = total / numPeople;

System.out.println("You each pay " +
totalPerPerson);

55

An equivalent form
•55

int numPeople;

double bill, tip, total, totalPerPerson;

numPeople = 2;

bill = 32.45;

tip = bill * 0.20;

total = bill + tip;

totalPerPerson = total / numPeople;

System.out.println("You each pay " +
totalPerPerson);

56

Variable declarations revisited

•56

�Recall that declaring a variable creates and names it

�By default, Java also initializes a variable to a default
value

�0 for variables of type int

�0.0 for variables of type float and double

�Example: what are these variables initialized to?

 int numPeople;

 double bill, tip;

57

Tracing through code
•57

�It is often useful to trace through code to see what it does

�When we are debugging a program we have written, or
trying to understand a program someone else has written

�A good way to do this:

�Draw and label boxes for each variable in the code

�Follow through the code, making changes to the variables

numPeople

bill

tip

total

2

32.45

6.49

38.94

•58 Constants•58

59

Magic numbers
•59

�In our restaurant example, we used a constant value
(aka literal) for the tip percentage:

0.20

�We call this kind of constant a
“magic number”

�Why? The constant means
something to the programmer,
but maybe means nothing to
someone else reading the code

�Using magic numbers in programming is considered a poor
practice, as it makes code difficult to read and change

60

Named constants
•60

�We should use named constants that have meaningful names
given to them

�To create a named constant:
�declare a variable and assign a value to it
�add the keyword final to signify that this variable is a
named constant

�Example:

final double TIP_RATE = 0.20;
double tip = bill * TIP_RATE;

�Naming convention (rule): named constants are in all
uppercase letters, with underscores separating words, for
example TIP_RATE

•61 Common errors•61

62

Common errors
•62

�Simple typos

�The most common error!

�Examples of errors:
 duble total = bill + tip;
 double total = bil + tip;

�Case sensitivity

�Java is case sensitive and will generally
treat issues with case as it would typos

�Examples of errors:
 doublE total = bill + tip;
 double total = Bill + tip;

63

Common errors
•63

�Redeclaring a variable

�Once a variable has been declared, you should not
declare another variable with the same name

�Example of error:
int numPeople = 2;
…
int numPeople;

�Reassigning a constant

�A constant’s value cannot be changed!

�Example of error:
final double TIP_RATE = 0.20;
TIP_RATE = 0.15;

64

Common errors
•64

�Loss of precision
�Java will automatically convert integer values to floating
point values as necessary

�Java will not automatically convert floating point values to
integers, as this could result in a loss of precision … you
must cast instead

�Example of error: int age = 5.6;

�Uninitialized variables
�Java usually wants variables to be initialized

before they are used

�Example of error:
 int bill, tip;
tip = bill * 0.20;

•65 Objects in Java•65

66

Remember our Big Problem...

•66

�Remember when we talked about curing cancer using
the computer? We came up with all the “pieces” we
would have to think about

�There was the body, a cell, an organ, things like that

�When we represent these in code, they are called
“Objects →” makes sense, right?

�They represent real life things and we can give them
properties

67

Remember our Big Problem...

• Recall that a body would have an age, or a cell
might have a size? These are attributes/properties
of the object

• Remember how we talked about what the objects
might do? Like a tumour might grow or spread?
Those are actions!

• We are going to learn programming in a way that
is oriented towards Objects!

68

Object oriented?
•68

�Objects are

�persons, places, or things that can do actions or be
acted upon in a Java program

�Objects have

�Properties

�Actions

� Every object belongs to a specific class

�Objects that belong to the same class have the same
kinds of properties and behaviors

69

Back to example
•69

� So, objects that belong to the same class have the same
properties and behaviors

�We have a class called “Cell”

� →Any Cell objects will have the same properties they will
have a size, an age, a shape perhaps

� If we have a class “Body” each body will have the same
properties

� I could make 3 bodies: Jenna, Joe, Bob

� Each would have an age, a name, a height, a weight...
they might have different names or weights or ages or
heights, but they have the same attributes!

70

Let's talk about a restaurant!

71

Another Example
•71

� In a restaurant:
�When customers enter the restaurant, a
greeter welcomes them and seats them at a table

�A waiter takes their order, and one or more
chefs prepare the order

�The waiter brings the drinks and
food, and when the customers
are done, the waiter creates and
brings them their bill

�On their way out, the customers
pay the bill

72

Example
•72

�Each of the entities involved
in this scenario is an object

�The objects in this scenario
worked together to get the job
done (feeding the customers)

73

Chefs
•73

�Suppose that there were two chefs working on the order,
Alice and Bob

�We will call Chef a class, with both Alice
and Bob being objects that belong to
the class Chef

�Alice and Bob are instances of
the class Chef

74

Common properties and actions
•74

�Like all chefs, Alice and Bob have common properties and
actions

�Properties: they both have a name, a set of dishes they
know how to prepare, a number of years of
experience, and so on

�Actions: they both are
able to talk,
prepare ingredients,
cook dishes, and so on

75

Specificities
•75

�Even though they are both chefs, they are
also still individuals

�They have their own set of the properties of the class
Chef: name, dishes they can cook, etc.

76

Summary
•76

�Objects and classes in a Java program work similarly to
these examples:
�All the objects work together to get the task done, even
though each object plays a different role

�Each object belongs to a class

�All objects in the same class have the same kinds of
properties and behaviours

� But all objects of the class are still distinct entities

�We will be seeing a lot more on objects

•77 Reference variables•77

How to refer to an object.

78

Reference variables
•78

�Simple variables: All the variables we have discussed so
far have been for storing values of primitive types

�Reference variables (object variables) are variables that
are used to refer to objects

�They do not store the objects themselves

�Instead, they store the location of the objects
so that they can be found when necessary

�That’s why we say they refer to objects, and
call them reference variables

79

Reference variables
•79

�We can think of a variable as being a little box in memory
containing a value, labeled with its name

�A simple variable contains a value

�A reference variable contains the location of an object

�For a simple variable, we can draw it like this:
total

�For a reference variable, we can draw it like:

 test

38.94

objectA memory location

80

Reference variables example
•80

String test;

System.out.println(test);

test = "Hi";

System.out.println(test);

test = "Bye";

System.out.println(test);

test

null

test

test

Hi

Hi

Bye

81

Using reference variables
•81

�Reference variables are declared in general by:

type name;

�Example: Strings are objects. Declare a reference variable
that will refer to a string:

String test;
�This does not create a String object
�It only declares a variable named test that can refer to a
String object

�By default, it does not refer to anything yet, and is said to
be a null reference

82

The null reference
•82

�Java has a keyword null that means the null reference

�Example: the declaration
 String test;
by default stores null in the variable test

 test

�This is the same as if we had declared and initialized this
variable by
 String test = null;

 null

83

Using reference variables
•83

�To have a reference variable refer to an object, we use an
assignment statement

�Example:
test = "Hi";

�Java will create a String object containing the text Hi
and have the variable test refer to it

 test = "Bye";

�Java will create another String object containing the
text Bye and have test now refer to it

�We will learn more about Strings later on

84

Multiple references to objects
•84

� In Java, it is possible to have multiple references to the same
object! Consider:

String name1 = "Suzanne Clark";

String name2 = name1;

�In this case, name1 and name2 refer to the same object in
memory

�This is called identity equality: the two variables have the
same contents

Suzanne Clark name1

 name2

85

Multiple references to objects
•85

�Important note: the two references are independent, and
what you do to one does not affect the other

�Following the example on the previous slide, now consider
this:

name1 = null;

�This change only affects the reference variable name1,
and not name2

name1 null

name2

Suzanne Clark

86

Multiple references to objects
•86

�Let’s create two objects (the “new” operator is used to create
new objects – more on that later):

String name1 = "Suzanne Clark";

String name2 = new String("Suzanne Clark“);

�In this case, name1 and name2 refer to
two different objects, but with the same contents

�This is called state equality: the two variables refer to
objects with the same contents

name1

name2

Suzanne Clark

Suzanne Clark

•87 Naming conventions•87

88

Variable declarations
•88

�Java has a variable naming convention:
Variable names start with lowercase letters, but
uppercase the first letter of each additional word

�Examples:
bill
tip
numPeople

89

Java naming conventions
•89

�Class names start with an uppercase letter, for example:

System, String, Picture

�Named constants are in all uppercase letters, with
underscores separating words, for example:

TIP_RATE

�All other names start with lowercase letters, but uppercase the
first letter of each additional word, for example:

picture, fileName, thisIsALongName

•90

Java naming conventions

�Java code will compile if you don’t follow these conventions,
but it may be hard for other programmers to understand
your code

�As an example, can you identify which of these
are primitive types, and which are the names of classes, just
by following conventions?
�char
�Double
�Math
�double
�Integer
�String •90

91

Summary of java concepts
•91

�Objects, Classes
�Object properties, behaviours
�Math operators
�Primitive types
�Casting
�Printing output
�Relational operators
�Strings
�Variables
�Assignment statements
�Named constants
�References to objects
�Naming conventions

92

Key Notes

� →Modulo practice at home

� Order of operations
� Do these evaluate to the same answer?

� (2 * 3)+1 and

� 2 * 3 + 1

� int division vs double division

� Always put a semi colon after a Java statement

� Practice naming conventions (you are graded on
this during assignments)

