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Abstract

This thesis furthers work in the dynamic analysis of programs by examining how

to derive data structure definitions from the behavioural aspects of programs. We

refer to this technique as behavioural synthesis.

In particular we first present a general data typing mechanism, called a dynamic

abstract data type (DADT), whose instances act as proxies for other data types in

a computation. Each instance of a DADT has the ability to reconfigure its internal

representation and detect the context in which it is used. This is followed by an

example of a DADT that represents the union of other abstract data types whose

interfaces are not necessarily disjoint; techniques for specializing their use in a pro-

gram are also demonstrated. The specializations are realized as code in the same

language as the program, promoting program evolution. Furthermore, the code

generation is based on source code locations, does not require explicit annotations

and is performed interactively. Finally, we show a method of deriving the composi-

tion and relationship of classes through augmentation of a language runtime. The

approach permits the use of objects without class definitions.

Behavioural synthesis is presented as a design exploration aid to support the

notion of using a typical programming language as a specification language and

may be viewed as extending the duality between program and data to a duality

between program structure and data structure.

Keywords: abstract data type, dynamic analysis, behavioural synthesis, code

generation, structural derivation, program evolution.
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Chapter 1

Introduction

According to Wirth, programs are composed of structure and behaviour [87]. The

specification of structure and behaviour often affect each other: data structures

may be influenced by the algorithm that manipulates them whereas algorithms may

be designed to work with some given data. This thesis examines ways that the

structural descriptions of data can be derived from the behavioural elements that

manipulate them, a technique we term behavioural synthesis.

Additionally, we follow the ideas of Naur by considering programming to be a

design activity [52]. We propose that behavioural synthesis can be integrated with

existing programming languages, allowing it to be used as a design exploration aid

by treating an implementation language as a specification language. As a specifica-

tion language, details of the structure may be omitted and introduced later through

behavioural synthesis techniques. Thus, the program can be specialized by gener-

ating code in the same language used to communicate the specification.

We demonstrate three methods for realizing behavioural synthesis. The first is

a framework for defining data types whose instances can track their usage, detect

the context in which they occur and reconfigure their internal representation in

response to these stimuli. We call these dynamic abstract data types. Second, we

define a type that represents the union of multiple abstract data types whose inter-

faces are not necessarily disjoint. Ambiguous situations using the type are resolved
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interactively and the context of the operation is remembered. Specialized versions

of the type are generated based on the contexts in which the type is used. Lastly, we

demonstrate a technique for employing objects in a computation without defining

classes for the objects. Instead, classes are created as required, including their struc-

tural composition and relationships to other classes. In all three cases, we analyze

the efficacy of the method and discuss its shortcomings.

These are presented as dynamic analysis techniques. Any static or lexical in-

formation required for deriving structure is communicated through the dynamic

environment of the program by way of code transformations executed prior to eval-

uation.

The derivation of structure demonstrated in this thesis does not devise entirely

new data structures. The structures implicitly used in the behavioural description

of a program are assumed to be known, but the choice of exactly what layout to use

is unspecified — all that is known is the operations to be performed on an object

and their parameters. New structures can be created, but only in the sense that it

makes the structure of the data fit with the operations. The creation of entirely new

data structures requires the generation of original operations. No such attempt to

do so is made in this work.

We define behavioural synthesis as the derivation of data structure from program

behaviour. The derivation may come from a description of the behaviour in the form

of program code, by observing a running program or some combination thereof.

Here, data structure refers to both the actual layout of data in the sense of structures

for data manipulation, such as linked lists and arrays, as well as the relationships

between different data objects.

Behavioural synthesis aims to facilitate structural derivation during the develop-

ment of programs. The idea is to capture the intuition of data structure that often

accompanies descriptions of algorithms without explicitly defining the structure.
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Thus, when writing an algorithm, the precise layout of data can be ignored, only to

be described in terms of a known data type, such as a stack, list or set, eliminating

the need to provide the definiteness required by the algorithm (as per Knuth’s defi-

nition [41, section 1.1]). The semantics of the operations provide form to the data

being manipulated. Therefore, instead of devising a new collection of operations,

we leverage current ones. To this end, the techniques demonstrated are based on

integration with existing languages.

The motivation for behavioural synthesis stems from work in formal specifica-

tions and agile programming [14], and software development based on volatile

requirements. We argue that unifying a specification language with an implemen-

tation language could be beneficial for agile programming and that behavioural

synthesis techniques are helpful for such a unification because the combination of

language and technique can be used to represent entities encompassing multiple ab-

stractions. Furthermore, code can be generated specializing the abstractions based

on use.

Van Lamsweerde notes that formal specifications tend to grow out of informal

specifications [80]. A formal specification, as defined by van Lamsweerde, is “the

expression, in some formal language and at some level of abstraction, of a collection

of properties a system should satisfy.” Informal specifications are usually written

in natural language as part of a requirements document. Since it is unlikely all

the specifications are known at the start of a software project, the transition from

informal specification to formal specification helps determine what must actually

be stated formally.

Specification languages themselves are not usually designed to be implementa-

tion languages as they normally describe the functional or behavioural properties of

a program and do not deal with resource management [22]. Still, there are benefits

to being able to execute specifications, which effectively turns them into a form of
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implementation language. Making a specification language executable affords the

opportunity to integrate them into the same framework as the implementation [66].

Whether integrated with an implementation language or not, specification lan-

guages are transformed into implementations to be verified against requirements.

Depending on the syntax and semantics of the specification language, it may be

possible to refine the specification into an implementation by way of code transfor-

mations [13]. Such transformations may be done semi-automatically, as in the case

of various program synthesis systems (for example KIDS [74] with DTRE [10]). It

has long been recognized that stepwise refinement in this manner is a useful way

to develop programs [86].

One such programming methodology that stresses incremental development is

agile programming [14]. In contrast to formal methods, agile programming tech-

niques stress working code through rapid release cycles, and de-emphasizes doc-

umentation and formal specifications; working code is highly valued because it

provides something tangible the user can evaluate. The working code may not pro-

vide all the desired functionality, but enough is present to provide feedback. The

subsequent evaluation of the (partial) implementation likely leads to changes in the

specification through revealed deficiencies. With the frequent changes made to the

specification in agile practices, the formality of a specification that is maintained

outside of the code base bogs down the process of implementation.

With stress on code over specifications, Reeves’ argument that code is design

[60] suggests that programming is a design activity in the sense proposed by Naur.

Naur put forth the Theory Building View of software development [52] and argues

that a programmer accumulates knowledge of a particular problem (and how to

solve it) through experimentation, akin to a method as abstract as the scientific

method. In short, the programmer has access to many tools and techniques to

determine the structure of a program, but no particular order need be applied in
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order to determine that structure. Formal specifications in agile approaches are seen

as a potential tool to be drawn from some collection of tools, but not a required one.

Additionally, Osterweil discusses the general notion of processes and argues that

process descriptions develop out of processes [55]. That is, the description of a

process comes about by working through a process one or more times. He further

argues that software processes are also software and can be captured in a program.

He cautions, however, that the descriptions required for such a program may be

very difficult to specify precisely [56]. Filling in details can be achieved by having

someone observe the processes, noting the details. Although the details may not

be universally applicable, they may address the task at hand. Osterweil’s argument

suggests that incomplete specifications can be executed and observed to build more

complete specifications based on specific inputs.

Executable specification languages afford the opportunity to generate imple-

mentations from interaction. This can be done by making constructs in a specifica-

tion language act as code generators. An advantage of generating code in this way

is that it does not require explicit annotations in the source code since the code itself

is the “annotation” guiding the code generation. Additionally, it can be unobtrusive

to the user. (These are both properties called for by Smaragdakis [73].) Inter-

active code generators of this form would be a useful tool for agile programming

since they could mitigate the work involved in writing a specification by making it

a working part of the implementation.

It may be advantageous to make the specification language work within the

implementation language for a considerably more streamlined workflow when a

specification is part of an implementation. Arguing against this idea, Schmid and

Hofmeister [66] claim that “the combination of the specification with the imple-

mentation cannot occur on the level of source code” and outline a way to combine

them at the binary level. This ignores the fact that a specification language could be
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embedded in the implementation language and the compiler could combine them

at the binary level.

Combining the specification and implementation languages could be beneficial

for agile programming. Specifications are generally more succinct than implemen-

tations which may allow for more functionality to be delivered within a release

cycle. It could also provide a way to use formal methods with agile approaches

without incurring too much of the unwanted overhead. By making the constructs

of the specification language active agents in the development of the program by

generating source code, a specification language could promote program evolution

and development through evaluation of releases.

The behavioural synthesis techniques described in this thesis are useful in a set-

ting where a specification and implementation language are combined because they

can capture multiple abstractions in a single data object. Furthermore, the profiling

abilities of the object, its ability to capture the context in which it is operating and

the ability to communicate with other objects indirectly provide for a useful code

generation scheme where a very general data type can be made specific. This is

demonstrated in Chapters 3 and 4 with dynamic abstract data types and program

specialization. Chapter 5 demonstrates another way it can be helpful in that class

definitions can be omitted, to be devised at runtime based on the usage of objects.

Both of these techniques delay precise structural definitions but permit evaluation,

thus allowing for process observation as described by Osterweil.

The rest of this thesis is organized as follows. Chapter 2 describes work related

to behavioural synthesis, such as choosing data representations based on profil-

ing and analysis, dynamic reconfiguration of structure, generating programs from

program descriptions and systems meant to aid in the design and development of

programs. Chapter 3 describes dynamic abstract data types, how they are defined,

an example and an analysis of their performance. Building on this work, Chapter 4
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describes a use of dynamic abstract data types where multiple types are combined

into a single type with ambiguous operations. Ambiguity is resolved interactively

and, using contexts, a specialized version of the type is generated, including op-

erations. Chapter 5 demonstrates a way to use objects without class definitions

and build the class definitions at runtime. We summarize the work and present

conclusions in Chapter 6.

Lastly, we note that all code in this thesis is given in Common Lisp, and all

realizations of constructs referred to or used are implemented in Common Lisp.

Readers unfamiliar with the definitions of object-oriented terminology in Common

Lisp are referred to the lexicon at the end of this dissertation.
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Chapter 2

Related work

The sections following summarize works that are related to the current dissertation.

Section 2.1 surveys approaches to automating choice of data representations for

objects employing abstractions to varying degrees. For the most part, the works

involve analysis of the program, possibly combined with its behaviour, and may

involve querying the user for unknowns. The survey concentrates on work related

to that presented in Chapter 3.

In Section 2.2, we cover the notion of dynamic adjustment of structure, con-

centrating on data structure. We seek to describe the unifying themes that form

the basis of the methods undertaken in this thesis. Section 2.3 reports on differ-

ent ways of synthesizing programs based on behavioural descriptions, possibly with

feedback.

Lastly, Section 2.4 describes techniques and tools used to help refine or verify

designs. Section 2.5 briefly summarizes the chapter.

2.1 Automatic data structure selection

Automatic data structure selection is the act of choosing concrete data representa-

tions for objects through analysis, possibly in conjunction with profiling. The idea

is that the mapping of the interface to an implementation of an abstract data type
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is not revealed to the programmer. Emphasis, therefore, is placed on use of the

interface instead of relying on knowledge of the data layout when writing code.

Analysis consists of examining the use of the interface in the program and choosing

representations that maximize the efficiency with respect to some resource, usually

computation time.

Selecting data representations

The general problem of selecting data representations is discussed by Rosenchein

and Katz [65]. They define two extremes: selecting one of many possible repre-

sentations (the easy problem) and creating a representation from an abstract de-

scription (the hard problem). They outline a way to handle something between

the extremes by combining elements of known representations into one meeting

the requirements. This is done in either a hierarchical or cross-product fashion.

In the former, representations can be built up from each other while in the latter,

representations must exist separately. They go on to describe a data specification

language to capture the requirements of a data structure so that a representation

can be synthesized from a set of known representations.

In the current work, we acknowledge the continuum defined by Rosenchein and

Katz, but use a considerably different methodology. The concerns addressed by their

data specification language are significantly low-level, such as describing the num-

ber of words required for a datum. Also, it is unclear from their examples whether

providing descriptions of data structure requirements is simpler than describing the

data structure. Furthermore, their approach is based purely on the operations to

be supported and do not (directly) take into account the data to be manipulated or

usage patterns.

Booth and Wiecek describe an approach to abstract data types that associates

performance information with functional aspects [11]. Multiple representations are
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associated with an interface augmented with cost equations for each operation us-

ing probabilistic models to describe possible inputs. Cost expressions are evaluated

with respect to a particular machine and input type to provide the best representa-

tion for the task at hand. Their approach is compatible with dynamic abstract data

types as presented in Chapter 3 and could be captured in a trigger.

White analyzes the costs involved with using multiple representations for vari-

ables [84]. He assumes that representations are chosen during program design,

but can be assigned either to variables or program regions. Changes can be made at

runtime but only at designated points. White’s work generalizes Booth and Wiecek’s

approach.

More recently, Yellin has looked into the cost of switching representations of

a component at runtime, termed the adaptive component problem [92]. Here, a

component is assumed to be a subsystem of a larger system, not necessarily an

object. He presents a nearly-optimal 3-competitive algorithm for the case when a

component has exactly two implementations. Furthermore, a switch happens only

after an action request for the component is processed. Yellin’s work demonstrates

that for autonomic systems, the ability to adjust dynamically can be cost effective.

Using Wirth’s idea of stepwise refinement for program development [86], Kant

and Barstow describe a system for refining programs incrementally in a semi-auto-

matic fashion [35]. The user provides information about the expected usage of

a data structure, then the system refines the specification to reflect the changes

using coding rules and automated efficiency analysis via exploration of the design

space; the specification is not strictly stored as program code, but program code is

eventually produced.

An expert system for choosing data representations has been described by John-

ston [34]. Johnston’s system considers parameters such as the desired operations,

data persistence, concurrency, type of contents to be held, and space and time con-
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siderations. No code is synthesized from the selection, although Johnston proposes

ways to do so.

The work of Kant, Barstow and Johnston aims to absolve the programmer from

making concrete choices about data representation by describing behavioural el-

ements, for the most part. Their approaches fall closer to the easy problem on

Rosenchein and Katz’s spectrum because they are working with collections of known

data types with a single interface, substituting in implementations.

Finally, we note an approach to detecting where data representations can be

changed in program given by O’Callahan and Jackson with their Lackwit tool [54].

Using a form of type inference, Lackwit determines what variables interact in C

programs, grouping them together by type. O’Callahan and Jackson propose that

such groupings allow for different representations to be used, but do not follow

up on it, instead using the type information to look for unused data and memory

leaks. A similar approach was taken by Hall using the Hindley-Milner type system

to optimize list representations (without runtime coercion), however Hall does use

the information to produce efficient list representations for use in the program [30].

Low’s work and SETL

Two early efforts in choosing data structures automatically can be found in the

works of Low and efforts to optimize the programming language SETL.

Low’s methodology focusses on compilation techniques combined with execu-

tion monitoring and user interaction [48]. After the program is written, it is exe-

cuted so that the compiler can collect usage information regarding the frequency of

certain operations. The input provided is expected to be typical for the program.

A static analysis is then performed, using the collected information, to determine

what variables and expressions interact by grouping them into equivalence classes

so that common representations can be used; common representations are preferred
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in order to avoid the need for conversion. (In Low’s work, compatibility is required

at the data layout level for operations that operate on two or more elements of the

same type.) Next, representations are chosen for the equivalence classes. This is

done via a hill climbing technique in an attempt to minimize the space and time

costs of executing the program. Representations are chosen from a fixed library

of representations, complete with data regarding the costs of the operations. The

user is consulted to address certain variables in the cost equation, such as the prob-

ability of some condition, the average size of data to be processed or a preferred

representation for certain variables or expressions. These parameters are used to

select representations for variables.

Low’s approach has the potential to add considerable time to compilation and

analysis, especially considering the need for user intervention. The basic methodol-

ogy is reasonable and adopted in our approach but with more emphasis on working

while the program is running. We provide a mechanism for objects to evolve to ac-

count for changes in the source code while Low’s approach does not. Furthermore,

cost equations in Low’s work are given in precise terms based on the number of ma-

chine instructions required to perform the data structure operation [47]. Specifying

costs in such a manner requires intimate knowledge of not only the machine archi-

tecture, but also the compiler. Given the speed of processors at the current time,

such equations seem overly pedantic, unreliable to obtain and likely of little value.

Low’s approach could be modernized by measuring the costs of operations for small

data sets to approximate a cost equation, where constants likely have more impact

on the execution speed. This would also make it more amenable to use on different

architectures.

A prominent undertaking with respect to automatic data structure selection is

as an optimization technique in the programming language SETL [70]. SETL’s

defining characteristic is its native support for sets, tuples and mappings. Due to
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the generality of these constructs, SETL supports multiple representations of them.

Schonberg et al. describe an analysis to determine certain shared properties of sets

in order to create specific representations that permit efficient execution of opera-

tions [67, 68]; Dewar et al. present similar work as a form of program refinement,

where compiler annotations in a sublanguage of SETL can be added to SETL pro-

grams to designate data representation choices [17]. Schwartz details compiler

optimizations used in the SETL compiler to determining suitable representations

for high-level objects such as sets and mappings [69].

These techniques go to considerable effort to describe what is in a set at a certain

time using a form of type analysis (be it manual or automatic). This illustrates

the main difference with Low’s approach in that user interaction is not required.

Instead, the problem is defined so that it can be dealt with purely by static analysis.

Other efforts

Another useful application of data structure selection is in the field of matrix manip-

ulation. Bik and Wijshoff provide a compiler technique for automatically changing

code managing dense matrices to that for managing sparse matrices, saving the user

the need to handle complex data structures directly [9].

Working in the compiler, Peterson shows how to adjust tagged representations

of data to be more efficient [58]. This is done by analyzing type information of

variables. Peterson’s motivation stems from the fact that hardware and software

representations of data objects may not be compatible, namely, the tags are not

used in hardware. Thus, Peterson changes the representation from tagged to un-

tagged at different points in the computation to obtain more efficient use of the

data without affecting proper type identification. Similarly, Richardson performs

a data-flow analysis to determine when and where a different representation of a

data type can be applied to improve the efficiency of a program [63,64].
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Carriero Jr. describes a static analysis technique to determine efficient data

layouts for tuples spaces used in tuple space machines with languages such as

Linda [12]. Tuple spaces themselves are interesting because they have very little

form in and of themselves: They are simply large collections of associations [25].

Roughly speaking, this is the way we have viewed objects in Chapter 5. We view

Carrerio Jr.’s efforts to structure tuple spaces for more efficient lookup as a form of

behavioural synthesis.

Tables in Symbolics Common Lisp can change representation based on the op-

tions provided when a table is created, the current size of the table and type of the

data set [1]. For example, a table may start out as an association list with a small

number of elements, but change to a hash table when the number of elements grows

beyond an efficient size for association lists. These are a special case of the dynamic

abstract data types discussed in Chapter 3 and do not allow for general monitoring

capabilities.

Note that with all the work surveyed in this section, the approach to choosing

data structures is mainly a static affair. Most methods involve analysis through a

compiler taking behavioural cues from the program text. In all of our methods,

we combine information from program text with dynamic properties to construct

structural descriptions or provide suitable representations for objects.

2.2 Dynamic reconfiguration

In broad terms, dynamic reconfiguration applies to many fields: just-in-time com-

pilation [7], continuous program optimization [40], self-adjusting computation [2]

and type-feedback optmization [3, 33], just to name a few. It can also be seen

in more basic computational elements, such as balanced trees and path compres-

sion [36]. These fields will not be looked at in detail since they are not immediately
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applicable to the current work. Instead, we will concentrate on the dynamic recon-

figuration of structure in the sense of changing the layout of some entity. At the

same time, we will summarize the unifying themes of the aforementioned works

and examine some specific applications of dynamic reconfiguration that are judged

to be more pertinent to the current discussion.

Filesystems and databases

A primary factor involved in using dynamic reconfiguration is the condition that

certain information affecting the efficiency of a system is not available until the sys-

tem is working. Consider filesystems. Madhyastha and Reed demonstrate that by

changing policies based on input/output patterns, such as prefetching aggressively

during periods of sequential read activity, significantly fewer I/O operations need

be performed compared to a static policy [49]. ZFS1, a filesystem developed by

Sun Microsystems, employs dynamic striping to adjust to newly added disks auto-

matically, a pooled storage model that adjusts to changes in disk configuration, and

automatic error detection and correction to simplify administration [75].

Databases are another application, closely related to filesystems, where data

usage has an affect on how the data is stored and accessed. Agrawal et al. show that

changing the database layout in response to the workload requested of the database

can provide noticeable improvement in query running times [4]. At the level of

file layout, Ghandeharizadeh, Ierardi and Zimmerman describe a way to minimize

seeks in disk activity to increase throughput speeds by careful rearrangement of

blocks when files are deleted [26]. Wolfson, Jajodia and Huang consider the case

of distributed database systems by allowing database objects to replicate based on

how often they are read from or written to [88]. Ng et al. show how to change

the structure of a long-running query to handle changes in the underlying database

1Formerly known as the Zettabyte File System.
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[53].

Filesystems and databases demonstrate that altering structure to account for a

highly variable environment can be beneficial, despite the overhead involved in

monitoring environmental change.

Type-based restructuring

For instances of a given type, reconfiguring them to work in different situations is

based on the notion that the data can be looked at in different ways, although it is

conceptually the same from each perspective.

Lazy types are a device presented by Berzal et al. that provide a mechanism for

an object to alter its structure over time, within some predefined set of possibili-

ties [8]. A lazy type is a class with a set of attributes and methods, but instances

of the class may only have a subset of the attributes implemented. Methods are

chosen based on the subset of attributes currently defined for an object. The defin-

ing feature of lazy types is not so much their ability to reconfigure themselves by

occasionally adding attributes, but the fact that they represent a large number of

possible types. Instead of creating variants of a certain type, you could use a lazy

type to unify the type and use operations uniformly throughout.

One of the themes of lazy types is that data should drive the structure of objects.

This is echoed by Skopin who argues that data should be multiply structured [72].

Skopin’s point is that data is often viewed in different ways and using an appropriate

view (or structure) makes working with that view simpler. The idea, then, is to

make the data fit the problem instead of the problem fit the data.

Wadler’s views provide a way of achieving this by having abstract data types

export views of the data in addition to operations [82]. A view is a set of func-

tions that convert between two representations. The different representations can

then be used to define operations on the type as desired. For example, lists could
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be viewed in the traditional manner (an element followed by another list or the

empty list) or the traditional manner in reverse (a list, possibly empty, followed by

an element). Defining functions to operate on lists can be simplified by choosing

the appropriate view. Continuing from the previous example, retrieving the first

element of a list is easily defined using the traditional view, whereas retrieving the

last element is easy using the reverse view.

Views make defining operations more natural and provide for a simple conver-

sion mechanism, but the cost of conversion must be considered carefully in the

use of views. Furthermore, the places of conversion are fixed by the library im-

plementor. Thus, while they do provide for multiple structures for a particular

datum, efficiency over the lifetime of the datum is not considered. That is, they are

operation-centric and not data-centric.

Another approach to views was proposed by Andrews and Dobkin in the form

of active data structures [5]. Their intuition was that a data object could occupy its

own processor in a multi-processor environment and contain a single, conceptual

collection of data that is accessed in different ways. We share some of this intuition,

that is, seeing the data in different ways, but we use a very different implementation

tactic.

While views and their ilk provide dynamic reconfiguration in the sense of chang-

ing data from one form to another, another form of dynamic reconfiguration closer

to that described in Chapter 3 is provided by Hailpern and Kaiser [29]. They de-

scribe their PROFIT language that provides a mechanism for its fundamental data

elements, known as facets, to be of a certain breed2; a breed corresponds roughly

to an interface. Containers for breeds allow for different facets to be swapped in

and out to provide access to different information collections (their work is moti-

vated by online stock trading applications). Breeds with facets are a limited form

2Hailpern and Kaiser use a delightful ranching metaphor to describe their dynamic reconfigura-
tion constructs, complete with breeds, stalls, pens and herds.
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of dynamic abstract data type (described in Chapter 3) but without autonomy.

The work of Hölzle and Ungar with the Self compiler provides a slightly dif-

ferent approach to type-based restructuring in that it encompasses feedback [33].

The basic principle of their work is that type information gleaned from use is fed

back to the compiler to optimize certain aspects of the code, such as method dis-

patch. For example, the most often used method can be inlined at the site of the

call, leaving other methods to be found via dynamic dispatch. (Similar compilation

techniques are used in just-in-time compilation systems, such as the HotSpot Client

Compiler for Java [42].) In general, we can say that if code is data, then dynamic

information can alter the way code is handled. In this sense, all dynamic optimiza-

tion techniques can be viewed from the same perspective of DADTs as described in

Chapter 3 on code objects.

Dynamic algorithm selection

Dynamic adjustment has also been considered for algorithms. We mention a few

of these results even though they are not about structural reconfiguration because

they use the same underlying principle as the current work and further support

the notion of employing online observation of a process for its own refinement. In

general, this is known as use of a polyalgorithm, that is, a set of algorithms and

rules for choosing when to use which one.

A rudimentary example of dynamic algorithm selection can be found in the GNU

MP library [27]. Here, the same operation may use different algorithms based on

the number of machine words required to hold an operand and its type. Further-

more, how this choice is made is user-configurable, although made at compile time.

This is similar to the work described in Section 3.2.

More complex examples are found in the work of Armstrong et al. and Park et

al. [6, 57]. Armstrong et al. show how to alter an algorithm for a given task us-
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ing reinforcement learning at runtime; these changes are made to a binary (that

is, compiled) version of the program when the current algorithm is seen to be lag-

ging in performance. Park et al. present an expert system for choosing algorithms

for finding keys in a set with some guidance from the user on desired properties.

Code is synthesized to describe the algorithm which also resulted in a specific data

representation.

Long-term considerations

Most of the effort put toward dynamic reconfiguration addresses issues of efficiency

with respect to time. Gabriel and Goldman take a slightly different view [23]. They

assert that software must be more conscientious and take into account its environ-

ment. Specifically, they comment that software must consider long-term aspects

of its use, such as its installation and maintenance by becoming a collaborator in

its own future. In this sense, ZFS is more conscientious than Madhyastha’s pol-

icy changes since it addresses issues of administration. Gabriel and Goldman’s ar-

gument suggests that dynamic reconfiguration may be better suited for processes

characterized by long running times, possibly with periods of inactivity, such as the

use of interactive code generation in Chapter 4.

The ideas of Gabriel and Goldman have a direct influence on the methods de-

scribed in this thesis. Specifically, we take the notion of software being involved in

its own deployment and maintenance to include the notion of its development. The

constructs and techniques presented in this work explore their ideas of software as

a collaborator to aid in continuous redesign of the system. These considerations are

the impetus for using a dynamic framework as opposed to a set of static analysis

tools for the operation of the work presented herein.
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2.3 Program synthesis

The work described in this section is primarily about program synthesis and the ad-

justment of the program while under development. The techniques presented could

be used in a running system (and in some cases are) but the overhead involved is

likely too great, unless given sufficient time to stabilize.

Structural synthesis

An important effort in the synthesis of programs was introduced by Tyugu [78].

Tyugu derives programs from structural descriptions of the variables involved in

the computation and relationships between them. The specification of structure is

written in a logic language which formalizes the problem as a theorem in a form of

intuitionistic logic. Program synthesis involves proving the theorem and translating

the proof into a program, usually expressed in the lambda calculus. The approach

is referred to as the structural synthesis of programs (SSP) because it only relies

on structural information about the problem domain and produces a behavioural

specification for relations automatically. SSP has been used successfully in various

industrial applications [79].

It may be tempting to consider our work the compliment to Tyugu’s, given the

complementary terminology; however, this would be inaccurate. Part of the reason

for this is that we have not grounded our derivations in precise logical formulations.

Since information we use to infer structure is based on the semantics of existing pro-

gramming language constructs and the intent of the construct may be ambiguous,

we cannot guarantee correctness in our presented results. This is easily seen with

the results presented in Chapter 5.
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High-level synthesis

In hardware circuit design, a technique thematically similar to our methodology

has been developed termed high-level synthesis or — appropriately enough — be-

havioural synthesis [24]. To avoid potential confusion, we will refer to this synthesis

technique as high-level synthesis. High-level synthesis builds circuit designs from

algorithmic descriptions in a programming language above that of a hardware de-

scription language; typical input languages consist of C and VHDL. The program-

ming language enables the circuit designer to specify a circuit using behavioural

elements without concern for low-level structural details of circuit design, such as

timing data, resource allocation or module selection for various abstract operations

like addition.

As detailed by Singh et al., high-level synthesis has received considerable atten-

tion in the circuit design community, but still fails to produce designs as efficient as

those produced manually [71]. Part of this is because the code must be written in a

certain style to deal with syntactic variance in the expression of algorithms.

While there are certainly parallels between high-level synthesis and the current

work, there are key differences. The most obvious difference is that high-level

synthesis is intended to produce output in a different language from the source

language. The assumption in high-level synthesis is that both structure and be-

haviour are specified in the source language to the extent that another realization

of the behavioural aspects of the specification can be produced. As a result, dif-

ferent designs are found through various code transformation techniques applied

to the source language or some other intermediate form. The technique of high-

level synthesis is similar to that demonstrated in Chapter 4, where the description

of structure is synthesized from known elements. Our approach is more “active”

in the sense that the execution of the behaviour provides the structural elements;

high-level synthesis, as with many of the techniques described regarding automatic
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data structure selection, is primarily a compilation technique. (This does not pre-

clude feedback via evaluation of synthesized circuit designs or manual analysis, of

course. As an example, see Catapult C from Mentor Graphics [50].)

Generative programming

Program synthesis shares some qualities found in generative programming [16]. Pro-

gram synthesis seeks to produce programs in accordance with an abstract specifica-

tion describing some aspect of the desired program. Generative programming pro-

vides meta-programming facilities combined with code transformation procedures

for generating custom versions of abstractions. In relation to the current work, our

efforts are to provide abstractions that become specialized over time. In particular,

our efforts resemble that of active libraries, that is, entities that apply generative

programming techniques [76,81].

Aspect-oriented programming and open implementation

Our approach to behavioural synthesis could be seen as using one aspect of the

program to generate another, where an aspect refers to those in aspect-oriented

programming as put forth by Kiczales et al. [39]. They define an aspect as “proper-

ties that affect the performance or semantics of the components in systemic ways”

where a component is something cleanly captured as an object, procedure or other

language-level construct. In their examples, they use matrix algorithms as an ap-

plication, citing matrix representation (structure) and permutation (behaviour) as

aspects. If we take the application to be the act of programming, it is reasonable to

consider structural and behavioural elements to be separate aspects that are usually

woven together by the programmer. (Weaving is the act of combining the aspects

to make a program.) Thus, it may be more accurate to say that we synthesize a

program aspect with our technique, not so much a program itself.
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As a brief digression, we examine whether behavioural synthesis is itself a form

of aspect-oriented programming. According to Filman and Friedman, aspect-ori-

ented programming combines quantification of program statements with oblivious-

ness on behalf of the programmer regarding those quantifications [21]. While it is

debatable whether behavioural synthesis meets this requirement, our implementa-

tion does use many of the dynamic quantifications they mention.

Open implementation, also proposed by Kiczales [37], is a software design tech-

nique where modules are augmented with meta-programming constructs to control

the implementation. A Collection DADT (dynamic abstract data type) presented

in Chapter 4 works as a form of open implementation. Here, a Collection DADT

represents a module with a meta-interface that controls the underlying implemen-

tation based on use. The details of the implementation are partially hidden, but

manipulable.

We mention one other effort in this area: presentation extensions as described

by Eisenberg and Kiczales [18]. Presentation extensions are a way to change the

expressivity of a program based on how it is presented to the programmer, with

or without semantic extension to the language. Behavioural synthesis as presented

in this work could be realized as a form of presentation extension since it is more

suitable as a tool used in development and not in deployment.

Adaptive programming

A specific form of aspect-oriented programming and open implementation that our

work closely resembles is that of Lieberherr’s adaptive programming [43]. In adap-

tive programming, the goal is to make programs “structure-shy”, that is, avoid re-

lying on structure in the description of the behaviour. Thus, emphasis is put on

behavioural descriptions by decoupling them from structural elements. This is done

by making methods less dependent on class structure allowing for methods to rely
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only partially on a class descriptions. Lieberherr’s realization of adaptive program-

ming is known as the Demeter Method.

The primary intent of adaptive programming intersects greatly with our own;

however, adaptive programming has a much larger scope and a considerably dif-

ferent implementation in the Demeter Method. Adaptive programming defines an

entire software development methodology whereas we do not take behavioural syn-

thesis so far. Also, adaptive programming requires only that behaviour be partially

specified; we often rely on the full specification.

The Demeter Method extends the syntax of C++ for the specification of the

stages of adaptive programming. One way it does this is with object descriptions so

that classes can be derived from them [44]. This is similar to the work presented

in Chapter 5. The class derivation strategy takes concrete descriptions of objects

and factors out common attributes to come up with a suitable class hierarchy. The

fundamental difference with our technique is that objects are described before run-

ning the program and are not immediately used in the desired behavioural con-

text. In short, deriving classes from object examples using the Demeter Method is

a static derivation scheme using syntactic extensions that, while evolvable, is based

on structural descriptions.

Learning from examples

Providing example object descriptions in the Demeter Method or in the way pre-

sented in Chapter 5 is suggestive of Lieberman’s characterization of programming

by example [45]. The similarities are mostly nomenclatural though, since Lieber-

man’s work tries to generalize behaviour given example computations, but does not

focus on devising a structure for the computation.

Some methods for deriving structure from examples can be found in the works of

Hoff et al. and Winston [32,85]. Hoff et al. look to derive structure using logical rule
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descriptions and do so successfully in various cases. However, they acknowledge

their approach suffers from the need of the user to have a deep understanding of

the approach in order to use it effectively. We actively tried to avoid this problem

by looking to harness conventions so that the user can go about using our tool

in a usual development setting. Winston’s work argues that good descriptions are

required to obtain acceptable results, which supports the notion of assuming full

behavioural descriptions before attempting to derive structure, a requirement used

in Chapter 5.

Ignoring type definitions

The work presented in Chapter 5 provides a way for objects to be used in a pro-

gram without declaring their structure ahead of time. In effect, the same result was

achieved by Mishra and Reddy for abstract data types in ML-like languages [51].

Their approach uses a static type-checking over the program text to construct ab-

stract data type definitions for function parameters, although it is not necessary to

synthesize these type definitions. The key difference with respect to our work is that

their method relies on syntactic recognition of constructors, that is, functions that

create objects of a certain type whose names correspond to the descriptive name

given in a type definition; related constructors are grouped together to determine

the data type declaration. Our work in Chapter 5 cannot use this method without

relying on convention since Common Lisp does not have such syntactic markers.

(Regardless, the difference in type systems makes their technique cumbersome to

use in Common Lisp.)
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2.4 Development aids

The works discussed in this section fall across the categories described earlier in

different ways. In general, these works view the program as something that changes

over a period of time or as something that is immediately manipulated for the

purposes of helping the programmer develop the program.

Deriving program knowledge dynamically

In what is closely related to our work with respect to determining structural de-

scriptions, Guo et al. detail an approach to inferring the abstract data type of an

object through dynamic analysis [28]. Basic elements in the code are observed and

related to each other based on the operations performed on them. In their analysis,

observations are done at the binary level, thus interactions are restricted to the rudi-

mentary, namely arithmetical operations. Abstract data types are found by using a

union-find algorithm to relate objects; each object starts out as its own abstract data

type.

The most striking relation to our work is how this infers information that is

implicit in the program. The abstract data types found in their experiments are

grouped in ways that are not expressed directly in the program, such as two integers

used to hold the same kind of measurement. More tellingly, it infers structure from

behaviour, given rudimentary structures to start. It does this in a bottom-up fashion,

similar to the approach taken in Chapter 5.

Still, Guo et al. do not go as far as to relate abstract data types with each other,

nor do they attempt to determine the structure of aggregate types. Furthermore,

the objects observed are limited to what is discernible in binary representation of a

program; this design limitation is likely why the analysis is basic compared to ours.

Similar results have been achieved by Ernst et al. for finding program invariants
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using the Daikon dynamic analysis tool [19, 20]. The invariants are used to infer

properties about the program, including relations between data. The properties

reported by Daikon are mostly related to conditions that occur in the program, such

as the range of values a variable takes on. These derived elements of the program

wouldn’t necessarily be taken and written directly as code, but the methodology of

studying behavioural properties of the program guided our work.

KIDS and DTRE

The KIDS program development system [74] is a program transformation system

that provides the programmer with tools to turn specifications into running pro-

grams. One of the components of KIDS is DTRE, the Data Type REfinement sys-

tem [10]. DTRE allows types to be refined by correctness-preserving transforma-

tions, starting from abstract types with multiple realizations, such as sets and map-

pings. (In this sense, KIDS with DTRE is similar to SETL in how programs are

specified.)

KIDS and DTRE are concerned mostly with formal specifications. They do not

make extensive use of dynamic qualities of the code, although they stress specifica-

tion of behaviour over that of structure. DTRE supports semi-automatic selection of

data structures for variables and selection can be guided by annotations. In many

ways, the methodology is the same as optimization techniques used in the SETL

compiler.

While DTRE has similar goals to behavioural synthesis — that is, techniques

for the exploration of program designs and late binding of data representations —

it takes a considerably more formal approach. Refinement in DTRE is about fine-

tuning known types whereas we look to form a description of the type in the first

place.



28

A programmer’s apprentice

Work on a project to produce a Programmer’s Apprentice by Rich, Shrobe and Waters

relates to our work in that they attempt to use what a programmer does to intelli-

gently assist in program development [61,62,83]. Themes found in their work that

are used in the design of our methods are discussed here.

One of the principles of the Programmer’s Apprentice is that it is additive and in-

cremental; it does not interfere with regular activities and works mainly to augment

the programmer’s efforts by passively interpreting his intent. As such, its functional-

ity is optional. This is in contrast to the “do what I mean” approach taken by some

systems, such as the one found in the Interlisp Programming Environment [77],

where the system takes an active role in interpreting intent. We strove to use the

passive approach as much as possible in this work.

One of the key elements of the Programmer’s Apprentice is the use of clichés.

A cliché is a common structure or behavioural pattern used to describe a situation

that can be reused; it is essentially a kind of template with constraints. Waters cap-

tures clichés in a special format so that they can be edited and generate code with

his KBEmacs tool [83]. We have adopted a limited form of clichés by employing

convention (see Chapter 5). This prevents the need to represent them in a fashion

external from the source code.

Typed feature structures

An interesting approach from the field of architecture by Woodbury et al. demon-

strates a form of design space exploration similar to the class hierarchy derivation

work in Chapter 5 [89]. Woodbury et al. describe the use of typed feature structures

as a formal framework for design space exploration using an example of a simple

house layout. The framework involves mapping descriptions to structures, then re-
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fining the structure by refining the description. Descriptions are given in a language

that combine types with structures. Structures are generated based on the descrip-

tions, which can then be translated back into descriptions for further refinement. In

their example, they show how a general description of a basic house layout can be

used to generate different designs that are considerably more specialized.

The refinement process for typed feature structures is similar to the refinement

of class descriptions presented in Chapter 5. There, class structure is generated from

behavioural descriptions. The class structure can then be added to the program to

refine the program. Furthermore, different class structures are generated in order

to fit the behavioural description. Our work differs somewhat in that changes to

structure are made by altering the behavioural descriptions and not by explicitly

describing the structure.

Context-oriented programming

Context-oriented programming (COP) is an approach to programming that treats

context explicitly in the definition of a program [31]. This supplies a mechanism for

behaviour to be dynamically adapted to changes in context. For example, Costanza

and Hirschfeld demonstrate COP language constructs for Common Lisp that can

change class definitions based on layers [15]. Layers capture the notion of a specific

context and the definition of a class can be different within different layers. Context

is used frequently throughout the work in this thesis, although we do not explicitly

define layers as Costanza and Hirschfeld do; instead, the context is taken from the

environment of the computation. Nevertheless, the notion of behavioural changes

based on context is integral to the behavioural synthesis techniques presented here,

notably in Chapters 4 and 5.
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2.5 Summary

The works presented show that there have been a variety of ways that behavioural

elements of programs or processes are harnessed to influence structure. Most of

the approaches described make use of static descriptions. Those that use runtime

characteristics tend to use them as input to further static analysis. Our work makes

more of an effort to integrate evaluation with analysis, permitting closer interaction

with the process on the part of the developer.
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Chapter 3

Dynamic abstract data types

The first approach to behavioural synthesis we describe is a framework for defining

abstract data types, called dynamic abstract data types (DADTs)1. This chapter de-

fines DADTs, a way to use them in a program, analyzes their runtime overhead and

describes a way to reduce this overhead.

The benefit to DADTs over typical abstract data types is that instances of DADTs

can be configured to collect information about the context of their use and manage

their internal representation; operations for DADTs follow a protocol describing

procedures to facilitate such collection and management. In effect, DADTs act as

proxies for other objects, such as an object whose instances can use different im-

plementations that work with the interface defined for the type. This provides a

mechanism for objects to change their internal representation in order to choose

different algorithms for a single conceptual operation. Furthermore, DADTs afford

the opportunity for optimizations at the level of individual objects since each ob-

ject has an independent tracking mechanism. Section 3.1 describes DADTs and its

associated protocol.

In Section 3.2, an example of a DADT is presented that demonstrates how to de-

fine a DADT and describes an example implementation. The DADT is used for a set

data type whose instances adjust to the types of elements they hold. Additionally,
1The work in this chapter is based on a paper presented at the International Lisp Conference in

2007 [90], co-authored with Mark Daley and Stephen Watt.
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the DADT for sets demonstrates a simple example of a data type that supports the

union of two interfaces — that is, sets whose elements can be totally ordered and

those that cannot — and manages the disparity between them.

Lastly, in Section 3.3, we analyze the overhead of DADTs and present a way

to mitigate the overhead through a technique called stabilization. We then discuss

the shortcomings of DADTs and situations where they may be employed effectively.

Section 3.4 summarizes the results of the chapter.

3.1 Protocol

A high-level overview of dynamic abstract data types is given in Figure 3.1. In-

stances of DADTs are associated with measurements and actions as well as the

actual representation of the data. Code for monitoring objects is invoked by cer-

tain operations that have access to the internals of the instances, allowing it to take

measurements and invoke the actions associated with the instance. The actions

associated with the instance can use the knowledge base to make changes to the

actual data representation.

Recall that an abstract data type is an abstraction that defines objects based on

the set of operations available for those objects [46]. We call the set of operations

that define the interface to the objects the interface operations.

A dynamic abstract data type (DADT) is an abstract data type whose instances

contain a set of data objects that implement the structure necessary for use with the

interface operations as well as extra information. The set of contained data objects

is called the current representation of the DADT. Instances of DADTs are known as

DADT objects. An interface operation that operates on a member of the current rep-

resentation is known as an actual (interface) operation. Note that each member of

the current representation need not work with all the interface operations. The ex-
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Monitor Knowledge base

(f obj ...)

Actual data representation
Measurements
Actions

Figure 3.1: Overview of the DADT protocol used in a program.

tra information contained in a DADT is used for managing the mapping of interface

operations to members of the current representation.

The management of DADT objects is achieved by collecting information about

the use of the object and invoking actions when certain conditions arise. Informa-

tion collection and action execution take place when interface operations are per-

formed, that is, an operation from the interface for a DADT is executed and DADT

objects of the type designated by the DADT are passed as parameters. We limit the

investigation to interface operations because the work involved in tracking other

operations introduces much overhead for arguably little gain in information. Non-

interface operations do not take advantage of the internals of DADT objects and

thus, say little about how the structure of the object is used. While it is possible

to expand the contexts in which DADT object management can take place, such as

events outside of interface operations, that is not explored in this work.

Each interface operation is associated with a DADT. A certain subset of the argu-

ments passed to an interface operation are known as the significant arguments. The
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significant arguments are DADT objects that will be monitored or manipulated by

the interface operation. These arguments are indicated when interface operations

are defined.

An interface operation must perform three tasks: execute the expected function-

ality associated with the interface operation, supply some way for the significant

arguments of the interface operation to collect information about their use into ob-

jects called resources and provide an opportunity for the significant arguments to

react to situations using triggers. Additionally, the interface operation must obey

certain directives provided in the environment of the computation. These are de-

scribed below, followed by details on the control flow for the various stages of the

protocol.

Executing actual interface operations

DADT objects are meant to be effective realizations of data structures in a running

program. Thus, when an interface operation is performed on them, the opera-

tion must be executed in accordance with the expected semantics of the operation.

Depending on the members of the current representation, this may be as straight-

forward as delegating the operation to the members of the current representation

or it may involve a complex dispatching mechanism.

Proper execution also requires returning the proper values. In many cases, the

values returned by the actual operation can be passed through with no processing.

There is a special case, however, that must be handled: if the actual operation

returns a value that should be turned into an instance of a DADT object.

Suppose we have an abstract data type whose instances have type A with an

interface operation f whose type is f : A × A → A. We define a DADT for this

abstract data type whose instances are of type D and define an interface operation

fD for use with objects of type D. The implementation of fD employs f , using
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its return value, to prevent the need to re-implement the semantics of the actual

operation. However, without proper processing of the return value, the type of fD

is D × D → A. To accommodate for this, the DADT interface operation should

transform the return value into an object of type D.

Another special case follows from this. Again, suppose we have an abstract data

type A with a DADT D and an interface operation g : A → A. Furthermore, the

value returned by g is the same object that was passed to it with the internal state of

the object altered. That is, it preserves object identity but does not preserve value

equality. In the definition of the DADT interface operation gD, care must be taken

to preserve the identity of objects returned by actual operations.

Resources

A DADT object should collect information by making observations about aspects of

the program that pertain to the management of the DADT object. Thus, each DADT

is associated with a set of other objects called resources. Resources are simply data

stores for observations.

Two points in the execution of a DADT interface operation are designated for the

collection of information: before and after the actual operation is performed. These

are known as the initial and final measurement stages, respectively. Designating two

stages for information collection provides a mechanism for measuring change with

respect to some resource. The canonical example is time: to measure the time

elapsed by an operation, we must note when the operation started and when it

finished.

As the example of time demonstrates, it may be necessary for information to be

communicated from the initial measurement stage to the final. Such information is

known as an intermediate resource value.
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Triggers

In addition to resources, each DADT object is associated with a set of functions

called triggers. A trigger is used to detect conditions (if necessary) and react to them

by performing some set of actions. When a trigger on a DADT object is executed by

the protocol, we say the trigger has been run. A trigger may or may not affect the

state of the object’s current representation at the time it is run. When a trigger has

a direct effect on the current representation it is called active, otherwise it is called

passive. Note that this is a dynamic designation and not a static one. A trigger may

be active in some situations and passive in others.

Triggers have access to the context of the interface operation being performed.

The context consists of the DADT object the trigger is associated with, the interface

operation being performed when the trigger was run and the arguments passed to

the interface operation.

There are three important points to consider when running triggers:

• dependencies between triggers;

• order of execution;

• the application of triggers from multiple DADT objects within a single inter-

face operation.

To deal with dependencies between triggers for a single DADT object, we stip-

ulate that triggers must signal whether they are active or passive after performing

their action. If a trigger signals that it is active, no further triggers in the set of

triggers are executed. (This is analogous to the evaluation of a series of if-then-else

clauses.) Additionally, the values returned by the triggers that have been executed

so far are provided to each trigger so that triggers can communicate down the chain.

In the case of execution order, a sorting mechanism is provided to order the
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triggers if necessary. Once sorted, triggers are run in succession until an active one

is found, if any.

Triggers, as defined so far, are associated with a single DADT object and are

ill-suited to cooperation with other DADT objects. Consider the following scenario:

Two DADT objects O1 and O2 are passed to a single interface operation such that

their current representations must be synchronized in order to complete the opera-

tion. It is possible that the triggers for O2 will alter its current representation to be

different than that of O1’s, thus preventing the correct execution of the operation.

The isolation of triggers makes it difficult to handle inter-object communication.

To solve this problem, we further subdivide the collection of triggers into local

triggers and class triggers. Local triggers are associated with individual DADT ob-

jects and are only used when an interface operation has one significant argument.

Conversely, class triggers are associated with the class of DADT objects and are used

when an interface operation has two or more significant arguments. The triggers

themselves are not different except in what is processed; both kinds of triggers are

called in the same manner. However, class triggers will have access to all signifi-

cant arguments whereas local triggers will only have access to the single significant

argument they are associated with. Although the choice of which set of triggers to

run is mutually exclusive, class triggers have access to, and can run, local triggers.

The opposite case is also possible. Using class triggers provides a way for custom

protocols to be used with respect to communication between DADT objects.

Finally, we note that resources may depend on the state of the current represen-

tation. For example, a resource may be tracking the number of operations between

changes to the current representation. When a trigger indicates it is active, the re-

sources associated with a DADT object are adjusted, if necessary. This is known as

resetting the resources.



38

Directives

Directives are a general mechanism by which DADT objects can communicate with

each other as well as control the protocol. They facilitate shared “experiences” by

DADT objects to guide triggers and various optimizations.

Directives are found in directive environments. A directive environment consists

of bindings of names to values. There are three kinds of directive environments used

in the protocol: global, local and class.

Global The global directive environment is, as the name implies, global to the

entire computation and unique. All program elements can add and remove

bindings from the global directive environment. If a binding is requested from

the global directive environment and no matching binding is found, a default

null value is returned.

Local Local directive environments are contained within DADT objects. It is possi-

ble for other elements of the program to add and remove bindings from the

local directive environment of a DADT object. If a binding is requested from a

local directive environment and no matching binding is found, the request is

forwarded to the global directive environment.

Class Each DADT has its own class directive environment. Class directive environ-

ments have the same characteristics as local directive environments, save for

where they are found.

There are three directives that are always present in the global directive envi-

ronment: RUN TRIGGERS, MEASURE INITIAL and MEASURE FINAL. By default, they

are all bound to the value true. The standard directives control whether certain

stages of the protocol are executed, namely the running of triggers, the initial mea-

surement stage and the final measurement stage, respectively. Collectively, these
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stages are known as the extra stages, so called because they represent extra work

over that of the work for the actual interface operation and can be disabled.

Control flow

The precise order of operations for the protocol is not defined outside of certain

restrictions. One restriction was given earlier in the discussion on resources, namely

that the initial measurement stage must be run before the actual interface operation

and the final measurement stage after. A further restriction is that triggers must be

run either before the initial measurements stage or after the final measurement

stage. This is to prevent problems with measurement of changes, specifically time.

Another constraint on the flow of control pertains to conditional execution of

certain stages of the protocol, specifically, running triggers, and the initial and final

measurement stages. Each of these stages is executed only when the corresponding

standard directive is bound to true in the appropriate directive environment. If the

DADT interface operation has exactly one significant argument, the local directive

environment of the significant argument is used to lookup the necessary directive.

When there are two or more significant arguments, the class directive environment

of the DADT the operation is associated with is used.

The default flow of control is shown in Figure 3.2. The solid lines are the flow of

control and the dashed lines represent the communication of information between

different stages.

3.2 Example

To demonstrate the use of dynamic abstract data types, this section presents a sim-

ple DADT for a set data type. The Set DADT will define objects that adjust their

current representation based on the configuration of the types contained within.



40

Run triggers

Initial measurement

Final measurement

Actual operation

Intermediate
resource
values

Return
value

Figure 3.2: The default control flow of the DADT protocol. Solid lines represent
the flow of control and dashed lines represent communication between
stages.

The goal of the Set DADT is to define a set data type that does not require the

programmer to be sensitive to the parameters defining a set. Instead, a set will

adjust its internal configuration based on its contents. Extra operations will be

supported in the event that the contents support them, such as ordering statistics

when the elements make up a set with a total order.

Sets require a membership test to operate properly, meaning some definition of

equality must be provided. A common approach to handling this is to associate an

equality function with each set object. This can be problematic if different types

of elements are to be put into a set. For example, in Common Lisp the equality

function eql will compare characters in an expected fashion: ‘a’ is the same as ‘a’.

However, it may consider two instances of the string literal “hello” to be different2,

even though it is normal to think of them as the same. Proper use of a set from

2This is because eql tests for object equality and it is implementation dependent how string
literals are allocated.
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the programmer’s perspective means knowing how it was created to manage the

different types that may be present, possibly by defining a custom equality function.

To assist the programmer in ignoring such details, the Set DADT is furnished

with a knowledge base that associates types with equality functions that provide

for usual expectations, such as assuming that two strings with the same contents

are to be considered the same. Furthermore, a way of identifying the type of an

object in accordance with this baseline knowledge is provided through the function

type-of*. Details of the knowledge base will be provided as necessary throughout

the discussion.

Defining the Set DADT is achieved with the following steps:

1. Determine what must be observed in set objects and define resources to do so.

2. Determine the actions that must be taken to maintain expected behaviour of

set objects and the conditions under which these actions must take place, then

define triggers capturing this information.

3. Define a class for Set DADT objects.

4. Define the interface operations that implement the protocol.

The interface for the Set DADT contains the usual set operations in addition to

some statistics operations, such as nth-smallest and nth-largest. To keep track

of the types of elements found in a set, the only operations that can change the

contents of a set are insert-element, delete-element and clear.

Lastly, note that the current representation of a Set DADT object only ever has

one member; we do not manage multiple representations in parallel. Of the collec-

tion of representations available for use in the current representation, all support

the usual set operations and some also support ordering statistic operations. The

lone member of the current representation is changed to meet the expectations of
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the operation, if possible. For example, if the operation nth-smallest is executed

on a Set DADT object where the only member of the current representation does not

support the operation and the contents can be restructured to support that opera-

tion (perhaps the contents consist of only integers), then the member of the current

representation is converted to a structure that does support nth-smallest. Thus,

there is no need to maintain multiple set structures to implement the required in-

terface operation semantics; the elements of the set can be transfered to another

structure, replacing the current one.

Defining resources

Recall that Set DADT objects must properly manage membership tests and support

ordering operations when possible. These properties are dependent on the types of

the elements in a set. In addition to tracking the types of elements in a set, we will

also track the number of elements of each type so that we know immediately when

a type is no longer present. Thus, we have to track when elements are added and

removed from a set, which amounts to watching three operations (insert-element,

delete-element and clear).

Defining resources requires that we define a class for the resource and indi-

cate how to measure it. This class will be called type-counter. Measurement is

achieved by defining methods on the generic functions measure-resource-initial

(initial measurement stage), measure-resource-final (final measurement state)

and reset-resource (resetting resources). In this example, we only require an

initial measurement.

Example code for taking the initial measurement is given in Figure 3.3. The con-

text of the measurement is provided through the arguments passed to the method.

The first argument is the resource itself, the second is the DADT object being op-

erated on, the third is the interface operation being performed and the fourth is a
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(defmethod measure-resource-initial

((tc type-counter) set (op (eql ’insert-element)) args)

(let ((elem (args-required args 1)))

(unless (member-p set elem)

(increment-counter tc (type-of* elem))))))

(defmethod measure-resource-initial

((tc type-counter) set (op (eql ’delete-element)) args)

(let ((elem (args-required args 1)))

(when (member-p set elem)

(decrement-counter tc (type-of* elem)))))

(defmethod measure-resource-initial

((tc type-counter) set (op (eql ’clear)) args)

(clear-counter tc))

Figure 3.3: Code to take the initial measurement of the type-counter resource for
use with the Set DADT.



44

structure containing the arguments passed to the interface operation. The function

args-required returns the second required argument (indexing starts at 0) which

is the element to be inserted or deleted. We then check to see if the element is

present or not and adjust the counter for the type of the element accordingly. For

simplicity, code to verify the element was inserted or deleted has been omitted,

although it may not be necessary to second-guess the actual interface operation.

Defining triggers

Defining triggers for DADTs can be complicated because the conditions that we want

to detect may be intuitive, but difficult to capture programmatically. In the case of

the Set DADT, the knowledge base provides the “fuzzy” information used to detect

the conditions we need. Thus, we discuss the organization of that information

before describing how the triggers will be defined.

The knowledge base associates types with equality functions and ordering func-

tions. Initially, only the standard equality functions3 and standard types are in-

cluded, although other types can be added. The ordering functions define the natu-

ral ordering on the elements of their associated type. Querying the knowledge base

for an equality function consists of providing two sets of types T, T ′ and an equality

function f . The knowledge base searches for an equality function f ′ such that if

t ∈ T ∩ T ′ and e1, e2 ∈ t then f(e1, e2) = f ′(e1, e2). That is, the new equality func-

tion preserves the semantics of the previous equality function. A similar querying

procedure exists for ordering functions. Thus, the knowledge base provides a way

to determine what equality functions are suitable for sets of types.

As an example, suppose T = {character}, T ′ = {character, string} and

f = eql. The knowledge base could return f ′ = equal since equal behaves the

same as eql for characters and provides the expected behaviour for strings. This

3eq, eql, equal and equalp.
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functionality allows triggers to determine what the configuration of a set object

should be when elements are added or removed.

Note that the semantics of f ′ are dependent on what is in the knowledge base.

Consider the case of equality functions for strings. The functions equal and equalp

behave differently for strings (the former is case sensitive, the latter is not); how-

ever, it is legal for the knowledge base to return equalp in the previous example,

even though this would result in different semantics for the program. The intention

of the knowledge base is to describe usual behaviour for use in the program, but it

must be configured to provide the desired semantics.

Triggers themselves are functions that take four arguments: the DADT object

the trigger is associated with, the interface operation the trigger is being called

from, a structure containing the arguments passed to the interface function and a

structure containing the return values of all previously run triggers. It must return

two values, the second of which is a Boolean indicating whether the trigger was

active or passive.

Recall that the insertion, deletion and clearing operations can affect the current

representation of a Set DADT object. All of these operations present situations

that we must write triggers for, although the deletion and clearing operations are

analogous. We must also consider the case of performing an interface operation

asking for ordering statistics.

For insertion, we define a trigger that detects the insertion of new types of el-

ement and adjusts the current representation to accommodate the new type. This

may be as simple as changing the set’s membership test function, but may involve al-

locating a new structure and transferring the elements. Performance considerations

are also taken into account. If the trigger must alter the current representation with

a new structure, it strives to choose the most efficient one given the parameters.

Practically speaking, this amounts to choosing a native hash table representation
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(defun compaction-trigger (dset op args collected)

(when (compaction-condition-met-p dset op)

(compact-set dset)

(values nil t))

Figure 3.4: A simplified version of the trigger for insertion

whenever possible since in most cases, hash tables provide the best performance. In

the case of elements that have incompatible testing functions, the set is partitioned

based on testing functions and different structures are used for each partition.

When deleting elements, we are only concerned with the case when the number

of elements of a specific type reaches zero. In this case, the structure of the set may

be amenable to compaction to undo changes made earlier. Care must be taken when

applying such changes since they must be done after the actual interface operation

— to do otherwise might affect the semantics of the actual interface operation. This

will be addressed more fully when defining the interface operations.

Handling ordering statistics operation is straightforward: If the types found in

the current representation support an ordering, change the structure in the current

representation to one that supports the ordering and perform the operation. The

structure is only changed to something else when an element of a type that does

not work with the ordering function is inserted.

The definition of the triggers is involved and a full code listing would be of little

value because most of the code involves the particulars of choosing an appropriate

structure and changing the structure; it is specific to the particular implementation.

A simplified version of the trigger for compaction can be found in Figure 3.4.
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(define-dadt-class dset ()

()

(:local-triggers insertion-trigger

compaction-trigger

orderable-trigger)

(:resources type-count)

(:default-rep unordered-set))

Figure 3.5: The Set DADT class.

Defining the DADT class

DADT classes are classes that provide the necessary information for use with the

DADT protocol. The implementation used in this example provides a construct

define-dadt-class that extends the usual class definition mechanism (defclass)

to define DADT classes.

The DADT class definition for the Set DADT is found in Figure 3.5. It defines a

class dset whose instances will be created with no slots, three local triggers and a

single instance of type-count making up its resources. The default representation

for any instance of dset will be an instance of unordered-set. This makes up the

current representation for the instance when it is created.

Defining the DADT interface operations

While DADT classes provide information for the protocol, DADT interface opera-

tions actually execute the protocol. The definition of a DADT interface operation

is done with the define-dadt-operation construct. It provides many options for

defining functions that implement the protocol in addition to using reasonable de-

faults to minimize code required to specify an operation.

DADT interface operations are defined as methods on generic functions. (The
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(a) (define-dadt-operation member-p dset ((set dset) elem))

(b) (define-dadt-operation insert-element dset ((set dset) elem)

(declare* (returns (self set))))

(c) (define-dadt-operation delete-element dset ((set dset) elem)

(declare* (manual t))

(measure-initial)

(let ((val (delete-element (dadt-rep set) elem)))

(measure-final)

(run-triggers)

val))

Figure 3.6: Example DADT interface operations for the Set DADT.

specification of a DADT interface operation is very similar to defmethod.) Some

examples can be found in Figure 3.6. Each DADT operation must specify the name

of the operation, what DADT it is associated with, the arguments, an optional set

of special declarations and an optional body of code. By default, arguments spe-

cialized to the DADT associated with the operation are taken to be the significant

arguments. In the examples, the set argument specialized to the class dset is con-

sidered to be the significant argument for each operation.

If the body of the operation is omitted, code is generated to execute the protocol

(see Figure 3.6a). This includes properly saving and passing intermediate return

values in the measurement stages and handling the return value. The body of the

operation can be provided directly in which case local functions that implement

various stages of the protocol are provided.

Returning the proper value(s) must be done carefully. The actual operation may

return the element of the current representation that was passed to it, in which case
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the current representation should be updated with the potentially altered value.

Another possibility is that one of the returned values must transformed into a DADT

object – this may happen when the interface operation creates new instances of the

element of the current representation passed to it. This is can be seen in Figure 3.6b

which specifies that the argument set is returned as the first (and only) value.

As mentioned above, the deletion operation should run its triggers after the

actual operation. This is accomplished by the definition in Figure 3.6c. The function

dadt-rep returns the current representation of a DADT object. (Recall the current

representation of the Set DADT is a single object, so it constitutes all of the current

representation.) The special declaration indicates that the body of the function is

provided manually.

Discussion

We have defined a Set DADT that provides the programmer with a way to ignore

details about the parameters defining set objects and rely on these parameters to

reveal themselves dynamically. Since the structure is dependent on these parame-

ters, this permits the structure to be determined by behaviour and delays the choice

of structure until runtime.

Another way to use the Set DADT would be to use multiple implementations

in the current representation and perform each operation on every member. This

would provide for profiling of each implementation to see which was the most ef-

ficient with respect to some resource. If choosing the most efficient representation

is the goal, then this approach is feasible, if not potentially resource-heavy when

done for every object. Compared to a single implementation in the current repre-

sentation, use of multiple implementations may be more accurate due to the ability

to make more accurate measurements.

That being said, it does not help much with respect to the goal of the Set DADT,
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which is to alleviate the programmer from the need to parameterize the set object.

In this case, multiple implementations do not help much because reconfiguration

may still be necessary. For example, suppose the only two implementations are

a hash table and a balanced tree. If integers and characters are entered into the

set, the balanced tree cannot be used and thus, should be eliminated. However,

if the hash table gets to a state where it contains only integers and it is passed

to an ordering statistic function, it may be beneficial to convert it into a balanced

tree. This series of changes is very similar to what would happen with a single

implementation.

The Set DADT provides some initial insight into the potential uses for behavioural

synthesis. Set DADT objects are, to some extent, an abstraction on conventions.

Certain common configurations are captured by the knowledge base and leveraged

by the objects. This prevents the need to fully describe objects in the code in some

circumstances. In a sense, some of the responsibility for object definition is shifted

to the runtime and away from the programmer.

3.3 Optimizations

Dynamic abstract data types present many opportunities for runtime adaptation and

profiling, but incur much overhead due to the execution of interface operations.

This section demonstrates the approximate cost of using the DADT protocol and

some simple optimizations to alleviate that cost. The results in this section are

based on the implementation of the DADT protocol outlined in Section 3.2.

In approximating the cost of DADT use, it should be made clear that the cost is

dependent on the triggers and resources associated with DADT objects. DADTs are

highly configurable — down to the level of individual objects — so it is impossible

to make accurate predictions about the upper bound on their operating costs.
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A universally applicable configuration for DADTs is the empty configuration, that

is, a DADT with no resources or triggers associated with its class or its objects. The

current representation has only one member, minimizing the complexity associated

with applying actual interface operations. In effect, the DADT becomes an elaborate

wrapper for an existing data type. This configuration provides a minimum operat-

ing cost and will provide an impetus for other optimizations, specific to particular

dynamic ADTs.

Recall that directives play an important role in the protocol in that they dictate

whether parts of the protocol are executed or not. By setting the standard directive

to false, it is disabled for DADT objects within the scope of the directive in which

it is set. The default situation is that the standard directives are set to true in the

global directive environment. However, lookup still proceeds from either the local

directive environment or the class directive environment to the global. Therefore,

the protocol can be made faster — even if it is still enabled — by setting the stan-

dard directives to true in the scope the lookup is initiated from. This means that

any measurement of execution overhead must take into account the values of the

standard directives at different scope levels in the directive environment.

All tests that follow were run on a 17” MacBook Pro running Mac OS X 10.5.3

with a 2.16GHz Intel Core Duo processor. The Common Lisp implementations used

are International Allegro CL Enterprise 8.1 (ACL)4, Steel Bank Common Lisp 1.0.17

(SBCL)5 and GNU CLISP 2.43 (CLISP)6.

Measuring overhead

Measuring the overhead will be done by defining a simple ADT called fnum that

is a wrapper for numbers. Two operations are defined independent of each other:

4http://www.franz.com/products/allegrocl/
5http://www.sbcl.org/
6http://clisp.cons.org/

http://www.franz.com/products/allegrocl/
http://www.sbcl.org/
http://clisp.cons.org/
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(defmethod succ ((x fnum)) (1+ (val x)))

(defmethod add ((x fnum) (y fnum)) (+ (val x) (val y)))

(defclass fnum ()

((val :initarg :val :initform 0 :accessor val)))

(define-dadt-class dnum ()

()

(:default-rep fnum))

(define-dadt-operation succ dnum ((x dnum)))

(define-dadt-operation add dnum ((x dnum) (y dnum)))

Figure 3.7: A simple number ADT and DADT for measuring overhead

successor and addition. Both return Lisp numbers and do not alter their internal

state nor create new instances of the data type. A DADT is defined for fnum with the

empty configuration called dnum. Code for these data types is found in Figure 3.7.

Timing data is obtained by running each interface operation one million times

on the same parameters with code similar to the following, where t is either fnum

or dnum:

(loop with x = (make-instance ’t)

repeat 1000000 do (succ x))

When t is dnum, the directive environment is set up appropriately before the code is

evaluated. Two parameters are required for the addition operation, in which case

the x is used for both parameters. All code is compiled with the default compiler

settings. These settings have the same settings for safety, space and speed, varying

only in their debug settings.

Table 3.1 shows the execution overhead of the DADT protocol for interface oper-
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Standard directives ACL SBCL CLISP
Local Class Global
null — true 5.0 4.7 23.8
null — false 1.7 1.4 6.7
true — — 3.2 2.4 19.8
false — — 0.6 0.1 4.9
— null true 7.6 8.3 36.7
— null false 1.5 2.1 8.5
— true — 7.6 7.8 35.5
— false — 1.3 1.5 7.2

Table 3.1: Execution overhead of the DADT protocol given in microseconds.

ations with the standard directives found in the various scopes for three Lisp imple-

mentations. The times are given in microseconds. An entry of null for the standard

directives means the directive environment in the given context has no entry for

the standard directives, thus forcing lookup in the next directive environment. An

entry of ‘—’ means the directive environment is never consulted.

The data shows that the overhead has potential to be significant over time. Per-

haps more importantly, however, it shows that the overhead can be greatly reduced.

When the extra stages are disabled, the overhead is a function of the cost of looking

up the standard directives and the implementation of the DADT interface operation.

This suggests that the overhead incurred by the protocol can be kept constant if the

extra stages — the running of triggers, the initial measurement stage and the final

measurement stage — are not executed.

Stabilization

Given that local and class directive environments are accessible by other elements

of the program, we can define triggers that bind the standard directives to false

in these environments. This would facilitate optimizations for specific objects and

operations that manifest themselves dynamically.

Disabling the protocol via standard directives for individual DADT objects or
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ACL SBCL CLISP
compute-s-prime* 0.49 0.40 0.87
compute-s-prime 3.06 3.08 11.21

Table 3.2: Performance of functions to compute S ′, given in seconds.

classes of DADT objects is called stabilization; it can be useful when enough is

known about the object’s structure to maintain it without requiring attention. If a

reasonable predication can be made about the object’s future based on its history,

then we can effectively render the object inert with respect to the protocol. De-

termining the situations when to stabilize is dependent on the nature of problem

in which the DADT is being used. Thus, creating general optimizations for stabi-

lizing in specific directive environments is not undertaken in this work. However,

to demonstrate the possibilities of this optimization approach, we present a basic

programming problem with a solution using the Set DADT from Section 3.2.

The problem is as follows. Given a file containing numbers and strings (evenly

distributed), create a set S of the elements in the file, then compute S ′ where S ′ =

{x|x is a string ∧ |x| ∈ S}. Two solutions to the problem are provided in Figure 3.8.

The function compute-s-prime uses the Set DADT; compute-s-prime* uses the

underlying set structures that the Set DADT uses7. Note that two sets must be

created to hold the different types in compute-s-prime* because the membership

test required for strings and numbers is different, making the code more complex.

The performance of the functions are given in Table 3.2. Times are given in

seconds and the file contained one hundred thousand items, not necessarily distinct.

The same input file was used for all tests.

The overhead of the triggers and resources of the Set DADT is apparent in the

data. As defined, the Set DADT has only one resource per set object and three

7The representation is taken from Gary King’s CL-Containers package. See http://common-
lisp.net/project/cl-containers/

http://common-lisp.net/project/cl-containers/
http://common-lisp.net/project/cl-containers/
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(defun compute-s-prime (file)

(let ((s (make-dset)))

(ignore-errors (loop (insert-element s (read file))))

(filter s #’(lambda (e) (and (stringp e)

(member-p s (length e)))))))

(defun compute-s-prime* (file)

(let ((str-set (make-set ’associative-array :test ’equal))

(num-set (make-set ’associative-array :test ’equalp)))

(ignore-errors

(loop for elem = (read file)

if (stringp elem) do (insert-element str-set elem)

else do (insert-element num-set elem)))

(let ((f (make-set ’associative-array :test ’equal)))

(iterate-set str-set #’(lambda (e)

(when (member-p num-set (length e))

(insert-element f e))))

f)))

Figure 3.8: Functions to compute S ′
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triggers. With only two set objects created (one object is created by the filter

function) and noticeable overhead, it is easy to see that a program with many set

objects is likely to perform very poorly. This suggests that stabilizing set objects

would be beneficial.

In defining a trigger for stabilizing DADT set objects, we will take into account

functional programming style. Assuming the basic notion of functional program-

ming is used — that is, new objects are created when necessary instead of existing

objects being changed — then we can expect deletion to be rare. Furthermore,

consider the mechanics of the compaction trigger described earlier, which reacted

to deletion operations. If the compaction trigger is not used, it does not affect the

semantics of the structure. That is, by ignoring deletions, the structure of the set

still supports operations properly. Given that insertions will make up the vast ma-

jority of operations and that the situations presented by deletions can be ignored,

we focus solely on insertion operations.

The insertion trigger is sensitive to the types of the data elements. We argue

that we can make a reasonable guess about the future of a set object given some

number of insertion operations. Suppose we anticipate a maximum of n types to

be contained in a set object at any given time. If x insertions are performed on the

object and there is a 1/n chance for each of the n expected types to be inserted, then

there are nx possible sequences of insertions, where each element of the sequence

is a type. If x is large enough, the chances of seeing all n types in a sequence of

insertions will be very close to 1.

In the case of the S ′ problem, we only expect to see two types. In any sequence

of x insertions, there are only two configurations in which only one type appears:

when all the types are the same. Thus, the probability of seeing both types is

2x − 2

2x
= 1− 2

2x
= 1− 1

2x−1
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(defmethod measure-resource-initial ((res call-counter) rep op args)

(when (eql ’insert-element op) (incf (counter res))))

(defmethod reset-resource ((res call-counter))

(setf (counter res) 0)

res)

(defun stability-trigger (dset op args collected)

(with-resources ((ccount call-counter))

(dadt-resources dset)

(when (<= (or (lookup-directive :stability-threshold)

most-positive-fixnum)

(counter ccount))

(enact dset ’(dadt-protocol nil))

t)))

Figure 3.9: A trigger for the Set DADT to stabilize set objects

If we choose x = 16 we get a probability of 0.9999695. Since the file itself is ran-

domly generated using the random number generation scheme of the Lisp imple-

mentation, this suggests the distribution of types in the files is even. Thus, we can

expect to see two different types in any sequence of sixteen elements processed,

resulting in a change in the current representation. Therefore, we will adjust the

Set DADT to stabilize set objects if no changes have been made to the structure of

the current representation for sixteen insertion operations.

Code defining a resource and a trigger to to do this is given in Figure 3.9. Note

the reset-resource is used to reset the counter in the event the structure in the

current representation changes. The macro with-resources extracts the resource

of type call-counter from the resources of the set object and binds it to ccount.
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ACL SBCL CLISP
compute-s-prime* 0.49 0.40 0.87
compute-s-prime 3.06 3.08 11.21
compute-s-prime with stabilization 0.73 0.62 2.62

Table 3.3: Performance of computing S ′ with a stability trigger, given in seconds.

The call to enact adjusts the local directive environment of the set object and binds

all the standard directives in the environment to nil (false).

The efficacy of the trigger is shown in Table 3.3, which is the data of Table 3.2

with the additional data from running compute-s-prime with the stability trigger.

The data was obtained by running the function on the same input file used to mea-

sure overhead, as described above.

We can see that the stability trigger drastically reduced the running time of

compute-s-prime although it still takes between 1.5 and 3 times longer than compute-

s-prime*. This suggests that stability triggers are useful in situations where perfor-

mance of DADTs is a consideration. However, defining effective stability conditions

may require some knowledge of the input. In the example, we took advantage of

the fact that we knew there were only two input types defined.

The data indicates that stability triggers are probably most useful on long-lived

objects and of limited use for many individual objects due to the excessive overhead.

Managing objects at the individual level at runtime is interesting in some cases, but

it is more likely that we want to use the profiling capabilities afforded by DADTs to

learn something about a collection of DADT objects and apply it to existing code.

Given the overhead of DADTs at the level of individual objects and difficulty in writ-

ing general stability triggers, DADTs may be better realized as meta-programming

tools used in development. The code generated by the constructs could be used to

specialize the program, eliminating the use of the DADT.
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3.4 Summary

We have described dynamic abstract data types, an abstract data type whose in-

stances can monitor their usage and adjust their representation taking into account

context. This is done by augmenting the instances of the type with metadata and

enabling the interface operations for the type to access it and act on it. The use of

DADTs was described in the form of a protocol that imposes certain restrictions on

how DADTs must behave.

This was followed by a simple demonstration of a DADT for a set data type.

Components of the Set DADT were defined in accordance with the DADT protocol

and the implementation was analyzed. The analysis showed that there is consid-

erable overhead in the use of DADTs. We then showed one way of reducing the

overhead by disabling the protocol when certain situations arise. However, this

approach tends to be sensitive to knowledge of the input. The conclusion is that

DADTs are likely effective for dynamic environments where reflection is used to

collect information about a group of related objects and provide information about

them so that specialized versions of the program can be produced, eliminating the

DADT from the program.
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Chapter 4

Specializing types and operations

This chapter demonstrates the utility of DADTs defined in the previous chapter by

defining a type for collections that represents the union of other types whose in-

terfaces intersect1. Thus, the application of an operation may be ambiguous. Such

ambiguity is introduced deliberately to provide for a single abstraction that encom-

passes a wide variety of structures and operations. As a result, behaviour specifi-

cation can focus on manipulating data instead of creating structure to manipulate

data.

In particular, if an operation on a collection is ambiguous, the ambiguity is re-

solved interactively. When the ambiguity is resolved, the context of the execution

is remembered. After execution has finished, the contexts are used to generate spe-

cialized versions of collections. The novel aspect of this specialization is that they

are based on location within the source code. Furthermore, the code generation is

done interactively so that it can be approved before replacing elements of the pro-

gram. The result is that we have a code generation scheme that does not involve

explicit source code annotations.

Section 4.1 describes a way to specify program locations, which are used exten-

sively for the specialization of operations. They provide a mechanism for connec-

tions to be made between the text of the program and the runtime.
1The work in this chapter is an extension of a paper presented at the 5th European Lisp Workshop

at ECOOP 2008 [91], co-authored with Mark Daley and Stephen Watt.
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A DADT for collections is described in Section 4.2. Code generation based on

the specializations obtained through a Collection DADT is described in Section 4.3.

Section 4.4 describes an advanced version of a Collection DADT that captures a

different context to generate more specific code. A summary of the results is found

in Section 4.5.

4.1 Lexical place identifiers

The context in which an operation takes place is partially defined by where in the

code the operation occurs. Here, location refers to a location in the program text.

Lexical place identifiers are used in contexts to identify source code expressions.

A lexical place is an expression in the program text. A lexical place identifier (LPI)

is a unique label for a lexical place. If two LPIs are the same, they denote the same

expression in some program. Note that two expressions with the same contents

— that is, the string representation of the expressions have the same characters in

the same order — could have different lexical place identifiers. Lexical places are

subdivided into two classifications: use places and creation places.

A use place designates a place in which an object is passed as an argument to a

function. For example, if the form (f a) has the LPI x, we would say that a is used

at lexical place x. Note that this excludes f from the definition, since f is not an

argument.

Creation places are lexical places that signify the application of a distinct func-

tion that returns objects of a specific type. Put plainly, creation places are places

that return values of interest to our analysis. The idea is that objects created at a

designated place are related by the fact they were produced by the same expression.

Objects can be tagged with their creation place to create groupings that are finer

than that ascribed by their designated type, but coarser than individual objects.



62

(a) (let ((arr (make-array 5)1))

(loop repeat 5

do (vector-push (random 100) arr)2)

(values arr (count-if #’evenp arr)3))

(b) (defun wrapper () (make-array 5)1)

(mapcar #’make-array (list 5 10))2

Figure 4.1: Examples of creation and use places.

For an object O, we denote that object tagged with a creation place p as Op.

The set Tp consists of all objects tagged with creation place p and is known as the

creation type p. We say that an object created at place p is of type Tp. The set Up

is the set of use places of which objects of type Tp are used during the execution of

the program; it is used in the analysis of a Collection DADT to generate code.

An example is provided in Figure 4.1a. We’ll consider make-array to be a des-

ignated function for the creation of objects that are of interest. The lexical place 1

marks the form that is the application of make-array and is, thus, a creation place.

The type of objects created at place 1 are arrays, but also are of creation type 1

or T1. Lexical places 2 and 3 mark the use places of the program. The forms are

function calls whose arguments are of interest. In this example, U1 = {2, 3}.

A consequence of treating creation places as types is that type becomes an in-

herent property of the code describing the behavioural aspects of a program; creation

places assert that objects created at the same place are considered to be the same

type. This makes the placement of creation places important for differentiating

between types and can lead to unintended type classifications.

For example, Figure 4.1 (b) contains two examples of creation types at a higher

level of abstraction than may be desired. Creation place 1 occurs within the function

wrapper. Thus, any call to wrapper will return an object of type T1. If wrapper is
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used throughout the program instead of make-array, all the array objects will be

considered to be the same creation type. (This problem is alleviated if wrapper

is made to be the designated function for the creation of arrays.) Creation place 2

demonstrates issues that can arise from using a designated function as an argument.

Since the form calls make-array, we designate it as a creation place. However, it is

really a call to mapcar, which calls make-array. Again, both arrays will be of type

T2 even though this may not be what we want.

4.2 A Collection DADT

We now present an example of an abstract data type that encompasses many possi-

ble types and operations, providing the capability to construct a particular type and

behaviour for its instances over time. Known as a Collection dynamic abstract data

type (Collection DADT), it is the union of a variety of other abstract data types that

act as containers. A Collection DADT demonstrates that explicit type definitions

can be omitted from source code and partially deduced from program behaviour.

Furthermore, operations dependent on those type definitions can be defined when

necessary in a fluid manner.

With a Collection DADT, data becomes the primary focus over that of structure.

In this sense, code is written in a way that passes around data that happens to have

structure, rather than structures that happen to have data. To put it another way,

instead of making structures that are to be populated with some data, the data is

treated as a single entity on which structure is imposed when necessary. A single

data object can then stand for multiple structures that contain the same data. This

provides a mechanism for simpler creation and initialization of structures, and par-

allel processing for those structures in a single operation. Also, the set of managed

structures is dependent on both the parameters provided when an instance is cre-
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ated and the operations performed on it. Thus, its internal structure can be changed

by altering either its creation or use.

Ultimately, code written using a Collection DADT is incomplete in that there is

not enough specified to properly execute each operation. During execution, am-

biguous elements are clarified by consulting the environment, which includes the

user. Thus, using a Collection DADT interactively defines elements of the program.

Terminology related to a Collection DADT is presented below. As the name

suggests, a Collection DADT is implemented using DADTs. The reader is directed to

Section 3.1 for terminology related to DADTs. Following the necessary terminology,

we describe the interface then the semantics of the interface operations. Lastly, an

example is given to demonstrate the principles.

Terminology

The set of abstract data types making up a Collection DADT is referred to as A.

Elements of A are called sub-ADTs and are written in bold lowercase letters from

the beginning of the alphabet: a,b, c and so forth. Note that sub-ADTs are types.

The current representation of an instance α of a Collection DADT may be re-

ferred to as Cα. The subscript is omitted when the context is clear. Each element

s ∈ Cα is known as a structure of the instance α and is of type a for some a ∈ A.

Unless otherwise noted, it is assumed that for any two structures s1, s2 ∈ Cα, the

type of s1 is different from s2. This means that there is at most one instance of any

type a ∈ A in the current representation for an instance of a Collection DADT.

Interface

A Collection DADT is an amalgamation of three abstract data types: PRIORITY

QUEUE, SET and ASSOCIATIVE ARRAY. These make up the elements of A. Each

ADT is a traditional container, that is, an entity that holds items for the purposes
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PRIORITY QUEUE SET ASSOCIATIVE ARRAY

empty? empty? empty?

size size size

iterate-elements iterate-elements iterate-elements

insert insert insert

extract-min random-item item-at

peek-min member? delete-item-at

delete-item

Table 4.1: Structures and operations of A for a Collection DADT.

of retrieval in some specific manner. We briefly describe the semantics of each ADT

with details pertinent to their use in a Collection DADT.

PRIORITY QUEUE requires a function, when an instance is created, that defines a

total order on the elements it is to contain.

SET also requires a function when an instance is created. This function is used to

test for membership and is called the membership test.

ASSOCIATIVE ARRAY acts like a hash table in that the index for elements is com-

puted from the elements added. Thus, insertion into an associative array does

not require a key/value pair. Instead, it only takes a value and the key is com-

puted from that value. When an instance is created, the function to compute

the key from a value must be provided. Elements are retrieved by using keys.

The interfaces for each of the sub-ADTs is given in Table 4.1. Only the names of

the operations are provided; however, it should be noted that each operation with

the same name has the same signature modulo type changes. Consequently, an

application of insert for an instance of SET can be turned into an application for

an instance of PRIORITY QUEUE by substituting the instances. Most operations are

self-explanatory, but we do note the semantics of two operations for clarification:

The peek-min operation returns the minimum element of a priority queue, but does
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not remove it; random-item chooses a random element from a set, removes it and

returns it.

From these interfaces we get the interface for a Collection DADT which is the

union of the interfaces in Table 4.1. Each operation takes an instance of a Collection

DADT as its first argument. This is the significant argument (see Section 3.1) for

the interface operation.

Collection DADT instances are created with the function make-collection. It

takes keyword arguments that supply the parameters for the creation of sub-ADTs.

If such a parameter is supplied to make-collection, a structure of the appropriate

sub-ADT type is added to the current representation of the instance immediately. If

no keyword arguments are supplied, a collection is created with an empty current

representation.

Forms indicating calls to interface operations are taken to be use places and

forms indicating calls to make-collection are taken to be creation places.

Finally, it is important to note that for operations common to the sub-ADTs,

a Collection DADT does not distinguish between the different versions of those

operations in its interface. This reduces the complexity of the interface as it pertains

to the actual writing of code, but raises the complexity with respect to the execution

of the operation. It is this unification property that provides a way for instances of a

Collection DADT to represent a collection of data to be used in different ways. Each

instance holds multiple structures, more than one of which may be intended for use

with a single operation. This permits the programmer to capture the essence of an

algorithm, leaving the details of precise structural manipulation for later. Ambiguity

in operations is addressed at runtime.
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Semantics of interface operations

Given that the interface allows for the same operation to be applicable to multiple

structures with in instance, interface operations may not be well-defined when they

are called. The proper application of actual interface operations requires that the

context of the operation be considered and a suitable configuration for the actual

interface operation be obtained.

A context is an n-tuple of values taken from the actors, environment and system

involved in the computation (see the discussion in Hirschfeld et al. [31]). To briefly

summarize, actors are entities that make requests for system behaviour, the system

provides the behaviour by performing some action and the environment is anything

external to this relationship. Informally, a context can be considered a collection

of conditions that describe a situation. For example, a context might consist of

(x = 42, P (eql)) where P (f) is the predicate “the set S uses the function f to test

for membership”, indicating the context that x has the value 42 and S uses the

function eql as its equality test. The values making up the context are determined

before an actual interface operation is applied.

A configuration is a description of how to apply the interface operations of the

sub-ADTs on the current representation. This includes what structures are to be

used and in what order they are to be processed. It may also include other infor-

mation pertinent to the operation, such as whether the structure is to be created

and how to initialize it. A configuration can be thought of as a required parameter

for interface operations that is automatically added as an argument by the runtime

system when an interface operation is called.

The actual interface operation is the application of one or more of the interface

operations of the sub-ADTs to a subset of Cα for some Collection DADT instance α.

For example, if the size operation is called with the significant argument α, the

trigger on α will determine (or obtain) the configuration for the application of size
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in the current context. The configuration may say to apply size to the instances

of PRIORITY QUEUE and SET in the current representation, which may or may not

make up its entire contents. Calling size on these elements constitutes the actual

interface operation.

Note here that contexts and configurations are the disambiguating elements of

interface operations and the trigger is free to query the user to obtain information

in order to proceed. It is expected that user input will be used to clarify situations

in most cases.

No specific procedure is given for determining the context because its definition

is quite broad and the particulars of the context can affect the configuration. It also

affects analysis and code generation. Strictly speaking, the context can be empty

and interface operations still can be properly applied. In this case, a configuration

for an operation could be obtained each time an operation is called.

Similarly, the definition of configuration is open-ended to allow for freedom

in collecting information to execute actual interface operations. Despite the lack of

preciseness in the definition, we will define a default trigger using a straightforward

context and configuration to ground the discussion.

For the default Collection DADT trigger (herein referred to as simply the default

trigger), the context required is a pair (p, q) where p is the creation place of the

significant argument and q is the use place of the interface operation. It is assumed

that the significant argument is tagged with its creation place and the use place is

available in the dynamic environment of the computation.

Configurations for the default trigger are a sequence made up of elements from

A. The sequence describes the elements of the current representation the actual

interface operation is to use and the order in which they are to be processed. For

example, a configuration of [b, a] says that for some Collection DADT instance α

with a current representation Cα = {s1, . . . , sn}, the actual interface operation is to
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process the structures in the sequence [si, sj], where 1 ≤ i, j ≤ n, si is of type b and

sj is of type a.

The trigger also maintains a context-configuration mapping that associates con-

figurations with contexts for future use. When the trigger is invoked, it uses the

current context to lookup a configuration. If the configuration is known, that is the

configuration used, otherwise it must obtain one.

Obtaining a configuration is done by examining the structures applicable for

the interface operation. If the operation is only applicable to a single structure,

then the type of that structure makes up the configuration. If there is more than

one applicable structure, the user is queried to clarify what structures are to be

used. The context is used to describe the situation to the user, namely where the

significant argument originated and where the operation is taking place.

Word puzzle example

To solidify the definition and use of a Collection DADT, we present an example of

the development of a small program to solve a word puzzle.

A word puzzle is given by an arrangement of cells that hold pieces. Both the

cells and the pieces have a specific orientation that does not change (that is, pieces

and cells do not rotate). The goal is to place each piece in a cell so that every cell

contains one piece and every horizontal (left to right) and vertical (top to bottom)

path through the cell arrangement forms an English word.

Figure 4.2 contains an example. The solution consists of the words BUY, AZURE,

CORNS, TOY making up the horizontal paths, and the words ACT, ZOO, BURY, URN

and YES making up the vertical paths.

A puzzle is given as a set of cell descriptions, each cell having horizontal or

vertical orientation with a unique identifier. Another set provides the connections

between cells using their identifiers.



70

O R O Y

A Z U Y

R
N

E
S

C
T

B
U

Figure 4.2: A word puzzle for demonstrating use of a Collection DADT. This exam-
ple is copyright 2008, Fraser Simpson, taken from The Walrus, volume
5, issue 5, p. 96, June 2008.

To solve the puzzle, we use a simple backtracking search algorithm: Choose an

empty cell and find a piece that fits in the cell that does not violate the constraints,

that is, if the piece would complete a word, that word must be valid. If no such piece

can be found, backtrack to the last cell filled and try a different piece. Continue until

either all the pieces are placed or no valid configuration can be found.

Studying the problem description, we see that cells can be referred to by identi-

fiers, suggesting that an association of identifiers to cells could be useful. Cells are

also an integral part of the search algorithm and how they are selected will have

an effect on the algorithm’s efficiency2. We may want to hold empty cells in a set

and randomly select them, or we may impose an ordering so that we may select the

“best” one during the search. Using a Collection DADT, we can write the algorithm

to support all these structures without having to provide the specifics until we run

it.

Code to create and solve a puzzle is given in Figure 4.3. Creation and use places

2We will ignore the fact that puzzles are probably small and efficiency is likely of minor concern.
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(defun make-puzzle (&key horizontal-cell-ids vertical-cell-ids

connections)

(let* ((cells (make-collection :index-by #’id :test #’eql)1)

(puzzle (make-instance ’puzzle :cells cells)))

(loop for id in horizontal-cell-ids

do (insert cells (make-instance ’horizontal-cell :id id)))2

(loop for id in vertical-cell-ids

do (insert cells (make-instance ’vertical-cell :id id)))3

(loop for (out a in b) in connections

for from = (item-at cells a)4 and to = (item-at cells b)5

unless (and from to) return nil

do (connect-edges out from in to))

puzzle))

(defun solve-puzzle (puzzle pieces)

(let ((next-cell (unless (empty? (cells puzzle))6

(random-element (cells puzzle))7)))

(unless next-cell (return-from solve-puzzle puzzle))

(loop for piece in pieces

if (and (place-piece next-cell piece)

(configuration-legal-p puzzle)

(solve-puzzle puzzle (remove piece pieces)))

do (return-from solve-puzzle puzzle)

else do (withdraw-piece next-cell))

(insert (cells puzzle) next-cell)8

nil))

Figure 4.3: Code for solving the word puzzle.
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(1, 2)→ [SET, ASSOCIATIVE ARRAY]
(1, 3)→ [SET, ASSOCIATIVE ARRAY]
(1, 4)→ [ASSOCIATIVE ARRAY]
(1, 5)→ [ASSOCIATIVE ARRAY]
(1, 6)→ [SET]
(1, 7)→ [SET]
(1, 8)→ [SET]

Figure 4.4: Context-configuration mapping for code from Figure 4.3.

have been marked for future reference. The full program is not presented as it is

not germane to the discussion, although it does contain other use places.

The call to make-collection provides the parameters for the sub-ADTs: the

indexing function for ASSOCIATIVE ARRAY is id (which retrieves the identifier from

a cell object) and the test function for SET is eql. The object created will contain

an instance of ASSOCIATIVE ARRAY and SET. Collections created at lexical place 1

are considered to be of type T1 and we can see that the set {2, 3, 4, 5, 6, 7, 8} will be

a subset of U1.

It is worth reflecting briefly on the use places (lexical places 2 through 8) in the

code. The calls to insert at places 2 and 3 are meant to populate the instances of

both ASSOCIATIVE ARRAY and SET within the current representation of the collec-

tion. However, the call to insert at lexical place 8 is only intended for use with the

instance of SET, as is the call to empty? at place 7. Calls to interface operations at

places 4, 5 and 6 are not ambiguous.

When this code is evaluated, the trigger associated with a Collection DADT in-

stance must disambiguate the appropriate calls. Assuming the default trigger be-

haviour, it will query the user to indicate what structures are to be used for the

actual interface operation. This configuration is saved and associated with the con-

text so that future evaluations of the lexical places with objects of type T1 no longer

require clarification. The complete mapping of contexts to configurations is given

in Figure 4.4.
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Given the semantics of the make-collection function and the fact that the de-

fault trigger does not introduce any elements to a current representation, we know

that for all objects α of type T1, Cα = {ASSOCIATIVE ARRAY, SET}. The default trig-

ger’s work is solely to disambiguate structures for use in actual interface operations.

Thus, types of the form Tp for some creation place p are discernible by examining

creation places.

Partial manifestation of type in the behavioural aspects of the program are use-

ful for brevity in code. Separate structural descriptions, to some degree, become

unnecessary. In the example, we did not have to say how to allocate and store

anything of type T1. Instead, a general approach was used and an effective defini-

tion was created internally. Furthermore, operations applied to multiple structures

could be realized with a single interface operation without an immediate indica-

tion of what structures were to be used. Thus, behaviour based on type is defined

when required. In the end, type definitions and operations based on those types

can be excluded from the code, with effective definitions created dynamically as

placeholders.

Let us now look at how to alter the code to use a PRIORITY QUEUE to store the

cells for use in the solve-puzzle function. Doing so will illustrate some of the

shortcomings of the default trigger and provide insight into the creation of more

comprehensive trigger behaviour.

To put cells in a priority queue, we must decide on a way to rank cells. We will

use a basic greedy strategy by saying that for any two cells c1, c2, c1 < c2 if the

number of connections of c1 is greater than that of c2. That is, if c1 is adjacent to

more cells than c2, then c1 is considered a better choice than c2. The intuition here

is that c1 has more words in the puzzle that depend on the proper piece placement,

so it is fitting to tackle them first. The function to compare the connection ranking

of two cells is cell-compare.
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(defun make-puzzle (&key horizontal-cell-ids vertical-cell-ids

connections)

(let* ((cells (make-collection :index-by #’id

:prioritize-by #’cell-compare))

(puzzle (make-instance ’puzzle :cells cells)))

(loop ... (insert ...) ...) ;; Add horizontal cells

(loop ... (insert ...) ...) ;; Add vertical cells

(loop ...) ;; Add connections

;; Add to the Priority Queue

(iterate-elements cells #’(lambda (c) (insert cells c)))

puzzle))

Figure 4.5: Adding to a priority queue in make-puzzle.

It may be tempting to think that we can simply re-run the code provided in

Figure 4.3 after changing random-element to extract-min and providing the nec-

essary keyword argument to make-collection. However, this will not work. The

problem lies with the calls to insert at lexical places 2 and 3. When the cells are in-

serted into the collection, the connections have yet to be made. Thus, every cell will

have zero connections and the choice of cells via extract-min will be functionally

equivalent to random-element.

Solving this problem means that each cell has to be inserted into the collection

again, which requires another call to insert. One way of doing this is demonstrated

in Figure 4.5. Elided code is represented with ellipses.

This solution is unsatisfactory for a number of reasons, not the least of which be-

ing that the programmer must keep track of the state of multiple internal structures

in order to properly initialize the collection. Furthermore, the code is unintuitive

because of its self-referential quality: We are iterating over the cells in the collection

to add the cells to the collection.
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Using the default trigger, we cannot get around this problem unless we redesign

the specification of cells so that when they are created, the number of connections

is known. One issue is that the priority queue must be created when the collection

instance is created. This is because configurations obtained by the default trigger

only discern the structures to which the interface operations of the sub-ADTs are

applied. Not enough information is garnered to be able to eliminate the need to

“doubly insert” elements into a collection.

Discussion

A Collection DADT represents the union of n abstract data types (the set A) and

the current representation of an instance holds instances of the sub-ADTs. The

semantics of make-collection are such that a current representation can have at

most one instance of any sub-ADT. Ignoring the case when no structures are created

in a collection, there are 2n − 1 possible combinations of A, where |A| = n, that

describe a current representation, namely the set A = 2A − {∅}.

Interestingly, each element of this set forms a variant type. Each element

{a1, . . . , am} in A where m ≤ n is represented by the type 〈a1 : a1, . . . , am : am〉.

Thus, we can view the instantiation of a collection (using the default trigger) at a

creation place p as an instantiation of a type from the set A, where that type is Tp.

It is in this sense that interface operations represent many possible operations.

Recall that interface operations are use places for a Collection DADT. Thus, a sin-

gle use of an operation is applicable to many combinations of the elements in the

current representation because the creation places of the significant arguments may

differ.

Roughly speaking, interface operations can be thought of as generic functions

whose methods have yet to be defined. If we assume that the application of an

interface operation f to an instance e of Tp applies the appropriate sub-ADT inter-
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face operation to the fields of e, then there are finite number of ways to define f .

Evaluating the code using a Collection DADT is a way to determine what methods

are required and where they are used.

In effect, a Collection DADT and its operations represent a large search space

and are a form of genericity. By changing the variant designated at a creation place

p, different methods can be used at different places, effectively creating a different

program.

4.3 Analysis and code generation

Looking at the definition of a Collection DADT, we see that it creates effective def-

initions of entities in order to properly execute interface operations. However, it

still suffers from the overhead problems described in Chapter 3. In fact, it is worse

because the creation of the definition cannot happen without user intervention3.

Avoiding this overhead can be done by shifting the role of a Collection DADT from

a general abstract data type used at runtime to a meta-programming framework to

generate code.

The code we look to generate is meant to capture the internal effective defini-

tions created through the trigger based on a Collection DADT instances. Generating

this code means that a new program is produced specialized to the configurations

provided during the execution. What is interesting about this approach is that the

code generation does not involve source code annotations. Instead, the parameters

required to guide the code generation are obtained interactively.

Furthermore, the code we want to generate is meant to replace the code em-

ploying a Collection DADT in the program. Generated code should resemble what

3One practical way around this is to introduce the necessary information into the environment
and make it accessible without the need for interaction. Assuming use of the default trigger, this
would mean specifying the structures to be processed at each interface operation. Doing so would
effectively defeat the purpose of a Collection DADT.
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is written by programmers for the purposes of refactoring. Capturing programmer

style is not the intent, but providing a mechanism for seamless integration into the

workflow of the programming environment is desired.

For this reason, we take the unusual approach of generating the code interac-

tively. Interaction is achieved by presenting generated code using a text editor as

the interface. This permits generated code to be adjusted before being substituted

into the program.

A discussion of code generation for the default trigger follows. No general pro-

cedure for code generation is defined as it is dependent on what information is

collected. Notwithstanding the dependencies, any code generation scheme for a

Collection DADT must provide valid code describing the type Tp for a creation place

p and code for interface operations at each use place in Up.

Interactive code generation

Generating code interactively is accomplished by communication between a text

editor and the Lisp system. Requests to generate code are initiated by the user in

the editor which sends a request to the system to provide the generated code. In the

editor, the code is presented to the user and can be edited before inclusion into the

program. In the following discussion, we refer to an implementation of interactive

code generation using Emacs4 and the SLIME5 development environment.

Creation and use places are the focal points of code generation. The definitions

created by a Collection DADT describe the types of elements (based on their creation

places) and how operations on them are to be carried out (their use places). As a

result, code generation is controlled by managing these places in the editor, with

4See http://www.gnu.org/software/emacs/
5The Superior Lisp Interaction Mode for Emacs. See http://common-lisp.net/project/

slime/. Despite the name, at the time of this writing it is a popular open-source environment
for developing Common Lisp programs.

http://www.gnu.org/software/emacs/
http://common-lisp.net/project/slime/
http://common-lisp.net/project/slime/
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the system associating generated code with creation and use places, and indicating

what code is independent of them.

Lexical place identifiers facilitate this communication. The editor generates LPIs

that are made available to the system. This is done by having the editor transform

the code such that the LPI is available within the dynamic environment of the com-

putation. The system must provide an interface for setting a lexical place identifier

in the dynamic environment. Consequently, evaluation of the code must be initiated

in the editor to apply the transformation.

Forms that indicate creation and use places are marked in the editor. Only

marked forms are considered by the system, so it is important that all relevant

places are marked. (This is much less cumbersome if calls to the interface opera-

tions of a Collection DADT are marked automatically by the editor, in addition to

the user being able to mark (and unmark) forms.)

To add a lexical place identifier to a marked form, the form is wrapped in a let

expression that binds a special (fluid) variable to the LPI. Interface operations and

triggers assume that the special variable is only bound as a result of code inserted

by the editor and is not changed by any other program entity. For example, the call

to make-collection in Figure 4.3 would be transformed into

(let ((*lpi* 1))

(make-collection :index-by #’id :test #’eql))

where *lpi* is special variable holding the lexical place identifier of the currently

executing form. During evaluation, make-collection does not alter or change the

binding of *lpi* and uses its value to tag Collection DADT instances.

Once the program has been evaluated — both in the sense of actually running

it and verifying that it is correct — we can request a specialization. Specializations

are forms that represent the definition of and operations for a specific type. Thus,

requests are made for creation places and are initiated in the editor.
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Figure 4.6: A screenshot of the interactive code generation interface in Emacs. For
brevity, the name association is used instead of associative-array.

When a specialization is requested, the forms are presented to the user in a “stag-

ing area”, that is, an area that shows the generated code in conjunction with the

program without actually inserting it into the program. The staging area provides

a way for the user to peruse the code, make edits and see where in the program the

generated code would be substituted. The editor employs a variable, local to the

editor, known as a hook that indicates how to submit a specialization request to the

Lisp system.

A screenshot of a specialization request is given in Figure 4.6. The code being

specialized is highlighted in the upper pane of the window and some of the special-

ization is presented in the lower pane. The form calling make-collection* would

replace the call to make-collection in the original program when the user initiates

the request. Note that the name of class is cumbersome and can be replaced in the

lower pane before being inserted into the program. Explanation of the generated
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code is provided later in the discussion.

The interactive approach we have outlined addresses the challenges put forth

by Smaragdakis regarding code generation as a tool for use in development [73].

Specifically, he calls for code generation tools to use unobtrusive annotations, gen-

erate code that is idiomatic for the target language, and exhibit openness and con-

figurability.

Our approach does not use any textual annotations that require maintenance

and in this sense, meets Smaragdakis’ requirement. On the other hand, it does re-

quire user interaction. The shift from textual annotations to user interaction reflects

the idea of using a Collection DADT for exploring the design space of a problem by

writing prototype programs. Smaragdakis suggests that to facilitate discreet anno-

tations, they should be found in separate files or in source code comments. Given

the transient nature of code for a Collection DADT, we felt it was more suitable to

avoid a textual representation of the elements needed for code generation.

Openness and configurability is immediate, given use of the DADT. Triggers

are used to collect the information for generating code and are easily substituted.

Code generation is extensible by way of a hook used in the editor to request a

specialization. Combined with a trigger, this provides enough customization to

write entirely new code generation schemes.

Naturalness of the generated code is addressed in the sections that deal with

the generated code. However, in Figure 4.6, we can see that the code resembles

standard Lisp style. The generated symbols (those prefixed with “#:”) present the

biggest difference between human-generated code. Generated symbols are used to

avoid conflicts pertaining to Common Lisp’s package system. The most confusing

symbol is the name of the type, but devising a suitable name for types was deemed

to be a problem outside the scope of the work.
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Analyzing the default trigger

Recall that an entry in the context-configuration mapping for the default trigger

is of the form (p, q) → [a1, . . . , an], where p is the creation place of the significant

argument of the interface operation performed, q is the use place of the interface

operation performed, and ai ∈ A for each 1 ≤ i ≤ n. Let Φ represent the entire

content-configuration mapping with Φ(p, q) = [a1, . . . , an]. We also define Φ(p) to

be the set {q |Φ(p, q) is defined}. Note that Up = Φ(p). Finally, let s(Φ(p, q)) =

{a1, . . . , an}.

With these definitions, we can determine the set of structures making up the

current representation of an instance of Tp. Given a creation place p, the set of

structures is ⋃
q∈Up

s(Φ(p, q)).

Denote this set as s(Tp). We can represent s(Tp) using a class with a slot for each

element.

Generating the code for s(Tp) is straightforward. A template of the form

(defclass t () ((e1 :initarg k(e1)) ... (en :initarg k(en))))

suffices, where t is a generated symbol for the name of the type, ei is the name of

type ai ∈ A and k(ei) is the name of ei as a keyword.

In conjunction with the definition of the class, code to create instances of the

class must be provided. This can be done by generating a call to the standard

function make-instance, indicating the creation of an object of type t and passing

it the initialization arguments for the contained structures. The creation of the

contained structures employs the keyword arguments passed to make-collection.

Code for the operations is not as simple because of the fact that an operation may

not be used in a uniform manner. By uniform manner, we mean that whenever an

operation f is used for a type Tp, the configuration is the same. For example, looking



82

(dapply (#:association #:set)

insert cells (make-instance ’horizontal-cell :id id))

;;; The above would expand into the following

(let* ((#:g01 cells)

(#:g02 (make-instance ’horizontal-cell :id id)))

(insert (slot-value #:g01 ’#:association) #:g02)

(insert (slot-value #:g02 ’#:set) #:g02))

Figure 4.7: Specialized call for an interface operation at a use place.

at Figure 4.4 and considering the code in Figure 4.3, we see that the operations

item-at and empty? are used in a uniform manner, but insert is not. (The use of

item-at will always be uniform because it is only applicable to one member of A.)

When an operation is used in a uniform manner, we can define a method on the

generic function for the operation specialized to the type t. The body of the method

applies the operation to the appropriate structures in the order found at Φ(p, q) for

some q ∈ Q. Going back to Figure 4.4, the code for item-at would be

(defmethod item-at ((#:c t) #:index)

(item-at (slot-value #:c ’#:association-array) #:index))

assuming that the name of the slot used to hold an instance of ASSOCIATION ARRAY

in an object of type t is #:association-array.

If an operation is not used in a uniform manner, it must be specialized for spe-

cific use places. Since the intent of the generated code is to help maintainability, we

should not make use of the lexical place identifiers in the invocation of the opera-

tion. Instead, we will employ a macro, dapply, that calls the operation on the given

slots of the object. An example of a call to dapply is given in Figure 4.7.

Analysis and code generation from information collected from the default trigger

is relatively straightforward. This is because objects of a type Tp do not vary beyond
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their initial creation. Local effects are minimized. The next section introduces local

effects and a way to manage them.

4.4 Handling local effects

Use of the default trigger is limiting, as shown with the work puzzle example. The

primary problem is that local effects to instances of a Collection DADT are not pos-

sible; the kinds of structures making up the current representation are immediate

given its creation place.

To provide more flexibility in the use of a Collection DADT, we now define

changes to a Collection DADT that permit structures to be added to a collection

at different times. This is accomplished by adding a special structure to the current

representation to represent the complete collection of elements that can be used

to properly initialize new structures. New structures are treated as active layers

as defined in context-oriented programming [31], which requires the context and

configuration describing operations to capture more information. Finally, we show

how to use this information to generate specializations.

Initialization and a master multi-set

Allowing structures to be added to collections somewhere other than the creation

place introduces the problem of initialization. As with the word puzzle example

earlier, it would be unsatisfactory if initialization required explicit use of the insert

operation in a contorted fashion. Ideally, a Collection DADT presents the collection

as a single entity, using the appropriate structure when required. What we want

to do is track the usage of data through the program, using particular structures in

different contexts.

This suggests that the trigger should associate the context of an operation with
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the structures to be processed and an initialization scheme. As we saw with the

default trigger, configurations are useful for storing information related to code

generation. If we provide for a useful way to specify initialization, and limit the

parameters involved, the utility of a Collection DADT can be increased without the

need for extra code to be written directly.

Looking at the problematic form to add to a PRIORITY QUEUE in Figure 4.5,

we see that populating the priority queue required iterating over all the current

elements of the collection. While the method of accomplishing this was arguably

unattractive, it was consistent with the idea of a Collection DADT. Essentially, struc-

tures contained within the current representation of a collection are different ways

to view the collection. Thus, initialization of structure based on the contents of a

collection involves taking all the elements and putting them into the structure. This

pattern will be used for initialization of structures added after a Collection DADT

instance is created.

This raises the problem of knowing all of a collection’s elements. A collection is

the union of all the elements found in the structures making up its current represen-

tation. The current Collection DADT maintains separate structures whose composi-

tion forms the collection, but each instance alone may not contain all the elements

of the collection. To get around this, we need a “master set” that contains all the

elements. This can be used to initialize any new structures.

Considering the above discussion, we will change the semantics of a Collection

DADT. The current representation will now contain a master multi-set that contains

all the elements of the collection; its representation will be determined by keyword

arguments passed to make-collection. The master multi-set will be of a type dis-

tinct from any elements in A, even if is made up of only one structure.

Structures making up the master multi-set are kept synchronized. This requires

that we understand the semantics of each operation and associate similar operations
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to work in tandem when required. For example, if the master multi-set consists of

a PRIORITY QUEUE and a SET and the extract-min operation is performed on the

master multi-set, then the delete-item operation must be applied to the SET.

The synchronization requirement imposes restrictions on the set A. Let set(x)

be the set of elements contained in some instance x where x is of type x ∈ A. For

any two elements a,b ∈ A and instances a of type a and b of type b, each interface

operation f(a, x1, . . . , xn) of a must have a corresponding operation f ′(b, x1, . . . , xn)

such that after applying f and f ′, set(a) ∩ set(b) = ∅. Note that f ′ need not be an

interface operation for b. Mapping an operation from one structure to another may

require writing other functions to simulate the operation or subverting the abstract

interface for reasons of efficiency.

In effect, the master multi-set is another realization of a Collection DADT. Multi-

ple structures are used to represent a single collection with a unified interface. The

difference is that each operation applies to every structure. As alluded to above,

this can cause performance problems. For this reason, it is encouraged that the

master multi-set consist of a single structure. We accommodate this approach by

allowing make-collection to take no arguments, consequently using a SET with

the membership test eql for the master multi-set.

Adding structures

Having a master multi-set in an instance of the adjusted Collection DADT provides

a mechanism for us to add new structures at different times and properly initialize

them. Furthermore, these additional structures do not have to be synchronized

with the master multi-set. Additional structures of this nature act as a different

view imposed on the master multi-set, presumably temporarily.

Adding a new structure to the current representation can happen any time an

interface operation is called. We will change the semantics of interface operations
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to consider the elements of A and the master multi-set; the master multi-set is

considered as single entity. Only applicable elements — types or structures that

support the operation — will be considered.

More formally, let X represent the set of considered elements, f be the interface

operation and α be a Collection DADT instance. X is constructed by the following

procedure.

1. X ← ∅.

2. If the master multi-set M supports the operation, add M to X.

3. For each s ∈ Cα − {M}, if the type of s supports f , then add s to X.

4. For each a ∈ A, if there does not exist e ∈ X such that the type of e is a and a

supports f , add a to X.

Note that the type of the master multi-set is not in A.

Configurations will partially consist of a sequence made up of elements from

X. The current configuration is obtained by examining X. If |X| = 0 an error is

signalled. If |X| = 1 and its element is a member of the current representation, the

configuration is the lone element of X. If |X| = 1 otherwise, then an instance of

the type contained in X is initialized (see below).

If |X| > 1, then the user is queried to indicate what elements of X make up

the configuration. If any of elements chosen are types, instances of these types are

initialized.

Initialization consists of allocating a structure of a given type and inserting the

elements of the master multi-set. The structure is then added to the current repre-

sentation. This is done before the actual interface operation is applied.

Proper timing of initialization is essential for the intended semantics of adding

structures. Consider the following code:
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(defun print-elements (c)

(loop for e = (unless (empty? c) (random-element c))

while e do (print e)))

Suppose we initialize a SET at the call to empty? and the master multi-set is made

up of an ASSOCIATIVE ARRAY. If we initialize the SET each call, the loop will be

infinite if the master multi-set is not empty. Conversely, if we only initialize it once

for the lifetime of the program, subsequent calls to print-elements may not work

as intended.

The problem is that we must consider more in the context of the operation. We

will use a context-oriented programming approach and say that for certain function

calls, the call activates a layer that represents a view of the data. A layer is a

first-class entity that groups related behavioural variations [31]. They are used to

activate definitions at runtime. It is possible to define layered classes and functions

whose behaviour is dependent on the layers that are active at the time they are

used. Using layers, we will define a specific context that augments our class and

function definitions that persist for the duration of a given function call.

As mentioned, we will only concern ourselves with scope introduced by function

calls. Furthermore, the function must be associated with a symbol, that is, we do

not consider anonymous functions. The context is now a triplet (p, q, f) where p

is the creation place of the significant argument, q is the use place of the interface

operation and f is the name of the function most recently activated on the system

stack.

If the configuration calls for an initialization for a type a, then we initialize only

if the interface operation is the first one to be applied to an instance of type a since

any activation of f on the stack. This eliminates the problem for cases such as that

presented with the print-elements example. Using this approach, the definition

of print-elements can be implemented as
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(defun print-elements (c)

(with-active-layers (some-layer)

(loop for e = (unless (empty? c) (random-element c))

while e do (print e))))

The with-active-layers call is a macro defined in ContextL, a context-oriented

programming extension for Common Lisp [15]. This macro provides the explicit

context of the operation. Further, we assume that the class for c is a layered class,

defined to activate a certain slot when some-layer is activated, assuming it is not

already active. Also, layered methods are defined for empty? and random-element

to work on the appropriate slot in the context of some-layer.

While this allows us to add structures based on function scope, it is limited in its

power. For example, it does not capture nested scopes correctly.

(defun self-cross-product (c)

(loop with cross = nil

for x = (unless (empty? c) (random-element c))

do (loop for y = (unless (empty? c) (random-element c))

do (push (cons x y) cross))

finally (return cross)))

The intent here is that we treat the collection as two sets, one in each loop, and

create a list representing the set S × S, where S is the set of elements in the col-

lection. The call to empty? in the outer loop will create a SET within the current

representation, but the call to empty? in the inner loop will operate on the same

structure. The corollary to this is that recursion does not work when initialization

is required upon each entry to a function.

Correcting this would require capturing more information regarding context,

such as looking at blocks (as in the Common Lisp block special form) or capturing

static scope in a dynamic context. However, such precision may require extensive
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user interaction, such as choosing the proper block intended for the scope of the

variable. Interaction to this level may be too cumbersome.

Example

As an example of the new behaviour, consider the code for creating and solving

the word puzzle, reproduced (with small changes) in Figure 4.8. This time, we will

use a PRIORITY QUEUE instead of a SET for choosing cells. Note that we only insert

the cells once and the master multi-set consists of an ASSOCIATIVE ARRAY.

When executing the code at use place 2, the trigger will present us with the set

X = {M, ASSOCIATIVE ARRAY, PRIORITY QUEUE, SET}.

Since we only want to populate the master multi-set, we choose M . Similarly for

use places 3 through 5.

When we get to place 6, X is the same as above, except this time we choose PRI-

ORITY QUEUE. Since an instance of this does not exist in the current representation,

it is created and initialized by adding each element of the master multi-set using

the insert function. empty? is then called on it and execution continues. Place 7 is

unambiguous and we again choose PRIORITY QUEUE at place 8, indicating that the

operation is applied to the structure in the current representation.

The final context-configuration mapping is given in Figure 4.9.

Specialization

Generating code for operations means taking into account scope and the master

multi-set. Since the master multi-set is its own type, we must generate operations

for it as well. Recall that the synchronization property requires that each interface

operation f for a type a has a corresponding operation f ′ for structures of type
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(defun make-puzzle (&key horizontal-cell-ids vertical-cell-ids

connections)

(let* ((cells (make-collection :index-by #’id)1)

(puzzle (make-instance ’puzzle :cells cells)))

(loop for id in horizontal-cell-ids

do (insert cells (make-instance ’horizontal-cell :id id)))2

(loop for id in vertical-cell-ids

do (insert cells (make-instance ’vertical-cell :id id)))3

(loop for (out a in b) in connections

for from = (item-at cells a)4 and to = (item-at cells b)5

unless (and from to) return nil

do (connect-edges out from in to))

puzzle))

(defun solve-puzzle (puzzle pieces)

(let ((next-cell (unless (empty? (cells puzzle))6

(extract-min (cells puzzle))7)))

(unless next-cell (return-from solve-puzzle puzzle))

(loop for piece in pieces

if (and (place-piece next-cell piece)

(configuration-legal-p puzzle)

(solve-puzzle puzzle (remove piece pieces)))

do (return-from solve-puzzle puzzle)

else do (withdraw-piece next-cell))

(insert (cells puzzle) next-cell)8

nil))

Figure 4.8: Word puzzle code with new behaviour
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(1, 2, make-puzzle)→ [M]
(1, 3, make-puzzle)→ [M]
(1, 4, make-puzzle)→ [M]
(1, 5, make-puzzle)→ [M]

(1, 6, solve-puzzle)→ [PRIORITY QUEUE]
(1, 7, solve-puzzle)→ [PRIORITY QUEUE]
(1, 8, solve-puzzle)→ [PRIORITY QUEUE]

Figure 4.9: Context-configuration mapping for the adjusted word puzzle

b. Interface operations for the master multi-set can simply call the appropriate

operations on each slot for the objects representing the master multi-set.

Generating code for the contexts and methods on the operations is accomplished

by analyzing the contents of the context-configuration mapping. Consider an entry

(p, q, f) → [a1, . . . , an] for some n ∈ N. This says that for objects of type Tp at use

place q, the operation is applied to the elements of the current representation of

type a1, . . . , an. If we define the structure of Tp to be a layered class whose base

representation consists of only the master multi-set, then we can represent this

operation as follows.

Define a layer l and extend the class Tp to add slots corresponding to types

a1, . . . , an in the layer l. For the operation g at use place q, define a layered method

for g that acts on the slots found in layer l. Furthermore, it initializes the slots

from the master multi-set if required. (Note that the master multi-set will always

be present in instance of type Tp and any extensions.) In the event there are two

contexts (p, q, f), (p, q′, f) such that the configuration is the same, we do not need

to generate layers for both.

As an example, code for the solve-puzzle example given above can be found in

Figure 4.10. Code for all the methods are not given as they have a similar pattern

to empty?.

In order to properly activate the layers for a function f , we must wrap the body

of the function in a with-active-layers form with the name of each layer gener-
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(define-layer #:solve-puzzle-layer)

(define-layered-class #:t1 ()

((mmset :initarg :mmset)))

(define-layered-class #:t1

:in-layer #:solve-puzzle-layer

()

((#:priority-queue :initarg :priority-queue)))

(define-layered-function empty? (#:c))

(define-layered-method empty?

:in-layer t

((#:c #:t1))

(mmset-empty (slot-value #:c ’mmset)))

(define-layered-method empty?

:in-layer #:solve-puzzle-layer

((#:c #:t1))

(unless (slot-value #:c ’#:priority-queue)

(initialize #:c ’#:priority-queue))

(code:empty? (slot-value #:c ’#:priority-queue)))

Figure 4.10: Code generated to capture layers for temporary views on a collection.
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ated within the scope of f . Formally, for each context (p, q, f), the layers defined

by the above procedure must be passed the arguments to with-active-layers and

wrapped around the body of the function f . This requires the ability to locate the

body for f , which was not necessarily specified as a use place.

The disadvantage to this approach, besides the problems outlined earlier, is that

we cannot have the layered versions of the functions reside in the same package

as the user code, else name conflicts will occur. Thus, the call to empty? on a

PRIORITY QUEUE must fully qualify the symbol (assumed to be in the package code,

in this case). Note that the layer t is the base layer. Also, a considerable amount of

code could be generated. Depending on how layered classes are represented, the

definition of the class could be quite large as well.

On the other hand, the advantage to this approach is that the use places do not

have to be changed. Overall, this will likely result in fewer changes to user code,

apart from the need to wrap the function body with a layer activation.

4.5 Summary

We have presented a novel way to specialize types by generating code based on

source code locations without using explicit annotations. Additionally, we have

shown a way to realize a data type that represents the union of other data types

whose interfaces intersect. The inherent ambiguity of the operations is resolved

interactively, which provides a context denoting a marker acting as an annotation

for code generation. Additionally, the code is generated interactively so that it can

be approved by the programmer before substituting it into the program.

Specialization was done in two ways. The first defined a global class definition of

the specialized type. The second defined a layered version of the class that provides

a mechanism for viewing the collection in different ways at different times.
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Chapter 5

Deriving class hierarchies

Previously, we showed how objects can be used to represent abstractions that are

later specialized to specific types. The work presented in this chapter takes a dif-

ferent approach by building type definitions up from basic elements. In particular,

we show how class definitions can be omitted from a program, but instances of the

class can still be used in the program. Classes are defined over time based on how

objects of the class are used, including the composition of slots and the relationship

to other classes. The end result is a class hierarchy derived from the use of objects.

This is done by using evidence from the lexical and behavioural elements of

the program. Lexical elements include function calls that implicitly define slots

in a class and the methods attached to generic functions. Behavioural elements

include the act of calling functions and the order in which actions take place; the

behavioural elements are captured by augmenting a language runtime to handle

certain situations that may normally cause the program to halt with an error.

Furthermore, we discuss the problems involved in collecting reliable evidence

to discern a working class hierarchy. The lack of reliable evidence has an effect on

the style in which programs should be written to ensure reasonable results.

In Section 5.1, we discuss an evaluation strategy for a language runtime to sup-

port class hierarchy derivation, as well as various assumptions that aid in facilitating

it. In particular, we discuss the roles intent and convention play in the approach.
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Section 5.2 describes an implementation of the evaluation strategy, taking ad-

vantage of the Metaobject Protocol for the Common Lisp Object System [38]; a

detailed discussion of the issues involved in accurate class derivations is also found

here.

An extended example is provided in Section 5.3 that demonstrates the technique

can be effective and further discusses the conditions under which it can be expected

to produce accurate results. Section 5.4 summarizes the approach and the results.

5.1 Method and assumptions

Laziness is the primary tool we employ for deriving class hierarchies through pro-

gram behaviour. Elements of the program are known to be lacking definitive struc-

ture when we begin execution and are represented in a manner that permits their

growth as more information is provided. These elements are formed into working

definitions by reacting to various situations over time. We characterize this as lazy

definition, similar to the notion of lazy evaluation.

The derivation strategy we describe is based on a permissive execution environ-

ment, that is, an execution environment that allows actions to be performed even if

the situation is ambiguous or potentially incorrect. Loosening the restrictions on the

evaluation rules of the environment permits us to learn properties of the elements

involved, assuming the changes are properly targeted. We increase the number of

situations in which the program will operate without errors by introducing rules

that try to collect information that enable it to continue in the regular sense.

For a prognostic example, suppose we expand the ability of a Lisp system to try

to resolve undefined functions, before signaling the user, in the hopes of learning

something about the data passed to them. We alter the system to examine the

name of the function (assuming it has a name) and its arguments, perhaps also
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considering other elements of the context1 at the time. It may be that, given this

information, we can discern to a reasonable extent what the function is aiming to

accomplish and provide a definition to complete the operation.

Clearly, producing correct output is not the primary purpose to the changes

described herein. That being said, an effort is made to produce correct output

since by doing so more structural information can be obtained. The intuition is

that by running more of the program, we will learn more about the class structure.

The evaluation rules to derive class structure descriptions are not meant to act as

a way to necessarily correct problems encountered during evaluation. Rather, we

seek to present a structure that would enable the behaviour exhibited. Enforcing

correctness impedes this objective.

A word on correctness: We consider correct to mean producing the results in-

tended by the programmer outside of the desire to provide reasonable structure to

the data. Plainly put, we consider the behaviour exhibited by the program to have

a purpose beyond simply that of driving our analysis.

Lastly, we assume that the required behaviour of the program is specified. In

particular, the algorithms exist that manipulate objects as do the functions or meth-

ods implementing those algorithms.

For our purposes, we consider classes as per the definition found in the Common

Lisp HyperSpec2. The key property of classes is that they do not contain methods.

Methods are defined separately from classes, meaning that redefinition of a class

need not be concerned with the code for methods. Thus, we can alter the def-

inition of a class independent of the methods which describe its behaviour. The

elements of a class that we are concerned with are its structural elements, namely

its slot specifiers and class precedence list. The slot specifiers describe slots that are

1We use the term “context” here in the general sense, not in the technical sense defined in Sec-
tion 4.2.

2See Section 4.3.
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components that hold values; instances of a class are made up of slots. The class

precedence list is a list of superclasses describing the relationship of the class to

other classes. These are the only two structural elements we are concerned with;

others elements are not considered.

Evaluation strategy

Our goal is to observe the behaviour of a program lacking complete descriptions of

various classes and propose structure for those classes. Structure consists of the slot

specifiers and class precedence list. The only classes we provide structure for are

incomplete classes. An incomplete class must be designated as such. Any class that

is not incomplete is said to be complete.

Information to derive structural descriptions of classes comes from altering the

runtime system to handle the following situations in the manner described below.

No class defined. If a class is needed but no class matching the description is de-

fined, the system defines an incomplete class to be used instead. When cre-

ated, the incomplete class has no slot specifiers and an empty class precedence

list.

No slot found. If an attempt is made to access a slot in an instance of an incom-

plete class and there is no slot matching the description, an appropriate slot

description is added to the incomplete class and a slot matching the descrip-

tion is added to the instance. (By access, we mean an attempt to read from or

write to a slot.) Every other instance of the incomplete class must be amended

with a similar slot before the that instance is accessed in any way. Further-

more, all future instances of the incomplete class are created with the new

slot.

No method found. Since the required behaviour of the program is assumed to be
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specified, methods whose type specifiers match the type of incomplete classes

exactly are not ambiguous. However, if the type specifiers do not match ex-

actly and the method call is otherwise legal, the system must come up with a

list of classes (C1, . . . , Cn) to serve as potential superclasses for the incomplete

class — its class precedence list. The order of this list should reflect the rela-

tionship between the classes it contains. For single inheritance, the list forms

a chain of classes such that for any two classes Ci, Cj with i, j ∈ N and i ≤ j,

Ci is likely a subclass of Cj. With multiple inheritance, if Ci is likely a subclass

of Cj, then i ≤ j.

Note that in all the cases, the goal is to facilitate the continued execution of the

program. With the first two, we add the required information and continue. With

the last one, an attempt is made to infer what methods may be applicable in order

to call them.

Intent and convention

Another principle fundamental to our approach is trusting the intent of the opera-

tions, meaning that we consider an operation as something that is supposed to take

place. Thus, we do not seek to determine whether an action is to occur, but rather

devise a way that it can occur. In a larger sense, evaluation takes on the properties

of a problem solver above those of a solution verifier.

Language conventions are an important factor in fostering this approach. Con-

ventions are useful for communicating structure through program text. Kent Pitman

asserts, “Conventions are important. The reason people use them is that they want

others to infer things from [the code].”3

For example, consider the following code that creates and allocates an instance

of a class student.
3Personal communication.
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(make-instance ’student :name "Julius" :dob "1988-02-29")

When initialized, the value "Julius" is inserted into the slot whose initialization

argument name is :name (similarly for :dob). It need not be the case that the

name of the slot matches the name of its initialization argument, but a common

convention is that the initialization argument name is the same as the name of the

slot (save for the latter being a keyword). If we assume use of this convention, we

can surmise that the class student has at least two slots: dob and name. Note that

no formal definition of the class is required to ascertain this information.

However, if we do not know if the convention is followed, then determining the

mapping of initialization argument name to slot name may be impossible without

sufficient context. Furthermore, obtaining sufficient context itself may be impossi-

ble. Suppose the initialization argument :dob is used for the slot date-of-birth.

To a system whose concept of a student is limited to that of an object composed

of slots, the context required to reliably map :dob to date-of-birth may take

considerable effort. Thus, without leveraging convention, our approach may be

impossible.

5.2 Implementation

We now describe an implementation of the evaluation strategy in Section 5.1 and

discuss the mechanics involved in building class structure and relationships at run-

time. Each of the three situations is described in turn, followed by examples and a

discussion of the approach in the case of the latter two.

Defining incomplete classes

When an object is created, we must indicate the class of the object. Denote this

class as C. If C exists, then the object is created in the usual fashion. If C does not
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exist, then we create an incomplete class CI , represented as a class metaobject of

type incomplete-class.

Incomplete classes are created when find-class signals a condition indicating

that the requested class was not found. We wrap find-class with a condition han-

dler that preserves the execution stack and creates an incomplete class, associating

it with the identifier that indicates the name of the class. The incomplete class is

returned and computation is resumed from the point the condition was signalled.

When a class is named as a specializer for a parameter on a method, it must

exist. It is implementation dependent whether find-class is used to find classes

named as specializers. Thus, it is possible that an incomplete class will not be

created when the first mention of a class is found as the specializer on a method.

In general, the handler described for find-class can be bound in the dynamic

environment of the entire computation. Localizing it to invocations of find-class,

however, reduces the chances of an intervening handler being established.

Defining slot specifiers

Slot specifiers are added to an incomplete class CI when the program attempts to

access a slot in an instance of type CI that does not name a slot specifier in CI .

Three elements are required for slot specifiers: its name, its initialization argument

name and its initial value. The initial value for automatically defined slot specifiers

is always nil, so the details of slot specifiers are limited to describing the names.

For the purposes of the descriptions below, the slot name and initialization ar-

gument name are taken to be the same if they have the same string representation,

modulus the colon for keywords. Thus, the symbol example has the same name as

the keyword :example. When a slot name is derived from an initialization argu-

ment name, unless specified otherwise, it is always represented as a symbol with

the same string representation, but never as a keyword. Conversely, if an initializa-
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tion argument name is derived from a slot name, it is represented as a symbol with

the same string representation, but always as a keyword.

There are three methods by which slot specifiers can be added to incomplete

classes: when the object is created, when a slot is accessed directly and when a slot

is accessed indirectly using an accessor method. Each of these are described below.

Object creation Instances of objects are created with the standard generic func-

tion make-instance called with an initialization argument list which is used to pro-

vide initial values for slots (and other things). This list is a property list (p1v1 . . . pnvn)

with n ∈ N where each pi is a property indicator and vi is a property value (1 ≤

i ≤ n). We leverage the convention that a property indicator is the initialization

argument name of a slot with the same name.

A method is added to make-instance that runs before an object of an incom-

plete class CI is created and verifies that the property indicators in the initialization

argument list name slots in CI . For each property indicator pi that does not name a

slot, a slot specifier with the name derived from pi is added to CI with the initial-

ization argument name pi. This assumes the standard initialization protocol for the

creation of objects is used.

Direct access Aside from make-instance, slot specifiers can also be created by

attempts to access non-existent slots. The general mechanism for this is the stan-

dard function slot-value, which takes an instance of a class and the name N of

the slot to access, possibly with a value v if the access is a write operation. Further-

more, when such an attempt is made to access a slot that does not exist, the generic

function slot-missing is called.

A method is added to slot-missing that is invoked when the instance passed

to slot-value of an incomplete class CI and a slot named N does not exist in CI .
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A slot specifier with the name N is created, along with an initialization argument

name derived from N . When the access is a read operation, the value nil is re-

turned. When the access is a write operation, the value is updated with the value v

and v is returned.

Accessor methods Usually, when defining classes in Common Lisp, methods for

accessing slots are provided through automatically defined methods. Names for

generic functions to hold the methods are provided when the class is defined. The

appropriate methods are then created and attached to the generic function. These

are known as accessor methods.4

Accessor methods are not defined for incomplete classes when slot specifiers are

created. Instead, accessor methods are defined when they are used. The problem

becomes recognizing when the use of an accessor method is intended.

We rely on a convention to determine whether or not a function call should

invoke an accessor method. Although accessor methods can have any name —

including the ability to name reader and writer methods separately — they tend to

have names that are easily derived from the slot name. Four common conventions

for naming accessor methods are as follows:

• Use the same name as the slot.

• Prefix the name of the slot with the name of the class followed by a hyphen.

• The name of the slot prefixed with get-.

• The name of the slot with the suffix -of.

The accessor method names considered consist of these conventions.
4Although methods do not, strictly speaking, have names, we call them accessor methods as a

short form for an accessor function with the appropriate method attached.
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Defining accessor methods at runtime requires that we obtain the name and

arguments of the function call in order to determine whether it appears to be a call

to an accessor method. Since we assume desired behaviour is specified, we need

only examine functions that are undefined.

The dynamic environment of the computation is extended with a condition han-

dler for undefined functions. In order for the accessor method to be defined prop-

erly, the condition signalled must contain the name of the function. If the (evalu-

ated) arguments are not supplied in the condition, the handler preserves the execu-

tion stack, installs a function f on the supplied name and resumes the computation

by calling f ; f accepts any number of arguments and has access to its own name.

When f is called, it examines the arguments and determines whether its invocation

matches that of an accessor method.

There are two invocation patterns that describe an accessor method: one for a

reader and one for a writer.

Readers A reader takes one argument that must be an instance of an incomplete

class CI . Let N be the name of the function. Then N must be a symbol.

Writers A writer takes two arguments, the second of which must be an instance

of an incomplete class CI . The name of the function must be of the form

(setf N), where N is a symbol.

If the attempted invocation of an undefined function matches one of these two

patterns, a generic function is associated with the given name. The generic function

is of a special type that is distinctive from standard generic functions, either auto-

reader or auto-writer. No methods are every installed automatically on these

generic functions. Instead, we extend the standard error mechanism to deal with

the case of not finding an applicable method. When the error mechanism is invoked,

the slot N is accessed using slot-value in accordance with the type of the generic
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function. Note that this means the method for defining slots using direct access is

used to actually add the slot specifier to CI . For convenience, both an auto-reader

and auto-writer are defined when an accessor method is defined in this fashion.

Example Suppose that student is an incomplete class with no slot specifiers. The

call

(make-instance ’student :name "Julius" :dob "1988-02-29")

would add slot specifiers to the slots name and dob with initialization argument

names :name and :dob, respectively. The instance created by the call to make-

instance will contain those slots with the values "Julius" and "1988-02-29", re-

spectively. Due to the rules of the Metaobject Protocol of CLOS, any other instance

of student in the system will be updated to contain the name and dob slots the next

time they are accessed.

Assuming s is an instance of the incomplete class student, the forms

(setf (slot-value s ’student-id) 56)

(grade-of s)

would add a slot specifiers with the names student-id and grade. In the former

case, the slot is set to the value 56. In the latter case, auto-reader and auto-

writer generic functions are associated with the symbol grade-of and the function

specifier (setf grade-of), respectively. In the example, the error mechanism will

use slot-value to read the grade slot.

Discussion The choice of nil for the initial value is based on convention and

pragmatism. In Common Lisp, nil is frequently used as a default value. Further-

more, using some other value introduces complications. Suppose the slot specifier

is added by a write operation and the value supplied with the operation was used.
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Using this value as the default may require copying in order to prevent aliasing.

Proper copying would require that copying behaviour be specified [59]. This intro-

duces a dependency that betrays the transparency we are striving for and hence, is

not used.

Another approach would be to specify default values for the types of the ele-

ments involved. This would require the system to be aware of the different stan-

dard types and to provide a hook for describing user-defined types. Again, this

introduces a dependency that violates the design principles of the work.

Note that we do not attempt to discern whether a slot is class-allocated (shared)

or instance-allocated (local). There are no immediate indications in how slots are

accessed to be able to differentiate between the two in either language constructs

or conventions.

The patterns describing accessor method invocations have the potential to define

functions intended for other purposes. Although we assume that behaviour has

been specified, practically speaking, this will not always be the case. In a less ideal

environment, we could require a slot matching the name N exist in the incomplete

class before defining the accessor method.

Dynamic method selection

Choosing methods when no relationships are known between classes is the most

involved aspect of the implementation. The problem is that there is no reliable way

to recognize whether one class is a superclass (or subclass) of another.

Inheritance in the Common Lisp Object System states that for any two classes

A and B, if A is a superclass of B, then s(A) ⊆ s(B) where s(C) denotes the slot

names in the slot specifiers of a class C. This implies that if s(A) 6⊆ s(B) then A is

not a superclass of B. Thus, the only definitive statements we can make about the

relationships between incomplete classes and other classes are exclusionary.
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For this reason, we say that for any two classes A and B, if s(A) ⊆ s(B) and

A 6= B then A is a potential superclass of B. However, if A is an incomplete class

and B is a complete class, then A cannot be a superclass of B. This is seen by

realizing that any slots added to A must also appear in B, but B is already fully

specified. Since B is fully specified, we know the class precedence list and the slots

of each class in the class precedence list. If A is an incomplete class, any change

in A would result in a change in B. However, the definition of B is fixed. Thus,

relationships between incomplete classes, as suggested by the definitions, will be

based on incomplete information.

One measurement we use is structural similarity. Given two classes A and B,

their structural similarity is given by the number of slot specifiers in A and B that

share the same name. Formally, it is sim(A, B) = |s(A) ∩ s(B)|. Note that for any

three classes A, B, C where A is a superclass of B and B is a superclass of C then

sim(A, B) ≤ sim(B, C).

Suppose B is a subclass of A. Then B inherits the behaviour of A, meaning

instances of B can be passed as an argument to a method m that expects instances

of class A. If a call to a generic function is made with an instance of an incomplete

class CI as the i-th required argument, then we look at the set of specializers for the

i-th required parameter on the methods of that generic function. This set is known

as the applicable specializers for the class CI and is written ∆f (CI) where f is the

generic function called.

We take applicable specializers to be classes that are likely related to CI . Again,

this is based on the notion that behaviour has been specified to the desired ex-

tent. If two classes are related to each other by behaviour, then the relationship

will manifest itself through the applicable specializers. Despite the high chances of

false positives — there may be many other classes naming specializers in the same

position that are not related, such as with generic functions like print-object and



107

documentation — we see no other ways to obtain evidence of relationships at run-

time.

Also, the issue of the volatility of the slot specifiers of an incomplete class fac-

tors heavily into revealing the relationships between classes. New slots can be

added any time a function is called, potentially invalidating the current standing

of relationships. However, choosing methods relies on knowing something about

the relationships between classes. For this reason, relationships are calculated each

time a generic function is called involving an instance of an incomplete class.

The class precedence list of a class C is the complete list of superclasses of C

in order of precedence. It is the basis by which applicable methods are chosen

when a generic function is called. In complete classes, the class precedence list is

fixed. In incomplete classes, it is variable. Note that an incomplete class cannot be

in the class precedence list of a complete class, by definition. We write the class

precedence list for a class C as cpl(C).

We assume here that the program, while running, does not attempt to define

complete classes that are based on incomplete classes. This could be accomplished,

for example, by constructing a defclass form and passing it to eval. If this occurs,

the behaviour is undefined.

Let f be a generic function called with the positions of instances of incomplete

classes at required argument as i1, . . . , in. Denote the incomplete class for the in-

stance at position ij as Cij , where 1 ≤ j ≤ n. Note that for any two positions ij, ik,

it may be the case that Cij = Cik . For each j from 1 to n, we compute

cpl(Cij) = sm(Cij , ∆f (Cij) ∪ cpl′(Cij))

where cpl′(C) returns the result of cpl(C) as a set. sm(CI , X) returns a sequence

(Xm, . . . , X1) where Xi is a potential superclass of CI and for any two Xj, Xi, if j > i
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then sim(CI , Xj) ≥ sim(CI , Xi). If two classes have the same structural similarity,

incomplete classes take precedence. If both are the same kind, the tie is broken

arbitrarily.

Once the class precedence list has been computed for all the applicable incom-

plete classes on a call to a generic function, the applicable methods are computed

in the usual fashion. However, if a method is called that is based on the class prece-

dence list of an incomplete class, the ability to automatically define classes, slots

and adjust the class precedence list is disabled and the method is called. If an error

condition is signalled, the superclass determining the choice of method is elimi-

nated from the class precedence list of the incomplete class affecting the choice of

method and the next applicable method is tried.

Example Suppose we have the incomplete classes A, B, C and D with the follow-

ing slot names.

s(A) = {x1, x2, x3}

s(B) = {x1, x4, x5}

s(C) = {x2, x3}

s(D) = {x1}

When calling the generic function f , an instance of A is passed as the i-th required

argument. The set of specializers on the i-th argument is {B, C, D}. Further, sup-

pose that cpl′(A) = ∅. Then we have ∆f (A) = {B, C, D} and we must compute

sim(A, {B, C, D}).

B is eliminated because s(B) 6⊆ s(A). Thus, cpl(A) = (C, D) since sim(A, C) >

sim(A, D). The method specialized to C is called first, but we disable creation of

incomplete classes, slot specifiers and class precedence lists. If the method fails, C
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is removed from cpl(A) and the next one (in this instance, the one specialized to D)

is tried.

An extended, concrete example is presented in Section 5.3.

Discussion The approach to calculating the class precedence list is intended to

capture only basic information. This is due to the fact that there is little evidence

to discern complex relationships. Unlike the case with slot specifiers, class rela-

tionships do not rely on any conventions, providing us only structural information

through known slot specifiers and behavioural grouping in methods.

Actual class precedence lists can be quite complex when using multiple inheri-

tance. The relationships themselves can influence how behaviour is specified. For

example, suppose we intend for a chair to be considered an item for seating peo-

ple over that of a stand for a potted plant, although it could be used for both. We

define a class for a chair where the superclasses prioritize the property of seating

people before plants. Furthermore, we have a generic function for placing an item

in a room based on its properties, either people-centric or plant-centric with meth-

ods for both. The generic function will then consider a chair with respect to seating

people before it considers it as a stand for plants. However, the priority of these two

properties is not immediate by considering merely the structural elements making

up the class and its behavioural grouping in the method definitions. Instead, it re-

quires grounding it in some realistic situation where providing seating for people is

more important than that of plants. This is only exhibited by extensive knowledge

of the context in which the class and generic function was defined, or by examining

a definition of the chair class.

Thus, it is not certain that by studying behaviour of instances a complete de-

scription of the relationship between classes will be made. This is most plainly seen

with abstract classes, that is, classes that are not instantiated.
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When an abstract class A appears in the applicable specializers of an incomplete

class, it will always be considered as part of the class precedence list. When an

abstract class is in the set ∆f (CI) for some function f and incomplete class CI , it

will be processed by the function sm. Since s(A) = ∅, trivially, s(A) ⊆ s(CI). Thus,

A is a potential superclass of CI .

The problem with abstract classes is that of the earlier example with chairs.

Without any specific knowledge of the situation outside of the code itself, discerning

the intended order of abstract classes in the class precedence list is largely a matter

of chance.

Additionally, ordering elements by structural similarity can be incorrect, even

when instances of classes are instantiated. Consider a case where we intend for the

class precedence list for a class A to be (B, C, D) where A, B, C, D are incomplete

classes and

s(A) = {x1, x2, x3, x4}

s(B) = {x1}

s(C) = {x2, x3}

s(D) = {x4}

The function sm will produce either (C, B, D) or (C, D,B). Again, there is no clear

indication that B should come before C, let alone D. These factors indicate the

method of computing the class precedence list will generally perform poorly with

complex class hierarchies.

Consequently, we concentrate on capturing simpler hierarchies. Single inheri-

tance is much simpler than multiple inheritance since there is at most one immedi-

ate superclass for any given class. The class precedence list for single inheritance

forms a chain as described in Section 5.1. We examine whether the procedure for
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computing cpl(A) for some class A is effective at capturing single inheritance.

Suppose that we intend for a class CI to have the single-inheritance precedence

list (Xn, Xn−1, . . . , X1). For this to manifest in the class precedence list — but not

necessarily be equal to the class precedence list — it must be the case that for

any two classes Xj, Xi with j > i, Xj precedes Xi in cpl(CI). This occurs when

sim(CI , Xj) > sim(CI , Xi). If we assume that all intended slot specifiers in CI , Xi

and Xj are present when the comparison is made and that s(Xi) ⊂ s(Xj) ⊂ s(CI),

then the desired result is achieved.

An important assumption in the argument above is that the slot specifiers are

present. If we compute cpl(CI) before slot specifiers are present in Xi and Xj, the

order of Xi and Xj may or may not be correct as intended. For example, if they

are both incomplete classes, their order is arbitrary with respect to each other. In

general, this is the case when s(Xi) = s(Xj).

It is not required, however, that the full set of intended slot specifiers be present.

If it is the case that s(Xi) ⊂ s(Xj) ⊂ s(CI), then Xj will precede Xi in cpl(CI). This

suggests that if Xi or Xj are incomplete classes, instances of them should be created

and accessed before computing the class precedence list of CI .

False positives in the superclass relationship are a problem when basing the

relation on structural similarity. If s(A) = {x1, x2} and s(B) = {x1} for some

incomplete classes A and B, then B is potential superclass of A. However, it may

be the case that when B has all of its slots specified, s(B) = {x1, x3}. This again

demonstrates the volatility of the class precedence list in the face of incomplete

information.

It is clear there is a dependency on time for the calculation of the class prece-

dence list for an incomplete class when it depends on incomplete classes. This

should not be surprising given that incomplete classes start out with no slot speci-

fiers and that slot specifiers are the most concrete evidence we have for discerning
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superclass relationships. This could be mitigated by performing a static analysis of

the code to determine some of the slots present in a class. Static analysis would not

eliminate any of the problems outlined above, but it does provide the opportunity

for the analysis to have a potentially better start point, thus making fewer mistakes

during the initial steps.

Part of the approach to building class descriptions is relying on the accumulation

of knowledge, meaning that during the process, some decisions are based on incom-

plete information with respect to what is intended. It is for this reason that class

precedence lists are recomputed regularly and that decisions based on potentially

incomplete information are monitored for errors.

The frequency with which class precedence lists are computed is the primary

reason that the approach relies on as few dependencies as reasonably possible.

When computing cpl(CI), we do not use the class precedence lists of any of the

elements of cpl(CI). If some Xi in cpl(CI) is also incomplete, then at the time we

compute cpl(CI), we should recompute cpl(Xi) as some classes within cpl(Xi) may

have changed. In effect, we could end up recomputing the relationships between

all incomplete classes on each generic function call. Despite the fact performance

is not the goal with this approach to class hierarchy derivation, such a performance

penalty might be onerous.

Lastly, we point out that when the class precedence list is not required for any

methods when incomplete classes are involved, there are no problems with exe-

cution, save for the established handlers being overridden. In order for the class

precedence list to be ignored, each generic function call in which an incomplete

class factors into the choice of applicable methods must have a method specialized

precisely to the type of the incomplete class in the appropriate required argument.

Furthermore, call-next-method is never invoked in the body of these methods. As-

suming the conventions are followed, the class is merely an aggregate. In this case,
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slots will be created as required and no relationships will be indicated between

classes. Thus, for every pair of incomplete classes A, B, we have s(A) 6⊆ s(B).

The approach we have described may capture single inheritance and some cases

of multiple inheritance, given certain conditions. Specifically, it requires a lack of

abstract classes and enough slot information to discern provably incorrect relation-

ships between classes. Also, if the applicable specializers for some incomplete class

CI on a generic function only contain classes intended to be related to CI , then false

positives will not be present. Given the lack of evidence for detecting relationships

and that some hierarchies can be determined or closely approximated with these

conditions, we conclude that the approach is worth pursuing.

Summary

The implementation described above for the evaluation strategy given in Section 5.1

augments the runtime of a Lisp system to recover from three situations that nor-

mally cause an error: no class defined, no slot defined and no method found. By

handling these cases, class definitions can be elided from program text and con-

structed as required at runtime.

In particular, the implementation augments the following functions. Each are

briefly summarized below.

• find-class is wrapped with a condition handler to create incomplete classes

when no class is found.

• slot-missing and make-instance have methods specialized to incomplete

classes to create slot definitions that do not exist within the incomplete class

definition.

• function and fdefinition are wrapped with a condition handler to define

generic functions for slot accessor functions when a function is undefined and
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the call matches a pattern for a slot accessor function.

• no-applicable-method and no-next-method have methods defined that com-

pute the applicable specializers when instances of incomplete classes are passed

in for required parameters, then compute the class precedence lists of the in-

complete classes. Methods are also defined for the generic functions compute-

-applicable-methods and compute-applicable-methods-using-classes,

specifically for the purpose of computing applicable methods.

5.3 Effectiveness

We now show the effectiveness of the technique presented in the previous section on

an extended example. The technique is shown to derive a working class hierarchy

that behaves as intended in the program and we discuss in more detail why this

happens, demonstrating the conditions under which the technique works. We also

discuss ways to address the shortcomings described previously.

A small program for generating rudimentary reports about a course is given in

Figure 5.1. The program contains no class definitions for the six intended classes:

course, person, student, lecturer, ta (teaching assistant) and course-head.

When evaluated with the runtime extensions described, incomplete class metaob-

jects are created for the undefined classes making up the specializers on the generic

functions report-on and associate-person. This constitutes the entire set of in-

tended classes, although no slot specifiers are present.

The first task of the program is to create a course object and associate people

with it. Instances of the incomplete classes are created from *person-data*; note

that each element of the data constitutes parameters to make-instance.

Calls to associate-person always match their parameters specializers precisely

and do not invoke any other methods, so the need for class precedence lists is
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(defparameter *person-data*

’((student :name "Alice" :sid 100)

(student :name "Bob" :sid 101)

(student :name "Charlie" :sid 102)

(student :name "Diane" :sid 103)

(ta :name "John" :sid 200 :office "HR1")

(ta :name "Sally" :sid 201 :office "HR2")

(lecturer :name "Al" :office "R1")

(lecturer :name "Mike" :office "R2")

(course-head :name "Mary" :office "R10" :phone "x759")))

(defgeneric report-on (obj)

(:method ((obj person))

(format t "Name: ~A~%" (name obj)))

(:method ((obj student))

(format t "Student id: ~A, " (sid obj))

(call-next-method))

(:method ((obj lecturer))

(format t "Office: ~A, " (office obj))

(call-next-method))

(:method ((obj course-head))

(format t "Phone: ~A, " (phone obj))

(call-next-method))

(:method ((obj course))

(mapc #’report-on (students obj))

(mapc #’report-on (tas obj))

(mapc #’report-on (lecturers obj))

(report-on (course-head obj))))

Figure 5.1: A program lacking class definitions
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Continued from previous page

(defgeneric associate-person (p c)

(:method ((p student) (c course))

(push p (students c)))

(:method ((p ta) (c course))

(push p (tas c)))

(:method ((p lecturer) (c course))

(push p (lecturers c)))

(:method ((p course-head) (c course))

(setf (course-head c) p)))

(let ((course (make-instance ’course)))

(loop for data in *person-data*

for person = (apply #’make-instance data)

do (associate-person person course))

(report-on course))
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Class Slot specifier names
course students, tas, lecturers, course-head

person —
student name, sid

lecturer name, office

ta name, sid, office

course-head name, office, phone

Table 5.1: Slot specifiers of incomplete classes before report-on is called

alleviated, although they are still computed.

Each method on associate-person, when called the first time, attempts to call

an undefined function. For example, when the method specialized to person and

course is called, an attempt is made to call the function (setf students). (This

is done by the macro push.) Since that function does not exist and its call matches

that of a writer, accessor methods are defined for (setf students) and students.

The accessors use slot-value to access the slot, which creates the slot students in

course. The case is similar for the other methods on associate-person.

Before report-on is called, it is instructive to examine the state of each in-

complete function with respect to its slot specifiers. The current state is given in

Table 5.1. The intended relationships between the classes are reasonably apparent,

even ignoring the semantics behind the names of the classes. Also note that person

is an abstract class.

At the invocation of report-on with the instance of course passed to it, no

class precedence list factors into the choice of method. However, within the body

of that method, report-on is called on the objects contained within the instance.

The first such call is performed on an instance of a student. There is one method

specialized to the student class which invokes call-next-method. It is here that
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the class precedence list is used. We have

∆report-on(student) = {course-head, lecturer, ta, student, course, person}

and

cpl′(student) = {ta, lecturer, course-head}

Note that the value of cpl′(student) is the set of the specializers on the first argu-

ment of associate-person, excluding student. This is because the last time an

instance of student was passed to a generic function (associate-person), none of

the classes appearing in the specializer of the first argument had any slot specifiers

and thus, were all trivially related to student.

Looking at potential superclasses of these two sets, only person meets the re-

quirements since all other classes have slots with names that are not in student.

Thus cpl(student) = {person}. This is true for each instance of student that

report-on is applied to in the mapc call.

Next, we look at the call to report-on on instances of ta. In this case we have

∆report-on(ta) = ∆report-on(student)

and

cpl′(ta) = {student, lecturer, course-head}

The potential superclasses consist of student, lecturer and person. Since

sim(ta, student) = sim(ta, lecturer), the order of student and lecturer is ar-

bitrary. We will use lexicographic ordering of the class names. Thus,

cpl(ta) = (lecturer, student, person).
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The program will evaluate without error and produce the class precedence lists

given in Figure 5.2. The corresponding class hierarchy is also provided.

What is interesting with this example is that it captures multiple inheritance.

This is because all incomplete classes had sufficient slot specifiers to differentiate

them when computing their class precedence lists. Note, however, that the class

person has no slot specifiers when it is intended to have one (the slot name). The

hierarchy does not capture this information because person was an abstract class.

We see that by fully instantiating classes before they are passed to methods greatly

reduces the chances of false positives, as reasoned earlier. However, the scenario is

somewhat contrived. Effective use of the class derivation technique demands that

we create objects with a distinctive set of slot specifiers before using them.

The fact that person was an abstract class is the reason that it is considered to

be a superclass of course, although this was not intended. By creating an instance

of person, giving it a name slot and running the program again, this relationship

would be eliminated.

To see what problems can arise with abstract classes, suppose no instances of

lecturer were created before report-on was called with an instance of student.

Then ∆report-on(student) and cpl′(student) are the same as previously described,

but now

cpl(student) = (lecturer, person).

This leads to the incorrect output, although it does not interrupt the operation of

the program.

One way to deal with incorrect slot specifiers in abstract classes is to use a ver-

sion of the algorithm given by Lieberherr for factoring out common attributes in

classes to form class hierarchies [44]. This would find that name is common to all

the classes and should belong in the superclass, assuming that there is no intention

to override the behaviour of the slot in a subclass.
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Class precedence lists

cpl(course) = (person)

cpl(person) = ()

cpl(student) = (person)

cpl(lecturer) = (person)

cpl(ta) = (lecturer, student, person)

cpl(course-head) = (lecturer, person)

Class hierarchy

Person

Student Lecturer

TA Course Head

Figure 5.2: Class precedence lists and hierarchy of report program
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As we have shown, the technique does effectively capture class hierarchies, al-

though the situation described is somewhat idealistic. By following a certain ap-

proach, that is, instantiating objects with a distinctive set of slots and defining meth-

ods such that unintended class relationships are not given, it is likely the intended

hierarchy will be captured. Whether this is simpler than actually writing out the

hierarchy is an open question, although we do note that it is less work in that the

hierarchy need not be written explicitly. This does permit flexibility in the definition

of classes, however, since a change in definition is realized by simply changing how

the class is used.

5.4 Summary

We have detailed an approach to deriving class hierarchies from the use of objects

in a running system based on evidence that indicates slots present in classes and

relationships between classes. This approach enables objects to be created without a

definition of the class provided beforehand. Thus, we can eliminate class definitions

from the code and still use instances of them in a program.

The technique was analyzed to show its effectiveness in programs and its short-

comings were discussed. In particular, it was shown that complex hierarchies with

multiple inheritance can be difficult to capture as intended due to lack of reliable

evidence. We argued that single inheritance can be captured more reliably, but it

requires certain conditions be met in order to do so. An extended example was

presented that demonstrated a working multiple inheritance hierarchy can be cap-

tured under these conditions, despite some errors in the derived class definitions.

We conclude that the technique is effective when a certain style is used and that it

is unclear whether it is better to write the hierarchy out explicitly.
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Chapter 6

Conclusions

This thesis has argued that deriving structure from behaviour, what we have termed

behavioural synthesis, is useful for writing specifications in an implementation lan-

guage because it allows details pertaining to structure to be omitted in the code de-

scribing the specification while allowing the specification to be executable. Further-

more, we have argued that the abstractions represented by techniques employing

behavioural synthesis can be used to produce specialized versions of the abstrac-

tions, eliminating the abstraction from the specification to produce an implementa-

tion.

The first approach to behavioural synthesis we demonstrated was dynamic ab-

stract data types (DADTs), a framework for defining data types that provides a

mechanism for dynamic reconfiguration of their structure based on the context in

which certain operations occur. In particular, they are helpful for performing dy-

namic analysis and facilitating the definition of types that are the union of other

types. Such types allow for succinctness in the definition of behaviour.

Furthermore, we showed how program code can be generated to specialize types

represented by DADTs. This facilitates the evolution of a specification to an imple-

mentation. In particular, we demonstrated the specialization of a DADT that is

the union of other types with overlapping interfaces, thus introducing ambiguity.

The ambiguity is resolved interactively, but the context at the time of resolution is
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remembered and code is generated based on those contexts.

In addition to specializing type definitions, we demonstrated a technique for

building class definitions from the use of objects, enabling class definitions for those

objects to be omitted from the program. The technique is shown to be effective, in

the cases considered, at capturing class hierarchies from lexical and behavioural

evidence found in the program and its execution. Limitations to the technique and

conditions under which it is expected to work were also described. Although the

programming style used in code lacking class definitions affects the results, it does

permit the implicit structure in a specification to be altered by only making changes

to behaviour.

Behavioural synthesis presents interesting avenues for code generation through

context capture and evidence of structure presented by language constructs. The

problems encountered in specializing the types of DADTs show that context must

be defined carefully in order to produce code capturing the intent of an operation.

Also, the shortcomings of class hierarchy derivation show that further research on

language constructs helpful for exhibiting structure from behaviour is required.
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Lexicon

This lexicon provides definitions for common terms used in many object-oriented

languages that are likely familiar to the reader, but whose definition in most object-

oriented languages differs from that used in this work.

class an object made up of slots that describes the structure of other objects. In

most object-oriented languages, classes are composed of slots and methods,

and are not themselves manipulable objects. See Section 5.1 for further dis-

cussion.

generic function a function associated with methods that chooses a set of methods

to call when invoked, thus determining its behaviour, based on the arguments

passed to the function.

method an object that makes up the behaviour of a generic function when the

arguments to that function are of certain classes or values. In most object-

oriented languages, methods are associated with a single class. In this work,

methods are associated with multiple classes.

slot a component making up an instance that holds a value; more commonly

known as an attribute or field.
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