Parsing Algorithms

CS 4447/CS 9545 -- Stephen Watt
University of Western Ontario
The Big Picture

• Develop parsers based on grammars
• Figure out properties of the grammars
• Make tables that drive parsing engines

• Two essential ideas:
 Derivations and FIRST/FOLLOW sets
Outline

- Grammars, parse trees and derivations.
- Recursive descent parsing
- Operator precedence parsing
- Predictive parsing
 - \textit{FIRST} and \textit{FOLLOW}
 - LL(1) parsing tables. LL(k) parsing.
- Left-most and right-most derivations
- Shift-reduce parsing
 - LR parsing automaton. LR(k) parsing.
 - LALR(k) parsing.
Example Grammar G1

- We have seen grammars already.
 Here is an example.
 [from Modern Compiler Implementation in Java, by Andrew W. Appel]

 1. S → S “;” S
 2. S → id “:=” E
 3. S → “print” “(” L “)”
 4. E → id
 5. E → num
 6. E → E “+” E
 7. E → “(“ S “,” E “)”
 8. L → E
 9. L → L “,” E
• A *parse tree* for a given *grammar* and *input* is a tree where each node corresponds to a grammar rule, and the leaves correspond to the input.
Example Parse Tree

• Consider the following input:

\[a := 7; \]
\[b := c + (d := 5 + 6, d) \]

• This gives the token sequence:

\[id := num ; id := id + (id := num + num , id) \]

• Using example grammar G1, this has a parse tree shown on the right.

\[
S \quad ; \\
| \\
| \\
\]
Derivations

- “Parsing” figures out a parse tree for an given input
- A “derivation” gives a rationale for a parse.

- Begin with the grammar’s start symbol and repeatedly replace non-terminals until only terminals remain.
This derivation justifies the parse tree we showed.

S
S ; S
S ; id := E
id := E ; id := E
id := num ; id := E
id := num ; id := E + E
id := num ; id := E + (S , E)
id := num ; id := id + (S , E)
id := num ; id := id + (id := E , E)
id := num ; id := id + (id := E + E, E)
id := num ; id := id + (id := E + E, id)
id := num ; id := id + (id := num + E, id)
id := num ; id := id + (id := num + num, id)
Derivations and Parse Trees

• A node in a parse tree corresponds to the use of a rule in a derivation.

• A grammar is ambiguous if it can derive some sentence with two different parse trees.

 E.g. \(a + b \times d \) can be derived two ways using the rules
 \[E \rightarrow id \quad E \rightarrow E \, \text{“}+\text{”} \, E \quad E \rightarrow E \, \text{“}\ast\text{”} \, E \]

• Even for an unambiguous grammar, there is a choice of which non-terminal to replace in forming a derivation.

 Two choices are
 – Replace the leftmost non-terminal
 – Replace the rightmost non-terminal
Recursive Descent Parsing

• Example for recursive descent parsing:
 1. S → E
 2. E → T “+” E
 3. E → T
 4. T → F “*” T
 5. T → F
 6. F → P “^” F
 7. F → P
 8. P → id
 9. P → num
 10. P → “(” E “)”

• Introduce one function for each non-terminal.
Recursive Descent Parsing (cont’d)

```c
PT* S() { return E(); }

PT* E() { PT *pt = T();
    if (peek("+")) { consume("+"); pt = mkPT(pt,E()); } return pt; }

PT* T() { PT *pt = F();
    if (peek("*")) { consume("*"); pt = mkPT(pt,F()); } return pt; }

PT* F() { PT *pt = P();
    if (peek("^")) { consume("^"); pt = mkPT(pt,P()); } return pt; }

PT* P() { PT *pt;
    if (peekDigit()) return new PT(Num());
    if (peekLetter()) return new PT(Id());
    consume("("); pt = E(); consume(")"); return pt; }
```
Recursive Descent Parsing -- Problems

• A slightly different grammar (G2) gives problems, though:
 1. \(S \rightarrow E \)
 2. \(E \rightarrow E \text{ }^+\text{ } T \)
 3. \(E \rightarrow T \)
 4. \(T \rightarrow T \text{ }^*\text{ } F \)
 5. \(T \rightarrow F \)
 6. \(F \rightarrow P \text{ }^\wedge\text{ } F \)
 7. \(F \rightarrow P \)
 8. \(P \rightarrow \text{id} \)
 9. \(P \rightarrow \text{num} \)
 10. \(P \rightarrow \text{“} (\text{ } E \text{ } \text{“}) \)

• This causes problems, e.g.:
 – Do not know whether to use rule 2 or rule 3 parsing an E.
 – Rule 2 gives an infinite recursion.

• We want to be able to predict which rule (which recursive function) to use, based on looking at the current input token.
Operator Precedence Parsing

• Each operator has left- and right- precedence. E.g.
 100+101 200×201 301^300
• Group sub-expressions by binding highest numbers first.
 A+B × C × D ^ E ^ F

 A 100 +101 B 200×201 C 200×201 D 301^300 E 301^300 F
 A 100 +101 B 200×201 C 200×201 D 301^300 (E 301^300 F)
 A 100 +101 B 200×201 C 200×201 (D 301^300 (E 301^300 F))
 A 100 +101 (B 200×201 C) 200×201 (D 301^300 (E 301^300 F))
 A 100 +101 ((B 200×201 C) 200×201 (D 301^300 (E 301^300 F)))

 A+((B × C) × (D ^ (E ^ F)))

• Works fine for infix expressions but not well for general CFL.
Predictive Parsing – FIRST sets

• We introduce the notion of “FIRST” sets that will be useful in predictive parsing.

• If α is a string of terminals and non-terminals, then $\text{FIRST}(\alpha)$ is the set of all terminals that may be the first symbol in a string derived from α.

• Eg1: For example grammar G1,

 $\text{FIRST}(S) = \{ \text{id}, \text{"print"} \}$

• Eg2: For example grammar G2,

 $\text{FIRST}(T \ "*" \ F) = \{ \text{id}, \text{num}, \text{"("} \}$
Predictive Parsing -- good vs bad grammars

• If two productions for the same LHS have RHS with intersecting FIRST sets, then the grammar cannot be parsed using predictive parsing.

E.g. with $E \rightarrow E + T$ and $E \rightarrow T$
 FIRST($E + T$) = FIRST(T) = { id, num, “(”}

• To use predictive parsing, we need to formulate a different grammar for the same language.

• One technique is to eliminate left recursion:

E.g. replace $E \rightarrow E + T$ and $E \rightarrow T$
 with $E \rightarrow T E' \quad E' \rightarrow + T E' \quad E' \rightarrow \varepsilon$
The “nullable” property

• We say a non-terminal is “nullable” if it can derive the empty string.
• In the previous example E’ is nullable.
FOLLOW sets

• The “FOLLOW” set for a non-terminal X is the set of terminals that can immediately follow X.

• The terminal t is in FOLLOW(X) if there is a derivation containing Xt.

• This can occur if there is a derivation containing X Y Z t, if Y and Z are nullable.
Algorithm for FIRST, FOLLOW, nullable

for each symbol X

for each terminal symbol t
 FIRST[t] := {t}

repeat
 for each production X → Y1 Y2 ... Yk,
 if all Yi are nullable then
 nullable[X] := true
 if Y1..Yi-1 are nullable then
 FIRST[X] := FIRST[X] U FIRST[Yi]
 if Yi+1..Yk are all nullable then
 if Yi+1..Yj-1 are all nullable then

until FIRST, FOLLOW, nullable do not change
Example FIRST, FOLLOW, nullable

Example Grammar G3.

\[Z \rightarrow d \quad Y \rightarrow \varepsilon \quad X \rightarrow Y \]
\[Z \rightarrow X \ Y \ Z \quad Y \rightarrow c \quad X \rightarrow a \]

<table>
<thead>
<tr>
<th></th>
<th>nullable</th>
<th>FIRST</th>
<th>FOLLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>false</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>false</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>false</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>nullable</th>
<th>FIRST</th>
<th>FOLLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>false</td>
<td>a</td>
<td>c d</td>
</tr>
<tr>
<td>Y</td>
<td>true</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>Z</td>
<td>false</td>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>nullable</th>
<th>FIRST</th>
<th>FOLLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>true</td>
<td>a c</td>
<td>a c d</td>
</tr>
<tr>
<td>Y</td>
<td>true</td>
<td>c</td>
<td>a c d</td>
</tr>
<tr>
<td>Z</td>
<td>false</td>
<td>a c d</td>
<td></td>
</tr>
</tbody>
</table>
Predictive Parsing Tables

- **Rows:** Non-terminals
- **Columns:** Terminals
- **Entries:** Productions

Enter production $X \rightarrow \alpha$ in row X, column t for each t in FIRST(α).

If α is nullable, enter the productions in row X, column t for each t in FOLLOW(X).

Productions

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>$X \rightarrow a$</td>
<td>$X \rightarrow Y$</td>
<td>$X \rightarrow Y$</td>
</tr>
<tr>
<td>$X \rightarrow Y$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>$Y \rightarrow \epsilon$</td>
<td>$Y \rightarrow \epsilon$</td>
<td>$Y \rightarrow \epsilon$</td>
</tr>
<tr>
<td>$Y \rightarrow c$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>$Z \rightarrow X Y Z$</td>
<td>$Z \rightarrow X Y Z$</td>
<td>$Z \rightarrow d$</td>
</tr>
<tr>
<td></td>
<td>$Z \rightarrow XYZ$</td>
<td>$Z \rightarrow X Y Z$</td>
<td></td>
</tr>
</tbody>
</table>

Nullable First Follow

<table>
<thead>
<tr>
<th></th>
<th>Nullable</th>
<th>FIRST</th>
<th>FOLLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>true</td>
<td>$a \ c$</td>
<td>$a \ c \ d$</td>
</tr>
<tr>
<td>Y</td>
<td>true</td>
<td>c</td>
<td>$a \ c \ d$</td>
</tr>
<tr>
<td>Z</td>
<td>false</td>
<td>$a \ c \ d$</td>
<td></td>
</tr>
</tbody>
</table>

CS4447/CS9545
Example of Predictive Parsing

Initial grammar

- S → E
- E → E “+” T E → T
- T → T “*” F T → F
- F → id
- F → num
- F → “(” E “)"

Modified grammar

- S → E $
- E → T E’ E’ → E’ → “+” T E’
- T → F T’ T’ → T’ → “*” F T’
- F → id
- F → num
- F → “(” E “)"

Nullable FIRST FOLLOW

<table>
<thead>
<tr>
<th></th>
<th>Nullable</th>
<th>FIRST</th>
<th>FOLLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>False</td>
<td>(id num</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>False</td>
<td>(id num</td>
<td>) $</td>
</tr>
<tr>
<td>E’</td>
<td>True</td>
<td>+</td>
<td>) $</td>
</tr>
<tr>
<td>T</td>
<td>False</td>
<td>(id num</td>
<td>) + $</td>
</tr>
<tr>
<td>T’</td>
<td>True</td>
<td>*</td>
<td>) + $</td>
</tr>
<tr>
<td>F</td>
<td>False</td>
<td>(id num</td>
<td>) * + $</td>
</tr>
</tbody>
</table>
Example of Predictive Parsing (contd)

S → E $
E → T E'
E' → E' → “+” T E'
T → F T'
T' → T' → “*” F T'
F → id
F → num
F → (“” E ““)

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>*</th>
<th>id</th>
<th>num</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>S → E$</td>
<td>S → E$</td>
<td>S →E$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>E →TE'</td>
<td>E →TE'</td>
<td>E →TE'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E'</td>
<td>E' →“+” T E'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T →FT'</td>
<td>T →FT'</td>
<td>T →FT'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T'</td>
<td>T' →</td>
<td>T' →“*” F T'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F →id</td>
<td>F →num</td>
<td>F →“(” E ““)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Nullable</th>
<th>FIRST</th>
<th>FOLLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>False</td>
<td>(id num</td>
<td>$</td>
</tr>
<tr>
<td>E</td>
<td>False</td>
<td>(id num</td>
<td>) $</td>
</tr>
<tr>
<td>E'</td>
<td>True</td>
<td>+</td>
<td>) $</td>
</tr>
<tr>
<td>T</td>
<td>False</td>
<td>(id num</td>
<td>) + $</td>
</tr>
<tr>
<td>T'</td>
<td>True</td>
<td>*</td>
<td>) + $</td>
</tr>
<tr>
<td>F</td>
<td>False</td>
<td>(id num</td>
<td>) * + $</td>
</tr>
</tbody>
</table>
LL(k) Grammars

• The predictive parser we built makes use of one look ahead token.
 – We say the grammar is LL(1).
 – LL stands for “Left to right parse, Leftmost derivation”
• If k look ahead tokens are needed, then we say the grammar is LL(k).
 – For k > 1, the columns are the possible sequences of k tokens, and the tables become large.
• There is a better way…
LR Parsing

• LL parsing always uses a grammar rule for the *left-most* non-terminal.
• If we aren’t so eager, we can apply grammar rules to other non-terminals
• This allows us to decide about the “hard” non-terminals later.
• We keep a stack of unfinished work.
• Using the *right-most* derivation leads to LR parsing.
LR Parsing

- Parser state consists of a stack and input.
- First k tokens of the unused input is the “lookahead”
- Based on what is on the top of the stack and the lookahead, the parser decides whether to
 - Shift = 1. consume the first input token
 2. push it to the top of the stack
 - Reduce = 1. choose a grammar rule $X \rightarrow A \ B \ C$
 2. pop C, B, A from the stack
 3. push X onto the stack