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ABSTRACT
We deal with systems of algebraic equations with paramet-
ric exponents. As the first step for solving such systems,
we consider the most simple cases, univariate case and 0-
dimensional case, and give a concrete method for comput-
ing Gröbner bases. From studies on such cases, we derive a
simple formulation and basic notions which will be helpful
to deal with more complicated cases.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms

General Terms
Algorithms, Theory

Keywords
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1. INTRODUCTION
In mathematical problem, there arise systems of algebraic

equations with parameters. For solving systems with para-
metric coefficients, many works were done by several au-
thors, where complete methods are proposed. (See [10, 5,
11].) Systems with parametric exponents are also impor-
tant and very interesting. However, as few works except [9,
12] were done for those systems, many questions/problems
seem untouched. Here we consider certain stability of sys-
tems with parametric exponents and computability of their
solutions. These problems can be translated to problems on
the form of Gröbner bases of (radical) ideals generated by
polynomials with parametric exponents.
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The problems dealt with here are originally raised by
Tadashi Takahashi in order to give a computational proof of
non-degeneracy conditions of singularities of algebraic sur-
faces [9]. We show one typical type of his problem.

Example 1. What is the singularity of Sk,0 [1, 9]

f = x2z + yz2 + y4k+1 + axy3k+1 + bzy2k+1,

where k is a positive integer and a, b are complex numbers.
Then we have to solve the following system

f =
∂f

∂x
=

∂f

∂y
=

∂f

∂z
= 0.

The “parameter” k appears in coefficients, which makes the
problem more difficult.

Here we set our problem and our goal as follows:

Goal. For an ideal I generated by finitely many polyno-
mials with parametric exponents, we want to examine the
following problems for I. When one fixes a value (a posi-
tive integer) for each parameter, the reduced Gröbner basis
([2, 3]) can be determined with respect to a fixed ordering.
Then,

(1) Stability: When the values of parameters are large
enough, does the form of the Gröbner basis of I be-
come “stable”? Or the form can be determined “uni-
formly” in the values of parameters? If one wants to
express the zeros of I uniformly, one may concentrate
on the radical of I.

(2) Computability: If the form of the Gröbner basis of
I is stable for sufficiently large values for parameters,
are there algorithms for computing it? That is, do
algorithms stop in finitely many steps independent of
the values of parameters?

The problems are also heavily related to the following:

(3) Effects of “sparsity” of generating sets on the
computational complexity: When the values of pa-
rameters are sufficiently large, the inputs are sparse
polynomials. Especially, in the 0-dimensional case,
the computational complexity is estimated using the
Bézout bound, when one use a rev-lex ordering. Since
the Bézout bound will be given as a polynomial func-
tion in the parameters of our problem, study on ideals
with parametric exponents might give some insights in
the problem.
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For an arbitrary ideal generated by polynomials with para-
metric exponents, “stability/uniformity” is impossible in gen-
eral. However, there are some classes of ideals which posses
such stability/uniformity, and it is very important to find a
wider class with many applications.

Here, as the first attempt to attack the problems, we
deal with the most simple cases, univariate case and 0-
dimensional case with one parameter, and have an affirma-
tive answer with concrete procedures for computing Gröbner
bases. Aiming for dealing with more complicated cases, we
derive a “simple formalization” and important basic notions
from studies on such simple cases.

As another attempt for the problem with one parame-
ter, Weispfenning, also inspired by Takahashi’s problem, has
made a complete work [12] on ideals generated by monomi-
als and binomials. His results are orthogonal to ours and
both supplement each other.

2. FORMULATION
Here we give a precise settings on the problems and nec-

essary notions in order to solve them.

Settings. We consider a polynomial ring Q[X] (or C[X]),
where X = {x1, . . . , xn}. So, polynomials with paramet-
ric exponents are treated as “ordinary” polynomials with
fixed (but unknown) integer values substituted in parame-
ters. (So, parameters are not treated as variables.) As every
exponent is non-negative, there might be certain restriction
on the values of parameters. But, by shifting values, with-
out loss of generality, we can assume that parameters can
range over all positive integers.

Definition 1 (Ep-Power Product and Ep-Ideal).
We call a power product with parametric exponents an ep-
power product, a term having an ep-power product as its
subterm an ep-term, and a polynomial with ep-term an ep-
polynomial. When an ideal has an ep-polynomial in its
generator, we call the ideal an ep-ideal. In distinction to
ep-polynomials and ep-ideals, we call a polynomial without
ep-term an ordinary polynomial, and an ideal generated by
ordinary polynomials an ordinary ideal. (The name “ep” is
given by Weispfenning.)

Example 2. The polynomial in Example 1

f = x2z + yz2 + y4k+1 + axy3k+1 + bzy2k+1

is an ep-polynomial in C[x, y, z] for fixed complex numbers
a, b, where y4k+1, axy3k+1, bzy2k+1 are ep-terms having yk

as their subterm with parameter k ≥ 1.

In Example 2, yk plays an essential role. Because, replac-
ing yk with a new variable w, we have an ordinary polyno-
mial

g = x2z + yz2 + w4y + axw3y + bzw2y.

Definition 2 (Essential Set).
For an ep-polynomial f , there is a set of ep-power products
{T1, . . . , Ts} such that each Ti is a subterm of some term
appearing in f and one can obtain an ordinary polynomial
by replacing each Ti with a new variable yi. We call the set
{T1, . . . , Ts} an essential set for f . Moreover, for a gener-
ating set G of an ideal I, if a set {T1, . . . , Ts} of ep-power
products is an essential set for every element in G, we call

the set {T1, . . . , Ts} an essential set for I. There might be
several essential sets for a fixed f .

Here we consider forms of Gröbner bases in order to give
certain “stability”. From now on, we fix a term order ≺. Let
I be an ep-ideal having an ep-polynomial in its given gener-
ator F , and K = (k1, . . . , kt) a set of parameters appearing
in I. (We write I = 〈F〉.) For each A = (a1, . . . , at) ∈ Nt,
where N is the set of natural numbers (positive integers),
let G(A) be the reduced Gröbner basis of an ep-ideal I with
A substituted in K.

Definition 3 (Stability of Gröbner Basis).
The ideal I is said to have a stable Gröbner basis if there
exists a vector B = (b1, . . . , bt) ∈ Nt, called a bound, such
that one of the following occurs:

(1) Generic Form: For every A = (a1, . . . , at) with
ai ≥ bi, the number of elements of G(A) does not de-
pend on the values A of parameters K, and each ele-
ment has finitely many terms independent of the val-
ues A of parameters K and is “comprehensive”. That
is, each element can be expressed by a sum of fixed
ep-terms and ordinary terms, and for fixed values A of
parameters K, we have the reduced Gröbner base G(A)
by simply substituting those values. In this case, G(A)
is called of generic form.

(2) Periodic Form: There also exists a vector P =
(p1, . . . , pt) ∈ Nt such that for every A = (a1, . . . , at)
with ai ≥ bi, G(A) is determined uniquely by the val-
ues (a1 mod p1, . . . , as mod ps). In this case, G(A) is
called of periodic form, and P is called a period. As
its special case, there is a case where G(A) does not
depend on any values A of parameters. In this case,
G(A) is called of completely stable form.

(3) Bounded Form: For every A = (a1, . . . , at) with
ai ≥ bi, G(A) is trivial (G(A) = {1}). In this case,
G(A) is called of bounded form. This is also a special
case of completely stable form.

We also call periodic forms (including bounded forms) finite
forms, because the degree of every element of the Gröbner
basis is bounded.

Moreover, the ideal I is said to have a semi-stable Gröbner
basis if I is expressed as an intersection of fixed ideals having
stable Gröbner bases, where ordinary ideals are considered to
have stable Gröbner bases.

Example 3. The following is a Gröbner basis of the ideal
generated by itself with respect to lex order x1 ≺ x2 ≺ x3. It
is of generic form.

f1 = xk+2
1 + 1

f2 = x2 − xk+1
1 − x1 + 1

f3 = x3 − xk
1 − 1

The radical of the ideal for Sk,0 in Example 1 is 〈x, y, z〉
for almost every complex values for a and b, which gives an
example of finite form (completely stable). (See Example 5.)

Example 4. (1) The ideal 〈xk − 1, x2 + x + 1〉 becomes
〈x2 + x + 1〉 if k ≡ 0 (mod 3) and 〈1〉 for otherwise.
This is a periodic case.
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(2) For the ideal 〈xk−5x+2, x2+x−6〉, it becomes 〈x−2〉
if k = 3, and 〈1〉 otherwise. This is a bounded case.

(3) For the ideal 〈xk+1−xk +x2−1, x2+x−2〉, it becomes
〈x−1〉 for every k ≥ 1. This is a completely stable case.

Remark 1. With respect to the lex order x ≺ y, the ideal
〈xk − 1, (x − 1)y − 1〉 does not have its Gröbner basis G of
generic form, but G can be expressed by a certain “compre-
hensive form” as follows:

(xk − 1)

(x − 1)
, y +

(xk − ky + k − 1)

(x − 1)2
.

But, as mentioned in Example 7, it has certain difficulty in
computation. So, it seems difficult to handle such a case as
a generic form case.

2.1 Applicable Techniques
Here we mention two important techniques which seem

very useful to solve a system of algebraic equations with
parametric exponents and to compute its Gröbner basis.
From now on, we assume that I is an ep-ideal generated
by F = {f1, . . . , fr}, and T = {T1, . . . , Ts} is an essential
set. See [4, 3] for elimination ideal and [10, 11] for compre-
hensive Gröbner bases.

Slack Variables and Elimination. If I has a Gröbner basis
of finite form, it might be effective to eliminate all ep-power
products appearing in generating polynomials.

From F , replacing ep-power products T1, . . . , Ts with new
slack variables y1, . . . , ys, we have a set F0 of ordinary poly-
nomials in Q[X, Y ]. That is, from each fi, we have a new
polynomial fi,0(X, Y ) such that fi,0(X, T ) = fi(X).

Let I0 be the ideal in Q[X, Y ] generated by F0. Com-
puting the elimination ideal J = I0 ∩Q[X] with some fixed
elimination order X ≺≺ Y , we find ordinary polynomials
belonging to the ep-ideal I. Let H be a Gröbner basis of J .
Then,

Lemma 1. H is contained in I, that is, J is contained
in I.

Proof. For each polynomial h(X) in H, we show that
h(X) belongs to I. As h(X) ∈ J = I0 ∩ Q[X], there are
polynomials ai(X, Y ) such that

h(X) =
r�

i=1

ai(X, Y )fi,0(X, Y ).

Then, substituting Ti for each yi, we have

h(X) =
r�

i=1

ai(X, T )fi(X).

This implies that h(X) belongs to I.

Definition 4. We call the above elimination ideal J the
finite subideal of I. (J depends on the choice of T .)

If the computed finite subideal J is 0-dimensional, there
is a method for computing the Gröbner basis of finite form,
which will be shown in later. As to computing all zeros,
we have a more efficient way: As J ⊂ I, the set of zeros
V (J ) contains V (I). Thus, all zeros of I can be obtained

by checking if each zero of J satisfies the original generating
set F . This method is very efficient when V (J ) is a fixed
finite set, that is, J is 0-dimensional.

Moreover, it might be much efficient to use prime decom-
position of J . (See [3, 8] for detailed algorithms.) For each
prime divisor P of J , we compute I + P. Then, gathering
the computational results of I +P for all prime divisors P,
we have the final result.

Example 5. For the ep-polynomial Sk,0 in Example 1

f = x2z + yz2 + y4k+1 + axy3k+1 + bzy2k+1,

{yk} is the unique essential set. So, replacing yk with w, we
have an ordinary polynomial in 4 variables

f0 = x2z + yz2 + w4y + axw3y + bzw2y.

In Takahashi’s Problem Sk,0, we have the following 3 addi-
tional polynomials obtained by partial differentiation:

f1 = 2xz + aw3y

f2 = z2 + (4k + 1)w4 + (3k + 1)axw3 + (2k + 1)bzw2

f3 = x2 + 2yz + bw2y.

Then, considering a, b, k as other variables, that is, consid-
ering only generic case for parametric coefficients a, b, k, we
can compute an elimination ideal J of 〈f0, f1, f2, f3〉 elimi-
nating w in the polynomial ring Q(a, b, k)[x, y, z, w].

With lex order w 
 z 
 y 
 x, we computed J and
also computed all its prime divisors. Then J has two prime
divisors

〈x, y〉, 〈x, z〉.
We divide the problem into two cases, the case x = y = 0
and the case x = z = 0. Then, we have

x = y = 0 → z = 0

x = z = 0 → y = 0,

which shows that 〈x, y, z〉 is the radical of the ep-ideal I in
generic case for a, b.

Remark 2. In Example 5, the parameter k also appears
in coefficients. So, the above computation corresponds to
“generic case”, that is, a, b, k does not satisfy certain alge-
braic constraints, actually, a �= 0 and b �∈ {0, 2,−2} (see [9]).
For solving such parametric systems precisely, see Chapter 6
Section 3 in [4] or comprehensive Gröbner basis computation
[10, 5, 11].

If one wants to classify all possible forms of the Gröbner ba-
sis, one needs the technique derived from Comprehensive
Gröbner Basis[10, 5, 11]. See also the most recent work
[12] for ep-ideals generated by monomials and binomials.

Comprehensive Gröbner basis. We execute Buchberger
algorithm [2, 4, 3] stepwise, where we decide which term
should be the leading term. So, there might appear some
branches depending on the values of parameters.

Example 6. If two ep-terms y3k+2 and y2k+20 appear,
their order will depend on the value of k as follows:

k > 6 → y3k+2 
 y2k+8

k < 6 → y3k+2 ≺ y2k+8

k = 6 → we must merge y3k+2 and y2k+8.
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The most crucial problem is the termination of Buchberger
algorithm including monomial reductions in finitely many
steps independent of the values of parameters. There is a
case where the computational complexity of Buchberger al-
gorithm depends on the value of parameters. The following
example requires O(k) steps.

Example 7.

f(x, y) = xk − 1

g(x, y) = xy − y − 1

With respect to the lex order y 
 x, the reduced Gröbner
basis will be

{xk−1 + xk−2 + · · · + 1, xk−2 + 2xk−3 + · · · + (k − 1) + ky}.

This implies that the Buchberger algorithm requires at least
k monomial reductions.

From now on, we will consider the simplest case where
an essential set consists of one variable with one parameter
exponent.

3. UNIVARIATE CASE
Here we consider an ep-ideal I in Q[x]. And suppose that

{xk} is the unique essential set for I. In general, it is not
true that the ideal I has a (semi-)stable Gröbner basis. But,
in this case, there is a certain stability.

Remark 3. In many systems appearing in mathematics,
k is supposed to be sufficiently large, or terms with differ-
ent expressions are supposed different to each other for any
values of parameters. From these assumptions, there are
certain restrictions on values of parameters. For example,
for the expression f(x) = x2k + xk+5 + x12 the condition
k > 7 might be given to assert that 2k > k + 5 > 12.

Settings. For ep-polynomials f(x), g(x) over Q with essen-
tial set {xk}, we compute gcd(f(x), g(x)), which is a Gröbner
basis of the ideal I = 〈f(x), g(x)〉. (We assume that k does
not appear in coefficients.) Moreover, for simplicity, f(x)
and g(x) have non zero constant terms. (We remove the
factor x from f(x) and g(x) in advance.)

Then we have the following result.

Theorem 1. There are positive integers P, B computable
from f(x), g(x) such that for each value a ≥ B of the pa-
rameter k, gcd(f(x), g(x)) is the product of a “generic form
factor” and a “finite form factor” determined uniquely by
the value a mod P . That is, the ep-ideal I has a semi-stable
Gröbner basis.

In the following, we will give a concrete procedure for com-
puting gcd(f(x), g(x)), which gives a proof of Theorem 1.

First, replacing xk with a new variable y, we compute
bivariate polynomials f0, g0 from f, g. So, f(x) = f0(x, xk)
and g(x) = g0(x, xk). Then, as bivariate polynomials, we
compute gcd(f0(x, y), g0(x, y)) which we denote by h0(x, y).
Then, h(x) = h0(x, xk) is a common factor of f(x), g(x).
We call h(x) the generic form factor. (There is a case where
h(x) is an ordinary polynomial.)

Next we consider f ′(x) = f(x)/h(x) and g′(x) = g(x)/h(x)
and try to compute gcd(f ′(x), g′(x)). Replacing xk with a

new variable y in f ′, g′, we have bivariate polynomials f1, g1

from f ′, g′, that is, f ′(x) = f1(x, xk) and g′(x) = g1(x, xk).
As f0 = f1h0 and g0 = g1h0, f1 and g1 have no common

factor as bivariate polynomials. So, the resultant resy(f1, g1)
does not vanish, and it is an ordinary non-zero polynomial
in x belonging to 〈f1(x, y), g1(x, y)〉.

Consider the finite subideal 〈f1(x, y), g1(x, y)〉∩Q[x] which
is not {0}, and let m(x) be its generator. Then m(x) belongs
〈f ′(x), g′(x)〉 by Lemma 1.

If m(x) is a constant (non zero), then 〈f ′(x), g′(x)〉 = 1
and so there is no common factor of f′(x), g′(x).

If m(x) is not a constant, we factorize m(x) into its irre-
ducible factors mi(x) over Q:

m(x) =
r�

i=1

mi(x)ei .

Since m(x) belongs to the ideal 〈f ′(x), g′(x)〉 and mi(x)ei ’s
are pairwise prime, we have

gcd(f ′, g′) = gcd(f ′, g′, m) =
r�

i=1

gcd(f ′, g′, mi(x)ei).

Thus, the gcd computation is reduced to the computation
of gcd(f ′, g′, mi(x)ei). (We already exclude x from factors.)

Now we divide the factors mi(x) into two cases:

Definition 5. If mi(x) is a factor of xp − 1 with a pos-
itive integer p, we call mi(x) a cyclotomic factor. And we
call the smallest positive integer p such that mi(x) divides
xp − 1 the period of mi(x). (In this case mi(x) is a cyclo-
tomic polynomial. ) Otherwise, we call mi(x)(�= x) a non
cyclotomic factor.

We note that the period Pi of mi(x) can be bounded by
a certain function in deg(mi), as deg(mi) = φ(Pi). (As an
easy example, Pi < 2 deg(mi)

2.) Thus, we can decide wether
mi(x) is a cyclotomic factor and can compute its period if
so by dividing xn −1 by mi for each n less than a computed
bound on Pi.

Cyclotomic Case. Suppose that mi(x) is a cyclotomic fac-
tor of the period Pi. In this case, we have the following.

Proposition 1. gcd(f ′(x), g′(x),mi(x)) is determined
uniquely by the value of k mod Pi.

Proof. For each value k, we denote k mod Pi simply by
a, where a ∈ {0, 1, . . . , Pi − 1}. As mi(x) is irreducible,
gcd(f ′(x), g′(x),mi(x)) is non-trivial if and only if both of
f ′(x), g′(x) are divided by mi(x). As mi(x) divides xPi −
1, xk and xa are congruent modulo mi(x), that is, both
belong to the same residue class in the residue class ring
Q[x]/〈mi(x)〉. Substituting a for k, we have an ordinary
polynomial f ′

a(x) congruent to f ′(x) modulo mi(x). Then,
as mi(x) divides f ′(x) − f ′

a(x), mi(x) divides f ′
a(x) if and

only if mi(x) divides f ′(x). Similarly, we also have an
ordinary polynomial g′

a(x) congruent to g′(x). This argu-
ments shows that gcd(f ′(x), g′(x), mi(x)) is determined by
gcd(f ′

a(x), g′
a(x),mi(x)) and hence, it is determined uniquely

by the value a ≡ k (mod Pi).

Thus, we can determine whether gcd(f(x), g(x)) has mi(x)
as its factor simply by dividing f ′

a(x) and g′
a(x) by mi(x) for
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each a ∈ {0, 1, . . . , Pi − 1}. (f ′
a(x) and g′

a(x) are obtained
from f ′(x) and g′(x) by substituting a for k.) If ei = 1, we
are done.

For the case ei > 1, we need “derivatives” to know the
power e such that gcd(f ′(x), g′(x)) = mi(x)e. Suppose
that we already know mi(x) divides gcd(f(x), g(x)). Then,
mi(x)2 divides gcd(f(x), g(x)) if and only if mi(x) also di-

vides both of df ′(x)
dx

and dg′(x)
dx

. We note that there appear

parametric coefficients (linear in k) in df ′(x)
dx

and dg′(x)
dx

.
For each a ∈ {0, 1, . . . , Pi−1}, we replace the parameter k

in exponents with a. (For a = 0, some exponent may be neg-
ative. In this case, we replace k with Pi instead of 0.) But,
for parametric coefficient linear in k, we introduce another
parameter s and replace the parameter k in coefficients with
sPi +a. We denote new ordinary polynomials obtained from
df ′(x)

dx
and dg′(x)

dx
by f ′′

a (x) and g′′
a (x), respectively.

Then we compute resultants Ra,f = resx(mi(x), f ′′
a (x))

and Ra,g = resx(mi(x), f ′′
a (x)), where s is considered as a

variable and polynomials are considered in Q[x, s]. Then
Ra,f and Ra,g are univariate polynomials in s.

Lemma 2. For each a(= k mod Pi) and sPi + a, the fol-
lowings hold:

(1) If both of Ra,f and Ra,g are zero polynomials, then
mi(x)2 divides gcd(f ′(x), g′(x)) for any k = sPi + a.

(2) If at least one of Ra,f or Ra,g is non zero constant,
then mi(x)2 does not divide gcd(f ′(x), g′(x)) for any
k = sPi + a.

(3) If at least one of Ra,f and Ra,g is a non constant poly-
nomial and the other is not a non zero constant, then
mi(x)2 divides gcd(f ′(x), g′(x)) only for special values
k = sPi+a, where s are positive integral common roots
of Ra,f (s) and Ra,g(s). (Where we consider all inte-
ger as roots of the zero polynomial.) Conversely, in
this case, let M be the maximal value of k = sPi + a,
where s ranges all positive integral common roots. (If
there is no such common root, we set M = 0.) Then,
for any k = sPi + a > M , m2

i (x) does not divide
gcd(f ′(x), g′(x)).

Proof. For each a(= k mod Pi) and sPi + a, mi(x)2 di-
vides gcd(f ′(x), g′(x)) if and only if mi(x) divides both of
f ′′

a (x) and g′′
a (x). By using this fact, we have only to con-

sider wether mi(x) divides both of f ′′
a (x) and g′′

a (x). Then,
by using resultant theory, we have (1),(2) and (3). Here, as
mi(x) has no parametric coefficient, we do not need to check
if the leading coefficients of f′′

a (x) and g′′
a (x) vanish or not.

(See [4] Chapter 3 Section 6.)

By Lemma 2, we can decide if mi(x)2 divides gcd(f ′(x), g′(x))
for any k = sPi + a. And, if not, we also have a bound,

say M
(2)
a such that for any k = sPi + a > M

(2)
a , m2

i (x)
does not divide gcd(f ′(x), g′′(x)). In this case, we need to
compute gcd(f ′(x), g′(x),mi(x)ei) only for the special val-

ues k = sPi + a ≤ M
(2)
a ,

While e ≤ ei and mi(x)e−1 divides gcd(f ′(x), g′(x)), re-

peating the same procedure for higher derivatives
def ′

a
dxe and

deg′
a

dxe , we can decide wether mi(x)e divides f ′
a(x) for ev-

ery k with k ≡ a (mod Pi). Moreover, if not, we have a

bound M
(e)
a such that mi(x)e does not divide f ′(x) for any

k > M
(e)
a with k ≡ a (mod Pi).

Thus, gathering these informations on the divisibility, we
have Proposition 2 and Procedure [Cyclotomic Case].

Remark 4. For the derivatives
def ′

a
dxe and

deg′
a

dxe , every ex-
ponents must be non-negative. Therefore, we need the con-
dition k ≥ ei and use a+ dPi for some positive integer d for
substitution instead of a. From this modification, for smaller
value k < ei, we have to compute gcd(f′(x), g′(x), mi(x)ei)
individually.

Proposition 2. There exists a positive integer Mi such
that if k > Mi, then gcd(f ′(x), g′(x),mi(x)ei) is determined
uniquely by the value k mod Pi. Moreover, Mi can be com-
puted by f(x), g(x) and mi(x).

Procedure [Cyclotomic Case]
For each value a ∈ {0, 1, . . . , Pi − 1}, execute the following:

1. Compute ordinary polynomials f′
a(x), g′

a(x) by substi-
tuting a for k.

2. Compute gcd(f ′
a(x), g′

a(x), mi(x)).

3. If gcd(f ′
a(x), g′

a(x),mi(x)) = 1, return 1.

4. If gcd(f ′
a(x), g′

a(x),mi(x)) = mi(x) then set E = ei,
F = f ′(x), G = g′(x) and A = mi(x).

5. If E = 1, then return A. Otherwise set E = E − 1.

6. while(E > 0)

6.1. Compute dF
dx

and dF
dx

. Set F = dF
dx

and G = dF
dx

.

6.2. Compute Fa and Ga by substituting a for k
in ep-terms and by replacing k with sPi + a in
coefficients. (See Remark 4 for a modification.)

6.3. Compute resx(Fa, mi) and resx(Ga, mi).

6.4. If both resultants vanishes, then set A = A ×
mi(x) and E = E − 1, and return to the top of 6.

6.5. Otherwise, compute the set R of all com-
mon positive integer roots of resx(Fa, mi) and
resx(Ga, mi).

6.6. If R = ∅, return A.

6.7. Let B = [A]. For each root s in R,

compute Fk and Gk from f ′(x) and g′(x) by re-
placing k with sPi + a, and

compute gcd(Fk(x),Gk(x), mi(x)ei) and append
(sPi + a, gcd(Fk(x),Gk(x), mi(x)ei)) to B.

6.8. return B.

7. return A.

Example 8. Consider the following polynomials:

f(x) = x3k − 2xk+6 + 1,

g(x) = (xk − 1)2 + (x2 + x + 1)2

The elimination ideal is generated by m(x) = (x2 + x +
1)2m′(x), where m′(x) is a non cyclotomic factor. For k ≡ 0
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(mod 3), f(x), g(x) are divided by x2 + x + 1. Then their
derivatives are as follows.

f(x)

dx
= 3kx3k−1 − 2(k + 6)xk+5,

g(x)

dx
= 2kxk−1(xk − 1) + 2(x2 + x + 1)(2x + 1)

Letting k = 3s, where s ≥ 1, and replacing k in the expo-
nents with 3, we have

f(x)

dx
→ (3s − 12)x8

g(x)

dx
→ 2sx2(x3 − 1) + 2(x2 + x + 1)(2x + 1).

By resultant computation, we can show that f(x), g(x) are
divided by (x2 + x + 1)2 only for k = 12, where s = 4.

Non Cyclotomic Case. For each non cyclotomic factor
mi(x)(�= x), we have

Proposition 3. There is a positive integer Bi such that
gcd(f ′(x), g′(x), mi(x)ei) is trivial for every k > Bi. More-
over, Bi can be computed by f(x), g(x) and mi(x).

Proof. Suppose that mi(x)(�= x) is a non cyclotomic
factor. For bivariate polynomials f1(x, y), g1(x, y) obtained
by replacing xk with y, we set

F (y) = resx(f1(x, y),mi(x))

G(y) = resx(g1(x, y),mi(x)).

Then, at least F (y) �= 0 or G(y) �= 0 holds. Because, if
F (y) = G(y) = 0, then mi(x) must divide both of f1(x, y)
and g1(x, y). But, as assumption, f1(x, y) and g1(x, y) have
no common factor, this is a contradiction. So, without loss
of generality, we can assume that F (y) �= 0. Moreover, as
m(x) is the generator of 〈f1(x, y), g1(x, y)〉 ∩ Q[x], we can
show that F (y) is not a non zero constant. (Otherwise,
m/mi belongs to 〈f1(x, y), g1(x, y)〉 ∩ Q[x].)

Suppose that mi(x) divides f ′(x) for some value of k.
Then, by property of the resultant, we can show that for
any root α of mi(x), αk must be a root of F (y). Now we fix
a root α of mi(x).

On the other hand, as F (y) is an ordinary univariate poly-
nomial in y over Q, we can set U and L as the maximal abso-
lute value of roots of F (y) and the minimum absolute value
of non zero roots of F (y). Then, if |α| > 1, it follows |αk| =
|α|k ≤ U and we obtain k ≤ log|α|(U). If |α| < 1, it follows

|αk| = |α|k ≥ L and we obtain k ≤ log1/|α|(1/L). Thus, let-
ting Bi be log|α|(U) or log1/|α|(1/L), mi(x) does not divide
f ′(x) for any k > Bi. In this case, gcd(f ′(x), g′(x), mi(x))
becomes trivial. Moreover, the above Bi can be computed
exactly by numerical computation of approximate value of
roots of mi(x) with rigorous error analysis. See [6, 7] for
exact methods and rigorous error analysis.

Now we give a concrete procedure.

Procedure [Non Cyclotomic Case]

1. Compute a root α of mi(x) with rigorous error analysis
and compute a correct bound A on |α| so that
• |α| > A > 1 if |α| > 1, and
• |α| < A < 1 if |α| < 1.

2. Compute F (y),G(y) by

F (y) = resx(f1(x, y),mi(x))

G(y) = resx(g1(x, y), mi(x)).

3. If F (y) �= 0, then compute a bound D on the absolute
value of roots of F (y) so that
• D > |β| for any root β of F (y) if |α| > 1, and
• 0 < D < |β| for any non-zero root β of F (y) if
|α| < 1.
If F (y) = 0, then compute a bound D on the absolute
value of roots of G(y) so that
• D > |β| for any root β of G(y) if |α| > 1, and
• 0 < D < |β| for any non-zero root β of G(y) if
|α| < 1.

4. Compute the smallest positive integer Bi such that
• if |α| > 1, ABi > D, and
• if |α| < 1, ABi < D.
Then, gcd(f ′(x), g′(x),mi(x)) is trivial if k > Bi.

5. Substituting 1, ..., Ni for k, compute

gcd(f ′(x), g′(x), mi(x))

and return them. (Bi can be updated as the largest
integer N ≤ Bi such that gcd(f ′(x), g′(x),mi(x)) is
non-trivial. If it does not exist, we can set Bi = 0.)

Remark 5. For the bound on |α|k, we use F (y). But,
F (y) tends to be very large, as the degree of F (y) increases
to the product of the y-degree of f1(x, y) and the x-degree
of mi(x). Instead of F (y) we can use another polynomial
obtained from f1(x, y) by substituting for x an approximate
value ᾱ of the root α of mi(x) with rigorous error analysis.
By Rouché’s theorem, roots of a polynomial are continuous
function in coefficients. From this theorem and precise ap-
proximation, we can estimate the absolute value of roots of
f1(α, y).

Example 9. Consider the following polynomials:

f(x) = x2k + x2+k + 2xk + 2,

g(x) = x2 + 2

Then, m(x) = x2 + 2 is a generator of the elimination ideal
and it is irreducible. The absolute value of roots of m(x) is√

2, and the absolute value of roots of F (y) = (y2 + 2)2 is
also

√
2. Therefore, we have A =

√
2 and U =

√
2, by which

we obtain B = 1. Thus, for any k ≥ 2, gcd(f(x), g(x)) = 1.
For k = 1, as f(x) = x3 + x2 + 2x + 2, g(x) = x2 + 2, we
have gcd(f(x), g(x)) = x2 + 2.

Combining two cases, cyclotomic case and non-cyclotomic
case, we gather bounds Mi, Bj and periods Pi. Then, letting

P = LCM(Pi | mi is a cyclotomic factor }
B = max{Mi, Bj | mi is a cyclotomic factor and

mj is a non-cyclotomic factor },

we obtain Theorem 1.

Procedure [General]
(Assume that f(0) �= 0 and g(0) �= 0.)

1. Replacing xk with a new variable y, compute bivariate
polynomials f0, g0 from f, g.
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2. In the polynomial ring Q[x, y], compute
the elimination ideal J = 〈f0(x, y), g0(x, y)〉 ∩ Q[x].

3. (General Form Factor) If J = {0}, we compute

h0 = gcd(f0(x, y), g0(x, y))

and h(x) = h0(x, xk), which is a common divisor of
f(x), g(x). To check if other common divisors exist or
not, we return the top and apply f/h and g/h.

4. (Finite Form Factor) If J �= {0}, we compute its gener-
ator m(x) by eliminating the variable y. (Then m(x)
is an ordinary polynomial.)

5. Factorize m(x) =
�r

i=1 mi(x)ei . Then divide the irre-
ducible factors mi(x) into factors of cyclotomic poly-
nomials and others. (We exclude x from factors.)

6. For each factor mi(x), execute the following:

6.1. For each cyclotomic factor mi(x),
compute gcd(f(x), g(x),mi(x)ei) by Procedure
Cyclotomic Case.

6.2. For each non-cyclotomic factor mi(x), compute
gcd(f(x), g(x),mi(x)ei) by Procedure Non Cy-
clotomic Case.

7. Unify all obtained informations and return the final
result.

4. 0-DIMENSIONAL CASE
Here we consider another simple and easy case, where

arguments used for univariate case can be applied directly.

Assumption. Suppose that an ep-ideal I generated by F =
{f1, . . . , fr} in Q[x1, . . . , xn] satisfies the following:

1. There is a unique essential set {xk
1} with single param-

eter k.

2. The finite subideal J of I obtained by Slack variable
and Elimination is 0-dimensional.

In this case, we have a procedure for computing the Gröbner
bases of “components” of I similar to procedures in the
previous section.

Here we give an outline of a concrete procedure for the
radical

√
I. For simplicity, we assume that each fi(X, y) is

primitive as a univariate polynomial in y over Q[X].
From F , we have a set F0 = {f1,0(X, y), . . . , fr,0(X, y)}

such that fi,0(X, xk
1) = fi(X) for 1 ≤ i ≤ r, and the ideal

I0 generated by F0 in Q[X, y]. Then we can compute the
finite subideal J = I0 ∩ Q[X] with some fixed elimination
order X ≺≺ y. As J is 0-dimensional, I is 0-dimensional
(or trivial) for any k.

First we compute the minimal polynomial m(x1) of x1

with respect to J . (m(x1) is an ordinary polynomial in x1

over Q.) And then, we factorize m(x1) as

m(x1) =
s�

i=1

mi(x1)
ei .

As I and J are 0-dimensional for each fixed value k, we
have

J = ∩s
i=1(J + 〈mei

i (x1)〉)√
J = ∩s

i=1(
√
J + 〈mi(x1)〉)

I = ∩s
i=1(I + 〈mei

i (x1)〉)√
I = ∩s

i=1(
√
I + 〈mi(x1)〉),

as ordinary polynomial ideals. (See [3, 8].) Samely as uni-
variate case, we divide the factors of m(x1) into cyclotomic
factors and non-cyclotomic factors. Here, we exclude x from
factors. If x is a factor of m(x), we compute the Gröbner
basis of the ideal 〈f1(0, x2, . . . , xn), . . . , fr(0, x2, . . . , xn)〉 in
Q[x2, . . . , xn] as an ordinary ideal.

Cyclotomic Case. If mi is a cyclotomic factor of period

Pi, then xk
1 ≡ xa

1 (mod
√
I + 〈mi(x1)〉) if k ≡ a (mod Pi),

Then, the Gröbner basis of
√
I + 〈mi(x1)〉 is determined

uniquely by the value k mod Pi. Replacing k with each value
a in {0, 1, 2, . . . , Pi − 1}, I becomes an ordinary ideal and

we can compute the Gröbner basis of
√
I + 〈mi(x1)〉.

Non-Cyclotomic Case. If mi(x1)(�= x1) is a non cyclo-
tomic factor, we can use similar method as in univariate
case by using minimal polynomial computation instead of
resultant computation.

To do so, we need to compute a root α of mi(x1) with
rigorous error analysis and compute a correct bound A on
|α| such that

• |α| > A > 1 if |α| > 1, and

• |α| < A < 1 if |α| < 1.

Moreover, we also need to compute the prime decomposition
of J as an ordinary ideal:

√
J + 〈mi(x)〉 = ∩ti

j=1Ji,j.

Then, we have
√
I + 〈mi(x)〉 = ∩ti

j=1(
√
I + Ji,j).

For each prime divisor Ji,j, we execute the following:

1. For each fj,0 ∈ F0, execute the following:

1.1. Consider the ideal H� in Q[X, y] generated by
Ji,j and f�,0. As Ji,j is a maximal ideal in Q[X],
f�,0 can be considered as a univariate polynomial
over an extension field Q[X]/Ji,j .
If f�,0 is the zero polynomial over Q[X]/Ji,j , re-
turn to the top.
Otherwise, H� become a 0-dimensional ideal in
Q[X, y]. Then, compute the minimal polynomial
F�(y) of y with respect to H�.

1.2. Compute a bound B� on the absolute value of
roots of F�(y) so that
• D > |β| for any root β of F�(y) if |α| > 1, and
• 0 < D < |β| for any non-zero root β of F�(y) if
|α| < 1.

2. If all f�,0 are zero polynomials over Q[X]/Ji,j , return
the Gröbner basis of Ji,j as a completely stable one.
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3. Otherwise, compute the smallest positive integer Bi,j

such that
• if |α| > 1, ABi,j > min{D1, . . . , Dr}
• if |α| < 1, ABi,j < max{D1, . . . , Dr},
where we omit undefined Dj ’s. Then, the ideal

√
I +

Ji,j is trivial if k > Bi,j .

4. Substituting 1, ..., Bi,j for k, compute the Gröbner

basis of
√
I + Ji,j and return them.

Thus, we have the following.

Theorem 2. Under Assumption,
√
I has a semi-stable

Gröbner basis.

5. CONCLUDING REMARKS
In this paper we give some basic notions on stability of

Gröbner bases of ideals with parametric exponents, and pro-
vide concrete procedures for computing the Gröbner bases
in the simplest cases, univariate case and the 0-dimensional
case with unique essential set and unique parameter. How-
ever, for the proposed procedures, neither analysis on the
efficiency nor actual implementation is not examined, Thus,
in the next step, we will give a more precise procedure and
examine its efficiency/ability by complexity analysis and ex-
periments on real computer. As the problem seems very
hard in general settings, it is very important to go further
stepwise. In the below, we list our next steps for further
development.

1. Find efficient/effective criteria for stability and com-
putability of Gröbner bases.

2. The notion “stability” is derived from studies on uni-
variate case and 0-dimensional case. Refine the notion
more rigorously by considering wider classes of polyno-
mial ideals having certain stability or the computabil-
ity of Gröbner basis.

3. For special cases like as ideals in fewer variables (bi-
variate, trivariate), find efficient/effective criteria for
stability and computability of Gröbner basis. Also it
is very interesting to examine the effectivity of Slack
Variables and Elimination for special cases where
the number of generating polynomials exceeds the sum
#T +#X , where T is an essential set and X is the set
of variables.

4. Apply developed methods to actual problems arising
from mathematics and engineering. As those prob-
lems tend to have parametric coefficients like as Taka-
hashi’s problem, we have to deal with systems with
parametric coefficients and parametric exponents at
the same time. To solve such complicated problems,
extending/improving the technique of comprehensive
Gröbner basis seems indispensable.

6. ACKNOWLEDGMENTS
The author would like to thank Prof. Volker Weispfen-

ning and Prof. Tadashi Takahashi for their helpful discus-
sions on ideals with parametric exponents. This work just
began during the author’s stay at RISC-Linz supported by
Japanese Ministry of Education, Science and Culture. The
author would like to thank Prof. Bruno Buchberger for his
support for the author’s stay at RISC-Linz.

7. REFERENCES
[1] V.I. Arnol’d. Critical points of smooth functions and

their normal forms. Russian Math. Surveys 30:5:1-75,
1975.

[2] B. Buchberger. An algorithm for finding a basis for
the residue class ring of a zero-dimensional polynomial
ideal (German). PhD Thesis, University of Innsbruck,
Institute for Mathematics, 1965.

[3] T. Becker, V. Weispfenning. Gröbner Bases. GTM
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hierarchical defining equation of singularity. preprint,
2003.

[10] V. Weispfenning. Comprehensive Gröbner bases. J.
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