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ABSTRACT

In this thesis we give a method of simplifying the Einstein field equations with re-

strictions of a geometric nature. We shall be concerned mainly with the cosmological

applications of this approach but the techniques may be used to advantage in other

areas. First a method of systematically imposing constraints to specialize a class of

space-times is described. Then the method of “intrinsic symmetries”, in which restric-

tions are placed on submanifolds of a space-time, is introduced and it is shown how

the second fundamental form and the intrinsic Ricci tensor for one or more families

of surfaces may be used to give an algebraic classification of solutions. We use these

methods to investigate a class of locally rotationally symmetric space-times, examining

intrinsic symmetries of geometrically well defined families of surfaces and investigating

a restriction that the equation of state be of a particular general form. Finally, the

general procedure for examining classes of solutions is discussed from the point of view

of computer programming.
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NOTATION AND CONVENTIONS

Notation

:= definition

T component-free notation for a geometric object

〈ω,v〉 scalar product of one-form and vector: ωav
a

u · v inner product with respect to metric: uavbgab

u⊗ v tensor product

[u,v] commutator: ∇uv −∇vu

; k covariant derivative

; kv
k or ∇v covariant derivative along a vector — ∇a := ∇ea

, k partial derivative

, kv
k or ∂v partial derivative along a vector — ∂a := ∂ea

LvT Lie derivative

Fm(V ) m-parameter family of surfaces generated by the set of vector

fields V

a...bS member of the family Fm({ea, . . . , eb})

R(S ) Ricci tensor intrinscially defined in S

θ(S ,n) expansion tensor for the surface S with respect to normal

vector field n.

a...bR R(a...bS )

(c)a...bθ θ(a...bS , ec)

x



Conventions

indices: Latin 0–3, Greek 1–3 (except section 3.2)

a, b, c . . . α, β, γ . . . tetrad

i, j, k . . . λ, µ, ν . . . coordinate

units: 8πG = c = 1

signature: +2 (−+ ++)

Riemann tensor: va
; dc − va

; cd = Ra
bcdv

b

Ricci tensor: Rab = Rc
acb

Equation Labels

In several calculations mnemonic equation labels have been used. Derived equations

are labelled with the original equation label followed by a comma, then a code which

indicates the sequence of calculations when read from left to right. The code may be

interpreted as follows:

0 or 1 – differentiation along e0 or e1

* – application of the [e0, e1] commutator

A, B, C – possible consiquences, one of which must hold

a, b – consequences, both of which must hold

(usually from splitting an equation).

For example, (I1,1a*) is obtained from (I1) by differentiating along e1, splitting the

equation and applying the commutator.

xi



Chapter I

INTRODUCTION AND PRELIMINARIES

1.1 Introduction

The dominant long range force in the universe is gravitation. Therefore, any reasonable

cosmological model must take it into account. The most widely accepted theory of

gravitation is Einstein’s general theory of relativity, which we shall employ throughout

this thesis.

General relativity is a mathematical theory in which space-time is viewed as a 4-

dimensional manifold, M, with Lorenzian metric g. Gravitation is described by the

field equations,

Rij −
1

2
Rgij + Λgij =

8πG

c2
Tij (1.1.1)

which are ten coupled non-linear partial differential equations, second order in the

metric components. The left-hand side of (1.1.1) describes the geometry of the manifold

and the right-hand side is the stress-energy tensor of the source of the gravitational

field. The quantities Rij and R := Ri
i are the Ricci tensor and Ricci scalar respectively,

and Λ is the cosmological constant. In general the field equations are under-determined

so we must also specify an equation of state. Depending on the nature of the matter

modelled, there may be additional relations between the components of T. For instance,

if there is an electromagnetic field present, then these additional relations would include

Maxwell’s equations.

We shall choose units in which c = 8πG = 1; then a mass of 1026Kg corresponds

roughly to a length of 1m
(

c2

8πG
= 5.4× 1025 Kg

m

)
. Observations of distant galaxies show

that the magnitude of Λ is less than 10−52m−2 (see Hawking & Ellis [1973a], p. 73)

and many authors choose Λ = 0.

Because the field equations are quite complicated, their general solution is not

known. However many specific solutions and classes of solutions have been found.

Different formalisms have been developed to aid the study of these equations. These

include the orthonormal tetrad formalism (see Ellis & MacCallum [1969a] or MacCal-

lum [1973c]) and the Newman-Pensrose null tetrad formalism (Newman & Penrose

[1962]).

Usually, simplifying assumptions are made to render the field equations more man-

ageable. The traditional approaches include demanding that the space-time be invariant

under a group of isometries or that the Weyl tensor have a special canonical form.

1



2

In this thesis we give an alternative method of simplifying the field equations with

restrictions of a geometric nature. We shall be concerned mainly in the cosmological

applications of this approach, although the techniques may be used to advantage in

other areas.

In this chapter preliminary material is covered before proceeding on to the main

body of the thesis. Section 1.2 describes the orthonormal tetrad formalism wich shall

be used extensively. Section 1.3 introduces the class of space-times which exhibit “lo-

cal rotational symmetry”, singling out a particular case as the most interesting. In

section 1.4, we discuss some of the features of the symbolic mathematical computation

system MACSYMA.

Chapters 2 and 3 develop tools which are employed in the subsequent material.

In Chapter 2, a method is given to check systematically the consistency of a given

constraint for a class of space-times. This gives a technique for specializing a class to

contain only those solutions which satisfy the constraint. In Chapter 3, the method of

“intrinsic symmetries” is introduced. We then present a scheme to characterize families

of non-null submanifolds using this approach.

Chapters 4 and 5 use these tools to investigate the most interesting class of locally

rotationally symmetric space-times. In Chapter 4, we impose intrinsic symmetries on

subspaces orthogonal to the fluid flow in the space-times and obtain a hierarchy of

sub-classes. In Chapter 5 we give some further results for this class of space-times and

investigate a general equation of state. We also examine other intrinsic symmetries

because of their interesting mathematical properties.

In Chapter 6 we formalize the method of specializing classes of space-times with a

view to automating the procedure.

Finally, Chapter 7 contains some concluding remarks. Throughout the thesis we

refer to appendices when the inclusion of material in the text would divert the devel-

opment of the main ideas.

1.2 The Orthonormal Tetrad Formalism

This section is devoted to describing the orthonormal tetrad formalism as used by Mac-

Callum [1973c]. The advantage of this formalism is that it reduces the field equations

to first order. The trade-off is that new variables are introduced for which additional

relations must be satisfied. First, the geometrical aspects of the formalism will be de-

scribed and then a specialization for space-times with the matter modelled by a fluid

will be discussed.

INTRODUCTION AND PRELIMINARIES
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1) Geometry

An orthonormal tetrad at a point, p, in the space-time manifold, M , is a basis of

vectors {ea} in the tangent vector space, Tp, such that

ea · eb = diag(−1, 1, 1, 1).

Tetrad indices will be chosen from the first letters of the alphabets (a, b, c, . . . or

α, β, γ, . . .) and coordinate indices will be chosen from the other letters (i, j, k, . . . or

λ, µ, ν, . . .).

The bundle of orthonormal frames over an open set U ⊂ M is denoted by

O(M ) := (E , U , π),

where the total space, E , consists of all orthonormal tetrads at all points of U and the

projection is

π : {ea}p 7→ p.

A smooth cross-section of O(M ) is a smooth choice of an orthonormal tetrad at each

point in U . We shall usually refer to such a smooth orthonormal tetrad field simply

as an “orthonormal tetrad” or, more briefly, as a “tetrad”. Similarly, an “orthonormal

triad” for an open set in a hypersurface S ⊂ M is defined in terms of bases in the

tangent vector space of S . At this point we stress that we only require that the

orthonormal tetrad be defined on an open set and that all results are local.

In an open set U ⊂ M with coordinates {xi}, the components of any geometric

object may be given with respect to an orthonormal tetrad {ea} and dual basis of forms

{ea} or with respect to the local coordinate bases
{

∂
∂xi

}
and {dxi}

e.g. T = T i
j

∂

∂xi
⊗ dxj = T a

b ea ⊗ eb

Since ea = e i
a

∂
∂xi , the relation between the tetrad and coordinate components is given

by

T i
j = T a

b e i
a eb

j.

In particular, the metric components are

gab = e i
a e j

b gij = diag(−1, 1, 1, 1)

g b
a = δ b

a = e i
a eb

i

gab = diag(−1, 1, 1, 1).

INTRODUCTION AND PRELIMINARIES
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The directional derivative along ea of a function φ is given by

∂aφ := ea(φ) = φ, ie
i

a .

In general, these directional derivative operators do not commute. The commutator of

two basis vectors is given by

[ea, eb] =
(
e j

a e i
b , j − e j

b e i
a , j

) ∂

∂xi

= γc
abec. (1.2.1)

This relation defines the quantities γc
ab , which are called the “objects of anholonomity”

or “commutation functions”. The Jacobi identity,

[[ea, eb], ec] + [[ec, ea], eb] + [[eb, ec], ea] = 0,

imposes on the γc
ab the condition

∂[dγ
a
cb] − γa

f [dγ
f
cb] = 0, labelled

(
a

bcd

)
which, by contraction, implies

∂aγ
a
bc + ∂cγ

a
ab − ∂bγ

a
ac + γa

af γf
bc = 0.

The quantity γα
βγ may be decomposed into a symmetric matrix nαβ and a triple aβ:

nαβ := 1
2
γ

(α
γδ ε

β)γδ, aβ = 1
2
γα

βα

⇔ γα
βγ = εβγδn

αδ − 2δα
[βaγ].

 (1.2.2)

The Ricci rotation coefficients are the tetrad components of the connection:

Γabc := ea · ∇bec (1.2.3)

and gab; c = 0 implies

Γabc + Γcba = 0.

Using the definitions (1.2.1) and (1.2.3) we obtain the relations

γc
ab = 〈ec,∇aeb −∇bea〉 = Γc

ab − Γc
ba

⇔ Γabc =
1

2
(γabc + γcab − γbca) .

INTRODUCTION AND PRELIMINARIES
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2) Tetrad with a Fluid

For space-times where the matter content is modelled by a fluid, it is possible to spe-

cialize the tetrad such that certain γc
ab are given by the kinematic quantities related

to the fluid’s motion. Let u denote the normalized 4-velocity field of the fluid. Then

hab = gab + uaub

is the projection into the instantaneous rest space of the fluid. A dot will be used

to denote intrinsic differentiation along the integral curves of u. For example, the

“4-acceleration” of the fluid is

u̇ = ∇uu. (1.2.4)

In order to describe the kinematics we now consider relative motion within the fluid

following Ellis [1971]. Let O and G be two nearby world lines of fulid elements and

let the vector X give the separation of G from O at each instant. Straightforward

calculation in co-moving coordinates shows

Ẋ := ∇uX = ∇Xu (1.2.5)

⇒ LuX = 0.

The relative position of G with respect to O in the rest space is then

X a
⊥ := ha

bX
b

and the relative velocity of G with respect to O in the rest space is

V b := (X a
⊥ ). h b

a =
(
hach d

b uc;d

)
X b

⊥ ,

using (1.2.5). Thus the relative velocity vector is a linear transformation of the relative

position vector. This transformation may be decomposed into its symmetric and anti-

symmetric parts:

h c
a h d

b uc; d = θab + ωab. (1.2.6)

Here θab = θ(ab) is the “expansion tensor” and ωab = ω[ab] is the “vorticity tensor”.

The expansion tensor may be further decomposed into its “isotropic” (trace) and

“anisotropic” (trace-free) parts:

θab = σab +
1

3
θhab. (1.2.7)

The trace part θ := θa
a is the “expansion scalar” and the trace-free part σab := θab −

1
3
θhab is the “shear tensor”. The acceleration, expansion, shear and vorticity are known

INTRODUCTION AND PRELIMINARIES
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as the kinematic quantities of the congruence of integral curves of u. Using (1.2.4),

(1.2.6) and (1.2.7) the covariant derivatives of u are now given by

ua; b = σab +
1

3
θhab + ωab − u̇aub. (1.2.8)

In what follows, we shall use another quantity, the “vorticity vector”, defined in terms

of ωab by

ωa :=
1

2
ηabcdubωcd.

Now we discuss the effect of the tetrad specialization e0 = u. First, note that with

this choice the Fermi derivatives are antisymmetric,

−eβ · ėα = eα · ėβ = eα · ∇ueβ = Γα0β,

so we may define

Ωa :=
1

2
ηabcdubėc · ed.

This is the angular velocity of the triad {eα} with respect to a Fermi propagated

triad (c.f. Ellis & MacCallum [1969a]). Now, using (1.2.8), the γc
ab with at least one

of a, b, c equal to zero can be given in terms of Ω and the kinematic quantities of u:

γ00α = −u̇α

γ0αβ = 2εαβγω
γ

γα0β = −εαβγ (Ωγ + ωγ)− θαβ.

 (1.2.9)

Using (1.2.2) and (1.2.9) the commutators can be written out in full as

[e0, e1] = u̇1e0 −θ11e1 − (θ12 − ω3 − Ω3) e2 − (θ13 + ω2 + Ω2) e3

[e0, e2] = u̇2e0 − (θ21 + ω3 + Ω3) e1 −θ22e2 − (θ23 − ω1 − Ω1) e3

[e0, e3] = u̇3e0 − (θ31 − ω2 − Ω2) e1 − (θ32 + ω1 + Ω1) e2 −θ33e3

[e2, e3] = −2ω1e0 +n11e1 + (n12 − a3) e2 + (n13 + a2) e3

[e3, e1] = −2ω2e0 + (n21 + a3) e1 +n22e2 + (n23 − a1) e3

[e1, e2] = −2ω3e0 + (n31 − a2) e1 + (n32 + a1) e2 +n33e3


(1.2.10)

In the next section the remaining tetrad freedom will be used to further simplify

these relations.

INTRODUCTION AND PRELIMINARIES
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1.3 Local Rotational Symmetry

This section describes the locally rotationally symetric space-times with a charged

perfect fluid and electromagnetic field, in which case Maxwell’s equations are

F ab
; b = εua

F[ab; c] = 0.

These space-times have been studied by Ellis [1967], in the case of dust, and by Stewart

and Ellis [1968], for fluid with electromagnetic field. Most of the material in this section

relies on these references. Except where stated otherwise, the results of this section hold

regardless of whether the charge density, ε, or the electromagnetic field, Fab, are zero

or non-zero.

We use the following:

Definition. A space-time is said to be “locally rotationally symmetric” (LRS) in the

neighborhood U of a point p0 if at each point p in U there exists a nondiscrete subgroup,

g, of the Lorentz group in the tangent space, Tp, which leaves invariant the fluid flow

vector, the curvature tensor and their derivatives up to third order.

Since u is invariant under g, we have that g is a group of rotations in the subspace of

Tp orghogonal to u and so is either one- or three- dimensional. For a perfect fluid with

electromagnetic field, the stress-energy tensor is given by

Tab = µuaub + phab + τab

where µ is the energy dentisty and p is the pressure of the fluid in the rest space, and

τab =
1

4
gabFcdF

cd − FacF
c

b

is the stress-energy of the electromagnetic field. Since µ, p and τab are defined uniquely

by ua and Rab, they and their derivatives up to third order are also invariant under g.

If g is three-dimensional, then assuming continuity of the group dimension, the ge-

ometry is spatially isotropic for observers with velocity u, and so we have a Friedmann-

Robertson-Walker (FRW) space-time. In this case, g has a one-dimensional subgroup

so these models are included in the discussion, where g is one-dimensional, as special

instances.

When g is one-dimensional we shall choose a tetrad, {ea}, in which e0 = u and the

group g consists of the four-dimensional rotations about the plane spanned by e0 and

INTRODUCTION AND PRELIMINARIES
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e1 in Tp. The vector e1 is then a spacelike axis of symmetry lying in the fluid rest space

and we have one rotational degree of freedom in the choice of e2 and e3. Then, for

any covariantly defined vector v, we must have v · e2 = v · e3 = 0. In particular, the

derivatives in the e2 and e3 directions of any covariantly defined scalars must be zero.

This also implies ωa = ωδ a
1 and u̇a = u̇δ a

1 . For any symmetric covariantly defined

rank two tensor, invariance under g implies the 22 and 33 components are equal and

all off-diagonal components but 01 and 10 are zero. We may therefore write

θab = diag(0, α, β, β).

The electric and magnetic field in the rest frame of u are, respectively,

Ea := Fabu
b and Ba :=

1

2
η cd

ab ubFcd.

Since Fab is not covariantly defined, the form of Ea and Ba must be deduced through

τab, which is defined invariantly. In general Ea and Ba are invariant under g if and only

if τ01 = 0 in the tetrad1. We shall make the additional assumption that Ea, Ba and

their derivatives are invariant under g, in which case

τab = diag(τ,−τ, τ, τ) (1.3.1)

From Stewart & Ellis [1968], the LRS space-times exhibit the following properties:

LRS Property 1. We may use the rotational freedom to choose a frame in which

[e0, e1] = u̇e0 −αe1

[e0, e2] = −βe2

[e0, e1] = −βe3

[e2, e3] = −2ωe0 −ke1 +se3

[e3, e1] = −ae3

[e1, e2] = ae2.


(1.3.2)

The quantities k and a may be defined in terms of the congruence of integral curves

of e1 and so have zero derivatives in the e2 and e3 direction (except in the FRW case,

in which e1 is not invariantly defined). Without loss of generality, we may choose the

1This is contrary to the claim of Stewart & Ellis [1968] that invariance of τab under g implies (1.3.1).
See Appendix B for the proof.

INTRODUCTION AND PRELIMINARIES



9

tetrad such that ∂3s = 0 and for later use, we define the quantity r := ∂2s− s2, which

has zero derivatives in the e2 and e3 direction. If we make the additional reasonable

assumption that µ + p 6= 0, then for a perfect fluid with an electromagnetic field

satisfying (1.3.1), we have

LRS Property 2. The product ωk is identically zero

ωk ≡ 0.

Stewart and Ellis divide these space-times into disjoint and exhaustive classes as follows

Class I : ω 6= 0, k = 0

Class II : ω = 0, k = 0

Class III : ω = 0, k 6= 0.

LRS Property 3. For an LRS space-time with perfect fluid and delectromagnetic field,

the coordinate freedom can be used to set the metric in the form

ds2 = − (dx0)2

F 2 + X2(dx1)2 + Y 2 [(dx2)2 + t2(dx3)2]

+ y
F 2 [2dx0 − ydx3] dx3 −X2h [2dx1 − hdx3] dx3,

(1.3.3)

where F = F (x0, x1), X = X(x0, x1) and Y = Y (x0, x1). The functions t(x2), h(x2)

and y(x2) are defined by

t, 22 + Kt = 0

h, 2 + 2Ct = 0

y, 2 + 2ct = 0,

where K, C and c are constants. In each of the classes the metric may be specialized

further as follows.

Class I : F = F (x1), X ≡ 1, Y = Y (x1), h ≡ 0.

Class II : h ≡ 0, y ≡ 0.

Class III : F ≡ 1, X = X(x0), Y = Y (x0), y ≡ 0.

INTRODUCTION AND PRELIMINARIES
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The relation between the metric and the tetrad is

e0 = F ∂
∂x0

e1 = 1
X

∂
∂x1

e2 = 1
Y

∂
∂x2

e3 = y
tY

∂
∂x0 + h

tY
∂

∂x1 + 1
tY

∂
∂x3 .


(1.3.4)

Each of the Classes I, II and III is divided into subclasses. Stewart and Ellis [1968]

give the dimension of the isometry group and the orbits for each of the sublcasses.

These results are summarized in figure 1.3.1. It is seen that in each case the space-

times admit a multiply transitive Gr of local isometries. The result is stronger than

the definition we have chosen for LRS but it could have been used as an alternative

starting point.

Classes I and III are better understood than Class II because of the nature of

their isometry groups. In Class I we have a timelike Killing vector so the space-times

are necessarily stationary. In Class III a space-time admits an isometry group acting

transitively on spacelike hypersurfaces and much attention has been given to space-

times of this form. The only non-stationary solutions which do not have a group acting

transitively on spacelike hypersurfaces are found in Class II, specifically subclasses IIa

and IIc. In subclasses IIa and IIb the models have geodesic flow since u̇ = 0. In the

LRS type IIc space-times, the acceleration may assume any non-zero value so IIc is the

most general subclass of Class II. All of the space-times in Class II have the property

that the surfaces {x0 = const} are conformally flat, since their Cotton-York tensor is

identically zero.

We shall be most interested in the space-times of Class II because of the surface-

forming properties of the basis vectors and the generality of the isometry group. This

class includes the Einstein static solution, the Einstein-de Sitter solution, the Bondi

spherically symmetric solutions, and the Kantowski-Sachs and FRW space-times and

some of their generalizations. Also, if we allow µ + p = 0, this class contains the

Reissner-Nordstrom family of solutions. In Appendix A we give the commutators,

Jacobi identities, Maxwell’s equations, Einstein field equations and Bianchi identities

for the Class II space-times.

INTRODUCTION AND PRELIMINARIES
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1.4 Symbolic Computation with MACSYMA

In many disciplines of science and engineering, straight-forward computations often

lead to the generation of lengthy expressions. The manipulation of these expressions

can be tedious and error-prone. This has led to the development of computer systems

for symbolic mathematical computation. Due to the nature of many calculations in

general relativity, a large number of these systems for symbolic computation have been

used by relativists over the past two decades. (For a review of the use of symbolic

computation in general relativity, see Fitch [1979c] and and references cited.) Some of

the basic concepts used in symbolic mathematical computation are explained in Knuth

([1969c], Chapter 4) and an overview of current activities in this field is given by the

proceedings of EUROSAM 1979 (edited by Ng [1979d]).

At the present time, one of the most comprehensive symbolic computation systems

is MACSYMA. MACSYMA is a large, LISP-based system that was developed at MIT

and first became available for use in 1971. MACSYMA has been coninuously extended

since that time by the group at MIT but is currently available at only a few installations.

For the computations in this thesis, we have used the system on a DEC PDP-10 at MIT,

known as the MACSYMA Consortium machine (MIT-MC). The purpose of this section

is to describe how MACSYMA has been used in this thesis. For a full description of

MACSYMA see the reference manual (Mathlab [1977]).

MACSYMA is an interactive system; the user is prompted for input, which is eval-

uated and then displayed. The user is then again prompted for input and the session

continues in a dialogue fasion. The input usually consists of mathematical expressions,

written with a syntax similar to many other programming languages. These expressions

are made up of constants, variables and functions, combined using the usual mathe-

matical operators. It is not necessary to ascribe values to these quantities prior to the

evaluation of expression containing them. MACSYMA provides many functions which

may be used to manipulate such algebraic expressions. These functions may be used

to differentiate, integrate, factor polynomials, solve equations and perform many other

mathematical operations. There are also functions which may be used to select the

form in which an expression is to be presented. This is a strong point of the MAC-

SYMA system — the user may choose the representation of his expressions and is not

forced to use a canonical form. The system makes very few assumptions regarding the

simplification of expressions and usually leaves them in the same form unless a specific

transformation has been requested.

The calculations in this thesis which have been done with the aid of MACSYMA

were performed interactively. When a given calculation was completed the commands

INTRODUCTION AND PRELIMINARIES
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necessary to reproduce the results were placed in a file. There is a MACSYMA function,

BATCH, which may be used to direct MACSYMA to take its input from a file. In this

way calculations can be reproduced as needed.

MACSYMA also posesses the usual features of a programming language. It is pos-

sible to write functions which exhibit block structure and the usual control of program

flow with loops and conditional execution. Using these features, it is possible for a user

to write functions which perform complicated tasks. In Chapter 6 we present a set of

MACSYMA functions which use these capabilities.

A METHOD FOR SPECIALIZING CLASSES OF SPACE-TIMES



Chapter II

A METHOD FOR SPECIALIZING CLASSES OF SPACE-TIMES

Suppose that we are examining a class of solutions to the Einstein field equations.

Using the orthonormal tetrad formalism, the field equations and the Jacobi identities

form a consistent system of first order partial differential equations. The contracted

Bianchi identities are then consistent with this system, by virtue of the field equations.

To form a specialization of our class, we impose one or more constraints. These

constraints must be checked for consistency with the existing system and with one

another. This chapter introduces a method for doing this systematically.

2.1 Checking the Consistency of a Given Constraint

For simplicity, we shall initially assume that we have a non-empty class of solutions with

perfect fluid source and a constraint that may be expressed as a single equation. Later

we shal remove these restrictions. We shall say that a solution in the class “admits” the

constraint if the constraint is satisfied on an oben subset of the space-time manifold, M .

The constraint specializes the original class to the subclass consisting of all solutions

which admit the constraint.

Let p be the pressure and µ the energy density in the fluid rest space. The Jacobi

identities, field equations and Bianchi identities form a consistent system of equations.

In general, there are 16 Jacobi identities, 10 field equations and 4 contracted Bianchi

identities. For perfect fluid solutions, these equations may be expressed in terms of

the (2) quantities p and µ, the (24) quantities Ωα, ωα, θαβ, u̇α, nαβ and aα, introduced

in Section 1.2, and all of the (26 × 4) directional derivatives except (13): ∂0p, ∂αµ,

∂0Ω
α, ∂αθαα (no sum), and ∂0u̇

α. In the most general case we have a total of 30

equations in 26 variables and 91 of their first derivatives (= 26× 4− 13), and we may

solve directly for up to 30 of the directional direvatives in terms of the variables and

other derivatives, which shall also be considered unknowns. Note, however, that for an

unspecified function, say A, the directional derivatives, ∂aA, are not independent but

are subject to the integrability conditions (1.2.1):

∂a∂bA− ∂b∂aA = γc
ab∂cA.

Let the constraint be given by the function

C(Ωα, ωα, θαβ, u̇α, nαβ, aα, µ, p) = 0

14
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and be satisfied at all points in the open set U ⊂ M . For each point in U , C = 0

holds in a neighbourhood of the point so the propagation equations,

∂aC = 0,

must also be satisfied on U (that is, C = 0 is preserved along the intergral curves of the

basis vector fields on U ). These new constraints, in turn, give rise (in a way described

in detail below) to new propagation equations. At this process is repeated, the new

equations may lead to a contradiction. In this case, there are no solutions in the original

class which admit the constraint in the open set. Otherwise, a stage may be reached

where the new equations are identically satisfied by virtue of old propagation equations,

the original system and the commutators (1.2.10). Then a solution in the class will

admit the constraint only if all the additional equations obtained by propagating the

constraint also hold. (These may be viewed as additional “constraints”.)

We now give a general description of this procedure. At each state of the repeated

propagation, we must check for the compatibility of a given equation with the original

system and all previous propagation equations. First, replace in the given constraint

equation all known derivatives with their values given by the original system. If the

resulting equation is an identity, then it is obviously compatible. If the equation is

a contradiction, then it is incompatible. In many cases, though, the equation will

give neither an identity nor a contradiction directly. These cases must be investigated

further.

If the equation has not been determined to be an identity or contradiction, then we

proceed differently depending on whether the equation contains unknown derivatives

or not. (This situation may depend on the vanishing of a coefficient; in this case the in-

vestigation should be divided into two cases, one where the coefficient is identically zero

— another constraint in itself — and another where the coefficient is non-zero.) If the

equation is free of derivatives, then it may be solved for one of the variables to decrease

the number of unknowns in the system. If, however, there remain derivatives in the

given equation, then solve for one of the previously unspecified directional derivatives.

This gives a new propagation equation for one of the unknowns, which may itself be a

derivative.

Not only must the equation hold, but its directional derivatives must be considered.

If the equation is free of derivatives, then the propagation equations along all four basis

vectors must be checked. If the equation specifies a directional derivative, then we

must take into account the appropriate integrability conditions for every other known

derivative for the variable. This will give up to three additional equations to be checked.

These equations may involve higher order derivatives of other variables. Note, though,

that an equation involving a number of derivatives of any order may be split into single
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derivative, first order equations by introducing “arbitrary” functions. It is not necessary

to do so, but the equations may be more manageable.

In both the algebraic and directional derivative cases, the equations will be compat-

ible only if all the new additional equations are compatible but it will be incompatible

if any of the new equations is incompatible. This procedure has been described in a

recursive way, with the base of the recursion being an identity or contradiction. There

is as yet no guarantee that in general this procedure is finite, though for a large class

of problems this seems to be the case. This is further discussed in Chapter 5. For the

remainder of this chapter, we shall assume that the procedure terminates.

We shall now remove the restrictions on the matter content and form of constraint

imposed at the beginning of the section.

If a perfect fluid model is inappropriate, then this procedure may be used with little

modification. When a more complicated stress-energy tensor is used, more variables

and derivatives appear in the field equations. Also, additional equations physically

relating these new quantities must be considered. For example, if terms for heat flux

are included in the stress-energy tensor, the classical heat conduction law must also be

obeyed; if an electromagnetic stress-energy tensor is used, Maxwell’s equations must be

satisfied. These additional equations, written in tetrad form, must be included in the

original system. The constraint may then be checked for compatibility in the manner

already described.

Types of constraints other than single equations are often needed in specializing

classes of solutions. If the constraint desired is expressed as an inequality relation (e.g.

µ + p 6= 0, µ ≥ 0), then upon differentiation, no new constraint arises. In this case

the propagation procedure is entirely unnecessary. If the constraint is specified by a

number of equations, then these equations must be checked for consistency with one

another as well as with the original system. This may be done systematically by taking

the equations sequentially and checking them for consistency with the system using the

procedure for a single constraint equation. If no contradiction has been reached, then

each equation checked and the additional equations obtained by propagation should be

included with the original system before proceeding to the next constraint equation. If

the last constraint equation checks successfully, then the constraint given by the system

of equations is compatible with the class and may be used to form a specialization.

On occasion, it may also be necessary to check resulting constraint equations against

inequalities. For instance, a stage may be reached where a constraint implies µ+p = 0,

when it has already been assumed that µ + p > 0.

The next two sections give a few simple examples of this method for specializing

classes of solutions.
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2.2 Two Spatially Homogeneous Examples

This section gives two examples of how to specialize a class of solutions using a con-

straint. In the first example the constraint may be applied consistently and in the

second it may not. The classes considered consist of spatially homogeneous perfect

fluid solutions.

Definition. 1

A space-time is defined to be “spatially homogenous” if it admits a G3 of local

isometries with three-dimensional space-like orbits.

Spatially homogeneous space-times are classified according to the nature of their

isometry group using the Bianchi-Behr classification of the three dimensional Lie alge-

bras (see, for example, Ellis & MacCallum [1969a] or Ryan & Shepley [1975]). These

space-times obey the properties given below.

Property 1. (MacCallum [1973c], pp. 107, 108): The normals to the orbit hypersur-

face are the tangent vector field of a geodesic, hypersurface-orthogonal congruence.

Property 2. (Ellis & MacCallum [1969a], pp. 113, 114): If we choose our tetrad such

that e0 is orthogonal to the orbit hypersurfaces, then we have the freedom to choose a

frame such that

nαβ = diag(n1, n2, n3)

aβ = (a, 0, 0), a ≥ 0

an1 = 0

∂αγa
bc = 0


We shall call such a tetrad a “canonical tetrad” for the spatially homogeneous space-

time. Note that the triad {eα} spans the tangent vector space of the group orbits at

all points.

In the Ellis-MacCallum classification of spatially homogeneous space-times (Ellis &

MacCallum [1969a], p. 114), a space-time is of Class A if a = 0, in a canonical tetrad.

Otherwise a > 0 and the space-time is of Class B.

1 A weaker definition requires a Gr, r ≥ 3, with three-dimensional space-like orbits. Our definition
omits the case in which the Gr does not contain a G3 subgroup acting on space-like hypersurfaces.
This situation may arise only when r = 4 and has been described by Kantowski and Sachs [1966].
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Property 3. (Ellis & MacCallum [1969a], p. 118): In a space-time of Class A with

perfect fluid source, a canonical tetrad may be chosen with u = e0 such that the triad

{eα} is a Fermi-propagated eigenframe of σαβ.

Thus for a Class A space-time, a special canonical tetrad may be chosen in which

u = e0

u̇ = ω = Ω = 0

θab = diag(0, θ1, θ2, θ3)

∂αθab = 0

aα = 0

nαβ = diag(n1, n2, n3)

∂αnβγ = 0.


In this tetrad, the non-trivial Jacobi identities are(

1
023

)
⇔ ∂0n1 = n1(2θ1 − θ)(

2
031

)
⇔ ∂0n2 = n2(2θ2 − θ)(

3
012

)
⇔ ∂0n3 = n3(2θ3 − θ)

 (2.2.1)

The non-trivial Einstein field equations are

(00) ⇔ ∂0θ = −
(
θ1

2 + θ2
2 + θ3

2
)
− 1

2
(µ + 3p) + Λ

(11) ⇔ ∂0θ1 = −θθ1 − 1
2
n1

2 + 1
2
(n2 − n3)

2 + 1
2
(µ− p) + Λ

(22) ⇔ ∂0θ2 = −θθ2 − 1
2
n2

2 + 1
2
(n3 − n1)

2 + 1
2
(µ− p) + Λ

(33) ⇔ ∂0θ3 = −θθ3 − 1
2
n3

2 + 1
2
(n1 − n2)

2 + 1
2
(µ− p) + Λ


(2.2.2)

and the only non-trivial contracted Bianchi identity is

(0) ⇔ ∂0µ = −(µ + p)θ.

We shall now attempt to specialize two Bianchi-Behr types in Class A by imposing

the constraint

nα
α = 0 on an open set.
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Example 2.2.1. Consider the class of Bianchi-Behr type VIh=0 solutions, with perfect

fluid source. These solutions are in Class A and are distinguished in a canonical tetrad,

possibly by renumbering, by

n1 = 0, n2 > 0, n3 < 0.

(Note that initially the requirement that n1 = 0 may be regarded as a constraint which

is satisfied by virtue of (2.2.1).)

The constraitn which we want to impose is given by

nα
α = n2 + n3 = 0. (2.2.3)

For this to hold in an open set we must also have

∂a(n2 + n3) = 0 ⇔ ∂0(n2 + n3) = 0.

Adopting a special canonical tetrad, this gives

−θ(n2 + n3) + 2(n2θ2 + n3θ3) = 0

⇔ θ2 − θ3 = 0 (2.2.4)

where use has been made of (2.2.1) and then (2.2.3). This relation must also be satisfied

on an open set so we must have, using (2.2.2),

∂a(θ2 − θ3) = 0 ⇔ ∂0(θ2 − θ3) = 0

⇔ − θ(θ2 − θ3)− (n2
2 − n3

2) = 0,

which is an identity by virtue of (2.2.3) and (2.2.4). This leaves us to conclude that

there is a specialization of the class of Bianchi-Behr Type VIh=0 solutions with perfect

fluid source in which nα
α = 0. In this specialization, we necessarily have θ2 = θ3 and

the Jacobi identities, field equations and Bianchi identity reduce to

∂0n2 = −n2θ1

∂0θ = −(θ1
2 + 2θ2

2)− 1

2
(µ + 3p) + Λ

∂0θ1 = −θθ1 + n2
2 +

1

2
(µ− p) + Λ

∂0θ2 = −θθ2 +
1

2
(µ− p) + Λ

∂0µ = −(µ + p)θ.

The procedure for arriving at this conclusion may be depicted schematically as in

Figure 2.2.1.
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Example 2.2.2. Consider the Bianchi-Behr type VIII solutions with perfect fluid

source. These solutions are contained in the Ellis-MacCallum Class A and in a canonical

tetrad, renumbering if necessary, have

n1 > 0, n2 > 0, n3 < 0.

We now impose the constraint

nα
α = n1 + n2 + n3 = 0. (2.2.5)

Adopting a special canonical tetrad and demanding that (2.2.5) hold on an open set,

we obtain

∂0(n1 + n2 + n3) = 0 ⇔ − θ(n1 + n2 + n3) + 2(n1θ1 + n2θ2 + n3θ3) = 0

⇔ n1θ1 + n2θ2 + n3θ3 = 0, using (2.2.5)

⇔ θ3 =
n1θ1 + n2θ2

n1 + n2

, (2.2.6)

again by (2.2.5). This relationship must be time propagated as well, giving

∂0(n1θ1 + n2θ2 + n3θ3) = 0

⇔ 2(n1θ1
2 + n2θ2

2 + n3θ3
2) +

1

2
(−n1

3 − n2
3 − n3

3

+ n1n2
2 + n1n3

2 + n2n1
2 + n2n3

2 + n3n1
2 + n3n2

2 − 6n1n2n3) = 0,

where use has been made of (2.2.1) and (2.2.2). Using (2.2.5) and (2.2.6) to eliminate

n3 and θ3 this gives
n1n2

n1 + n2

[
(θ1 − θ2)

2 + 3(n1 + n2)
2
]

= 0. (2.2.7)

Each of the factors on the left-hand side of (2.2.7) is strictly positive, so we have a

contradiction. This gives the conclustion that the specialization nα
α = 0 yields an

empty class; there are no Biahcni-Behr type VIII perfect fluid models in which nα
α = 0

on an open set. The above steps are depicted schematically in figure 2.2.2.

2.3 A Spatially Inhomogeneous Example

This section gives another examle of how to specialize a class of solutions according to

a constraint. We shall consider the LRS type II solutions with dust as the source (see

section 1.3). Our original system will be given by the equations (LRSII) of Appendix A,

with p, u̇, τ and ε replaced by zero. For all the unknowns but s, the only non-trivial

commutator is

[e0, e1] = −αe1. (2.3.1)
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identity 2nd propagation

��

∂0

θ2 − θ3 = 0 1st propagation
��

∂0

n2 + n3 = 0 constraint

Figure 2.2.1: Bianchi-Behr type VIh=0 perfect fluid solutions subject to nα
α = 0

The non-trivial field equations give

(01) ⇔ ∂1β = a(β − α)

(00)

(11)

(22)

 ⇔


∂0α = −µ

2
+ β2 − α2 − a2 + r

∂0β = 1
2
(Λ− 3β2 + a2 − r)

∂1a = 1
2
(Λ + µ− β2 − 2αβ + 3a2 − r).


(2.3.2)

The non-trivial Jacobi identities are(
2

012

)
and (01) ⇔ ∂0a = −βa(

3
023

)
⇔ ∂0r = −2βr(

3
123

)
⇔ ∂1r = 2ar

 (2.3.3)

and the only non-trivial contracted Bianchi identity is

(0) ⇔ ∂0µ = −(α + 2β)µ. (2.3.4)

A METHOD FOR SPECIALIZING CLASSES OF SPACE-TIMES



22

contradiction 2nd propagation

��

∂0

n1θ1 + n2θ2 − (n1 + n2)θ3 = 0 1st propagation
��

∂0

n1 + n2 + n3 = 0 constraint

Figure 2.2.2: Bianchi-Behr type VIII perfect fluid solutions subject to nα
α = 0

We shal also assume the energy condition

µ ≥ 0.

These relations shall be used in the following example.

Example 2.3.1. We shall make the specialization that, on an open set, the flow be

expansion-free but not necessarily shear-free:

α + 2β = 0. (2.3.5)

Since the directional derivatives ∂2 and ∂3 give zero for all of the variables which appear

in our equations (2.3.2-2.3.4), we need only check the e0 and e1 propagation equations.

The first differentiation of the constraint (2.3.5), using (2.3.1) and (2.3.5), give

∂0(α + 2β) = 0 ⇔ µ− 2Λ + 12β2 = 0 (2.3.5,0)

∂1(α + 2β) = 0 ⇔ ∂1α = −6aβ (2.3.5,1)

Both of these equations must now hold on an open set. The propagation equations for

(2.3.5,0) are

∂0(µ− 2Λ + 12β2) = 0

⇔ β(µ + 2(a2 − r) + 6β2) = 0 (2.3.5,00)
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and

∂1(µ− 2Λ + 12β2) = 0

⇔ ∂1µ = −72aβ2, (2.3.5,01)

by (2.3.2), (2.3.4), (2.3.5) and (2.3.5,0). The propagation equations of (2.3.5,01),

∂0∂1µ = ∂0(−72aβ2)

∂1∂1µ = ∂1(−72aβ2),

are consistent with the original system (2.3.1-2.3.4) if and only if µ satisfies the inte-

grability condition (2.3.1):

∂0∂1µ− ∂1∂0µ = −α∂1µ

⇔ ∂0(−72aβ2) = −α(−72aβ2)

⇔ aβ(µ + 2(a2 − r)) = 0 (2.3.5,01*)

Thus, (2.3.5,0) holds on an open set only if, in addition, (2.3.5,00) and (2.3.5,01)

also hold. The propagation equations of (2.3.5,1) hold identically since α satisfies the

integrability condition:

∂0∂1α− ∂1∂0α = −α∂1α

⇔ ∂0(−6aβ)− ∂1

(
−µ

2
− 3β2 − a2 + r

)
= −α(−6aβ)

⇔ identity,

by (2.3.2), (2.3.3), (2.3.5) and (2.3.5,1).

It remains to check for consistency the equations

β(µ + 2(a2 − r) + 6β2) = 0 (2.3.5,00)

aβ(µ + 2(a2 − r)) = 0 (2.3.5,01*)

with the original system. At this point we would usually divide the examination into

a number of cases in which combinations of factors were zero. Note, though, that β is

a factor common to both equations. In the cases in which β 6= 0 on an open set, then

solving (2.3.5,00) for µ and substituting in (2.3.5,01*) gives

µ = 2(r − a2)− 6β2

⇒ a = 0

A METHOD FOR SPECIALIZING CLASSES OF SPACE-TIMES
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The propagation equations for a = 0 are:

∂0a = 0 ⇔ identity

∂1a = 0 ⇔ 3µ− 2r + 18β2 = 0, using (2.3.5,0)

⇔ r = 0, using (2.3.5,00)

But this gives µ = −6β2, which contradicts the energy condition µ ≥ 0. Therefore the

only cases which do not lead to a contradiction are those in which

β = 0 (2.3.6)

on an open set. For this to hold we must have

∂0β = 0 ⇔ µ = 2(r − a2)

∂1β = 0 ⇔ identity. (2.3.6,0)

Equation (2.3.6,0) may now be imposed on an open set consistently with the original

system, since its propagation along e0 and e1 yield identities by virtue of (2.3.2), (2.3.3),

(2.3.4) and (2.3.5,0).

We have shown that the constraint α + 2β = 0 may be applied to our class of

solutions only if we also demand (2.3.5,0), (2.3.6) and (2.3.6,0), whence

α = β = 0

µ = 2Λ (⇒ Λ ≥ 0)

r = Λ + a2 (⇒ r ≥ a2 ≥ 0).

Subject to these restrictions, our original system of equations is equivalent to

∂0a = 0

∂1a = Λ + a2.

 (2.3.7)

From its definition, a may be given in terms of the tetrad components, ei
a, so (2.3.7)

may readily be solved to obtain the general solution in the subclass. Thus, the demand

that the dust flow be expansion-free is much more restrictive than it originally appears.

The procedure we have followed in this example is given schematically in figure 2.3.1.

The notation introduced in this figure shall be used in diagrams in subsequent chapters.
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Chapter III

INTRINSIC SYMMETRIES IN GENERAL RELATIVITY

In this chapter, we introduce the concept of “intrinsic symmetries” used in this thesis.

Section 3.1 describes the basic idea of intrinsic symmetries and Section 3.2 goes into

greater detail, showing how the intrinsic Ricci tensor and the second fundamental form

may be used to characterize families of submanifolds.

3.1 The Role of Intrinsic Symmetries

Spatially homogeneous space-times, defined in Section 2.2, have been used extensively

as universe models (cf. MacCallum [1973c] or, more recently, MacCallum [1980b] and

references cited therein). The conventional belief in large-scale inhomogeneity of the

universe and the relative mathematical simplicity of these models lend justification to

this approach. However, spatially homogeneous cosmological models are not suitable in

all contexts. For example, spatially homogeneous models are probably not sufficient to

solve the problems associated with galaxy formation and particle horizons in the early

universe. It then becomes necessary to study spatially inhomogeneous cosmological

models, even though they are mathematically much more complicated.

By “spatially inhomogeneous” we mean that there does not exist a group of local

isometries Gr, r ≥ 3, acting transitively on spacelike hypersurfaces. To introduce spatial

inhomogeneity, one may relax the requirements for spatial homogeneity by decreasing

the dimension of the local isometry group or of the group orbits. The simplest case is

to have a G3 acting on two dimensional spacelike orbits. For a perfect fluid (or perfect

fluid with electromagnetic field), this coincides with the LRS type II space-times (see

Section 1.3), for which a general solution is not known.

To attempt a study with spatial inhomogeneity, one may alternatively employ spa-

tial collineations which are not isometries (Katzin, Levine & Davis, [1969b]). The

simplest such collineation is a simple “homothetic motion” or “similarity mapping”.

This is a difeomorphism for which the generating vector field, h, satisfies

Lhgab = 2bgab

for some constant, b. It has been shown (McIntosh [1976]) that in any perfect fluid

space-time unless we have a “stiff matter” equation of state, if such a vector field, h, is
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orthogonal to the fluid flow vector then h is necessarily a Killing vector. ∗ Thus, if a

general perfect fluid space-time admits a local group Hr(r ≥ 3) of homothetic motions,

which is not an r-dimensional isometry group, then the group orbits are necessarily

not orthogonal to the fluid flow. If the group orbits are 3-dimensional spacelike hy-

persurfaces, the solutions are then said to be “tilting” (cf. King & Ellis [1973b]) and,

although there is some justification for studying tilting models, they are complicated

to deal with even in the case where the group is an isometry group. (Eardley [1974])

has initiated some studies of such (tilted) models in the case where there is a Hr(r ≥ 3)

homothety group.

These difficulties motivate another approach to space-time symmetries. The method

of “intrinsic symmetries” consists of imposing conditions not on the full space-time

manifold but on submanifolds of the space-time (Collins & Szafron [1979a], Szafron

& Collins [1979e], Collins & Szafron [1979b]). In this way one hopes to arrive at a

tractable set of field equations without requiring spatial homogeneity. This method is

illustrated in the following example.

Example 3.1.1. Consider the class of Bianchi-Behr type I (spatially homogeneous)

perfect fluid solutions. These space-times are contained in the Ellis-McCallum Class A

(see Section 2.2) and are distinguished in a special canonical tetrad by

n1 = n2 = n3 = a = 0.

The metric is given by

ds2 = −dt2 + X2(t)dx2 + Y 2(t)dy2 + Z2(t)dz2

and the fluid flow is orthogonal to the flat hypersurfaces which are the orbits of the

local isometry group.

We may generalize this class of space-times by adapting the intrinsic symmetries

approach. We shall look at models in which the fluid flow is orthogonal to flat hyper-

surfaces but which are not necessarily the orbits of an isometry group. That is, we

shall impose the condition that the hypersurfaces, when considered as 3-spaces, admit

6 independent Killing vectors, one of which is necessarily a Killing vector of the full

space-time.

That we need not have spatial homogeneity is illustrated by a simple plane- sym-

metric metric:

ds2 = −dt2 + t−2/3 [1 + tC(x)] dx2 + t4/3
(
dy2 + dz2

)
∗This result does not necessarily carry over to a perfect fluid with electromagnetic field (see Ap-

pendix B).
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This metric describes dust with density

µ =
4

3

C(x)

t [t + C(x)]

flowing orthogonally to the flat hypersurfaces {t = constant}. In general, this space-

time admits the three Killing vectors:

ξ(1) =
∂

∂y
, ξ(2) =

∂

∂z
, ξ(3) = z

∂

∂y
− y

∂

∂z
,

which generate a G3 acting on the two dimensional orbits {t = constant, x = constant}.
We have spatial homogeneity if and only if C(x) is a constant, in which case ξ4 = ∂

∂x

is also a Killing vector and we have a G4 whose orbits are the hypersurfaces {t =

constant}.

A more complicated example would be obtained by postulating the existence of

spacelike hypersurfaces, each invariant under an O(3) group of local isometries, which

again need not be isometries of the full space-time (Krasinski [1980a]). The space-times

are “intrinsically spherically symmetric” although not necessarily spherically symmetric

in the conventional sense.

3.2 Families of Surfaces: Intrinsic and Extrinsic Curvatures

When adopting the intrinsic symmetries approach, it is most natural to place conditions

on the submanifolds of a geometrically well-defined family. Hopefully, the gain here

would be in the use of 1- and 2-parameter families of (respectively) 3- and 2-dimensional

submanifolds, since 3-parameter families of 1-dimensional surfaces (i.e. congruences of

curves) are already thoroughly exploited.

The geometry of a submanifold of dimension 2 or 3 is described by the intrinsic

Ricci tensor, which, because of the dimension of the submanifold, entirely determines

the Riemann tensor of the submanifold. This Ricci tensor may be used to construct

invariants which characterize it. Then a constraint on the intrinsic curvature could be

given in terms of these invariants.

There is some latitude in choosing independent invariants to describe the intrinsic

curvature of a submanifold. The following exaple illustrates this.

Example 3.2.1. Consider R∗
αβ, the intrinsic Ricci tensor of a spacelike hypersurface.

(The notation follows Ellis [1971], p.132 and McCallum [1973c], p.105.) In general this

tensor will have six different components. However, using three degrees of freedom
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for orientation, a local basis may be chosen to be an orthonormal triad which is an

eigenframe of R∗
αβ. In this frame, R∗

αβ takes the form diag (R∗
11, R

∗
22, R

∗
33) and we see

that we must construct, in general, three algebraically independent scalars to describe

the intrinsic curvature. There is some freedom in the choice of three such scalars so,

since no choice is preferred on physical grounds, we shall construct the scalars that are

the simplest to work with. The easiest method to imposing a condition on a scalar

is to set it to zero, so we would like to define our quantities in such a way that their

vanishing has significance. A few possibilities are:

(i) Contractions of R∗
αβ with itself

R∗
α

α, R∗
α

βR∗
β

α, R∗
α

βR∗
β

γR∗
γ

α.

(ii) The three eigenvalues of R∗
αβ

These are the solutions, λ1, λ2 and λ3, to the characteristic equation:

det
(
R∗α

β − λgα
β

)
= 0

⇔ λ3 −R∗α
αλ2 +

1

2

[
(R∗α

α)2 −R∗
α

βR∗
β

α
]
λ− det

(
R∗

α
β
)

= 0 .

(iii) The coefficients of λ in the characteristic equation for R∗
αβ

We would then have the following interpretation:

R∗ α
α = λ1 + λ2 + λ3

1

2

[
(R∗ α

α )2 −R∗ β
α R∗ α

β

]
= λ1λ2 + λ2λ3 + λ1λ3

det
(
R∗ β

α

)
= λ1λ2λ3

(iv) “Degree of isotropy” R∗
αβ

Define the scalars R∗, S ≥ 0 and T ≥ 0 as follows:

R∗ = R∗ α
α

S2 =
1

2
SαβSαβ , Sαβ = R∗

αβ −
1

3
gαβR∗

T 6 = 4S6 − 3
(
SαβSβγSα

γ

)2
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Then

R∗ = 0 ⇔ the isotropic part of R∗
αβ is zero

S = 0 ⇔ R∗
αβ is completely isotropic (all eigenvalues are equal)

T = 0 ⇔ R∗
αβ is partially isotropic (some pair of eigenvalues are equal).

Of these choices, (ii) and (iv) are the most intuitive and the chief difference between

them is that the information gained from the vanishing of the eigenvalues is highly

directional, whereas that from the vanishing of R∗, S and T is more general.

At this point we shall introduce a new notation. If a set V of 4-m linearly inde-

pendent vector fields is (locally) surfaceforming, then the family of surfaces shall be

denoted by Fm(V ). We then have an m-parameter family of submanifolds partitioning

the region of interest. Geometric objects defined on a submanifold may be written

showing their manifold dependence. For example, the components of the Ricci tensor

for S ∈Fm(V ) would be written as Rαβ(S ), where a and B are suitably restricted.

We now go on to give the relationship between the submanifolds and the containing

space. The embedding of non-null hypersurfaces in a (sub)manifold is described by

the congruence of integral curves of the unit normal vector field. This is done using

the second fundamental form or “extrinsic curvature” of the hypersurface, which may

be defined in the following way. Let S ′ be a non-null hypersurface with unit normal

vector field n in S . If gab is the metric of S , then the projection tensor from S into

S ′ is

hab = gab − ncn
cnanb

and the extrinsic curvature tensor χab is defined (cf. Hawking and Ellis [1973a]) by

χab = hc
ah

d
bnc||d.

Here ‖ indicates the covariant derivative with respect to the connection on S . In this

discussion, Latin indices shall take on the values appropriate to S while Greek indices

take on the values appropriate to S ′.

We may now relate the curvature tensor, Ra
bcd of S to the intrinsic and extrinsic

curvatures, R′α
βγδ and χab, of S ′ using the formulas of Gauss:

R′a
bcd = Re

fghh
a
eh

f
bh

g
ch

h
d + neneχ

a
[cχd]b

and Codacci:

Rcd nchd
b = χa

[b‖a].

To illustrate this idea, R∗
αβ in example 3.1.2 would be given by

R∗
ab = Re

fgh hc
eh

f
ah

g
ch

h
b − θθab + θc

bθac.
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In this case, S is the space-time manifold M and ‖ corresponds to ;. Note that if

S ′′ is a hypersurface in S ′ then the curvature of S ′′ may be related to S ′ and hence

to S .

We shall be using the intrinsic Ricci tensor and the second fundamental form to de-

scribe the geometry of 2- and 3-dimensional submanifolds. Following example 3.2.1, we

shall use the following scalars to characterize Rαβ(S ′) and χab(S ′,n) for a submanifold

S ′ ∈ F4−r(V ):

R(S ′) := Rα
α(S ′), θ(S ′,n) := χa

a(S
′,n)

S(S ′) := 1
2
Sαβ(S ′)Sαβ(S ′), σ(S ′,n) := 1

2
σab(S ′,n)σab(S ′,n)

and, if r = 3,

T 6(S ′) := 4S6(S ′)− 3
[
Sαβ(S ′)Sβγ(S ′)Sa

γ(S
′)
]2

τ 6(S ′,n) := 4σ6(S ′)− 3
[
σab(S

′,n)σbc(S ′,n)σa
c(S

′,n)
]2

,

where Sαβ(S ′) and σab(S ′,n) are given by

Sαβ(S ′) = Rαβ(S ′)− gαβ(S ′)

r
R(S ′)

σab(S
′,n) = χ(ab)(S

′,n)− hab(S ′,n)

r
θ(S ′).

The scalars R and θ are the isotropic parts of Rαβ and χαβ respectively. The quantity

S ≥ 0 or σ ≥ 0 vanishes if and only if all the eigenvalues of Rαβ or χαβ respectively,

are equal and T ≥ 0 or τ ≥ 0 vanishes if and only if any two eigenvalues of Rαβ and

χαβ, respectively, are equal. Note that when n = u and r = 3 then θ and σ are the

usual kinematical quantities. Also note that the invariant τ , introduced here, should

not be confused with the quantity τ , introduced in section 1.3, which describes the

energy density of the electromagnetic field.

It is possible to give formulas for the intrinsic and extrensic curvature tensors in

terms of n and the set of vector fields V . This is shown in the following example.

Example 3.2.2. Suppose S ′ ∈ F2(V1,V2), S ∈ F1(n,V1,V2) and n · n = −1.

Then, without loss of generality, choose an orthonormal tetrad eA, A = 0,1,2,3 , in

which e0 = n and e2 and e3 span the tangent space of S ′. Then

Rαβ(S ′) = ∂γΓ
γ
βα − ∂βΓγ

γα + Γγ
γδΓ

δ
βα − Γγ

δαΓδ
γβ
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and

χab(S
′,n) = nc‖dh

c
a h d

b =

= (∂dnc − Γe
dcne)(h̃ c

a + nan
c)(h̃ d

b + nbn
d),

where h̃AB := gAB − e1Ae1B and the indices take the following values: α, β . . . =

2, 3, a, b . . . = 0, 2, 3 and A,B . . . = 0, 1, 2, 3. Here the quantities ΓA
BC are the Ricci

rotation coefficients of the full space-time with metric gAB, and h̃AB is the projection

tensor from the full space-time onto S .

When Rαβ(S ′) and χab(S ′,n) are written as in the above example, all the quantities

R, S, T, θ, σ and τ are well defined, although their interpretation is less succinct,

regardless of whether or not the set of vector fields, V , is surface-forming. If the vector

fields are surface-forming then the Greek indices may be replaced by small Latin indices

to emphasize the tensor character of the intrinsic and extrinsic curvatures. Another

point to note is that if we have more than one family of surfaces, the intrinsic and

extrinsic curvature invariants associated with each family are not all independent but

are related via the Gauss-Codacci equations.

In a general space-time partitioned by a family of surfaces, we would expect the

curvature invariants to be non-zero in a given neighborhood on any surface. However,

there will be certain distinguished space-times in which one or more of these quantities

is zero on an open set. We can thus obtain an algebraic classification of solutions

depending on the vanishing of these invariants on all surfaces of the family. Further, in a

space-time with several geometrically preferred families of surfaces, in any of the families

combinations of the quantities R, S, T, θ, σ and τ may vanish. This classification scheme

is a simple one based on the “degree of isotropy” of the intrinsic and extrinsic curvatures

of subspaces. Another scheme exists in which both the inhomogeneity and conformal

nature of the spacelike hypersurfaces are exploited (Wainwright [1979f]).

Our aim is to impose one or more of the intrinsic symmetries in order to simplify

the field equations. (One hope is eventually to find new exact solutions but this has

not yet been achieved.) We shall impose our conditions on one of the simple classes of

inhomogeneous space-times, the LRS models. Since our technique uses surfaceforming

combinations of vector fields, we shall concentrate the investigation on LRS type II

space-times. In fact, we shall be concerned mainly with type IIc models, in which

u̇ 6= 0, a 6= 0, and ω = k = 0. In that case the spacelike hypersurfaces are conformally

flat so the classification scheme of Wainwright divides the models into only 3 categories

(B3 : σab 6= 0, ha
b∂aθ 6= 0; B4 : σab 6= 0, ha

b∂aθ = 0; and D3 : σab =

0, ha
b∂aθ = 0). We shall be employing the intrinsic symmetries approach in preference

to this, since it leads to a finer subdivision of types. However, a combination of the

two approaches could be valuable.

SPECIALIZATION OF THE LRS CLASS II USING INTRINSIC SYMMETRIES



Chapter IV

SPECIALIZATION OF THE LRS CLASS II

USING INTRINSIC SYMMETRIES

We come now to the application of intrinsic symmetries in this thesis. We shall use

certain symmetries to specialize the LRS type II class of solutions. The basic set of

equations for this class is given by the system (LRSII) in Appendix A.

In this section we shall examine subspaces orthogonal to the time-like congruence,

employing combinations of the following intrinsic symmetries:

123R := R(123S ) = 0 ⇔ r = −2∂1a + 3a2 (I1)

123S := S(123S ) = 0 ⇔ r = ∂1a (I2)

123T := T (123S ) = 0 (holds identically) (I3)

12R := R(12S ) = 0 ⇔ 0 = ∂1a− a2 (I4)

23R := R(23S ) = 0 ⇔ r = 0 (I5)

(0)23θ := θ(23S , e1) = 0 ⇔ β = 0 (I6)


(4.0.1)

Here the subspaces are defined by

123S ∈ F1({e1, e2, e3})
12S ∈ F2({e1, e2}) ∈ {F2({e1,v})|v · e0 = v · e1 = 0}

and

23S ∈ F2({e2, e3})

for a tetrad, ea, which satisfies equation (1.3.2). These and other intrinsic symmetries

for the LRS type II space-times are listed in Appendix C. Note that each of the families

F1({e1, e2, e3}), F2({e1,v})|v · e0 = v · e1 = 0 and F2({e2, e3}) is geometrically well

defined and although F2({e1, e2}) is not defined uniquely it is representative of the

class F2({e1,v})|v · e0 = v · e1 = 0, since e2 and e3 are fixed up to a rotation only.

We shall investigate the consequences of these symmetries individually and in com-

binations. To do this we shall impose the appropriate constraint equations from (4.0.1),

using the method introduced in Chapter 2. Note that, for all quantities in the basic
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equations and the constraints, the operators ∂2 and ∂3 yield zero so for any constraint

only the ∂0 and ∂1 propagation equations need be checked.

The symmetries, (I5) and (I6), related to the group orbits will be examined first.

Then (I1), (I2) and (I4) will be examined individually and with combinations of (I5) and

(I6). Finally, since any two of (I1), (I2) and (I4) imp1y the third, we shall investigate

the case where all three hold and again consider comibinations with (I5) and (I6).

The majority of these calculations have been performed using the symbolic com-

puting system MACSYMA (see section 1.4). The calculations for (I5) and (I6) will be

outlined in some detail in computer free terms, as will be those for (I1). For (I2) the

specialization is done with the aid of the computer and will again be presented in some

detail. The remaining cases will only be summarized, the computational specifics being

given in Appendix E.

4.1 Combinations of 23R = 0 and (0)23θ = 0

The first intrinsic symmetries that we shall investigate are those associated with the

orbits of the isometry group. We examine specializations in which the group orbits are

intrinsically flat (I5), the group orbits have zero extrinsic curvature in the hypersurfaces

orthogonal to the fluid flow (I6), or both I5&6.

(I5) 23R = 0

In this case we have

23R = 0 ⇔ r = 0. (I5)

For this constraint to be preserved along e0 we must have, using (J4),

∂0r = 0 ⇔ − 2βr = 0,

which is an identity. For the constraint to be preserved along e1, we must have, using,

(J5),

∂1r = 0 ⇔ 2ar = 0,

which is also an identity. Hence the intrinsic symmetry may be imposed without

requiring that any additional conditions be satisfied. This is indicated in figure 4.1.1.

Note that since (J4) and (J5) always hold, we may have (I5) in conjunction with

any of the other intrinsic symmetries, unless r = 0 is specifically prohibited.
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(I6) (0)23θ = 0

We consider the condition

(0)23θ = 0 ⇔ β = 0 (I6)

and check for the necessary conditions for it to hold on an open set. The e0 propagation

of β is given by the field equation (F2):

∂0β = 0 ⇔ Λ− p + a2 − r − 2au̇ + τ = 0 (I6,0)

using (I6), and the e1 propagation is given by (F4):

∂1β = 0 ⇔ aα = 0,

again using (I6).

The last equation is satisifed if and only if a = 0 or α = 0 on an open set. Note,

though, that a = 0 gives a contradiction since ∂1a = 0 implies by (F3), (I6) and (I6,0)

that µ + p = 0, which contradicts the perfect fluid energy condition. Therefore we

must have

α = 0 (I6,1)

There are now two more equations, (I6,0) and (I6,1), which must be preserved along

e0 and e1. The four resulting propagation equations are:

∂0(Λ− p + a2 − r − 2au̇ + τ) = 0 (I6,00)

⇔ ∂0p = −2a∂0u̇

by (J2’), (J4), (M5) and (I6),

∂1(Λ− p + a2 − r − 2au̇ + τ) = 0 (I6,01)

⇔ ∂1u̇ = −u̇2 + 2τ − r +
p + µ

2
+

εE

a
+ a2

by (BI2), (F3), (J5), (M6) and (I6) and (I6,0),

∂0a = 0 (I6,10)

⇔ εE = 0
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by (F3), (I6) and (I6,01), and

∂1α = 0 (I6,11)

We shall examine each of these equations in turn.

Equation (I6,00) may be split into two propagation equations by introducing a new,

arbitrary variable, U0, i.e.

∂0p = −2aU0 (I6,00a)

∂0u̇ = U0. (I6,00b)

Since ∂1p is already known through (BI2), p must satisfy the integrability condition:

∂0∂1p− ∂1∂0p = u̇∂0p (using (I6,1)) (I6,00a*)

⇔ ∂0(−(µ + p)u̇)− ∂1(−2aU0) = −2au̇U0 (using (BI2) and (I6,00a))

⇔ ∂1U0 = −U0(a + 3u̇) (using (BI1), (I6,00a), (I6,00b), and (F3)).

The last equation will be automatically consistent with the system since ∂0U0 has yet

to be specified.

Now considering equation (I6,00b) in conjunction with (I6,01), we have equations

for both derivatives of u̇. The integrability condition for this variable is identically

satisfied using (I6,10), (M5),(J4), (I6,00a), (BI1), (J2) and (I6,00a*) in addition to

(I6,00b) and (I6,01), so the values of the directional derivatives of u̇ are compatible

with our system.

Next consider equation (I6,10). There are now two possible cases as well as the

combination:

E = 0 (I6,10A)

ε = 0 (I6,10B)

If E = 0 then, by (M1), ∂1E = 0 implies ε = O. Therefore

εE = 0 ⇔ ε = 0.

Further propagation yields an identity, by (M7), and ∂1ε = 0, which is consistent with

(M7) by the commutation relation. Finally the derivatives of α trivially satisfy the

commutatior relations so (I6,11) is an identity.

We have now checked all of the necessary conditions for (I5) to hold on an open set.

Since these equations are compatible, we have a consistent specialization. In summary,

we have
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β = 0 (I6)

α = 0 (I6, 1)

ε = 0 (I6, 10B)

Λ− p + a2 − r − 2au̇ + τ = 0 (I6, 0)

∂0p = −2a∂0u̇ (I6, 00)

∂1u̇ = −u̇2 + 2τ − r + p+µ
2

+ a2 (I6, 01)

∂1∂0u̇ = −∂0u̇(a + 3u̇) (I6, 00a∗)



(4.1.1)

as well as the equations (LRSII) of Appendix A.

The computations we have performed are depicted in figure 4.1.2.

(I5&6) 23R = 0 and (0)23θ = 0

We now consider the specialization in which both (I5) and (I6) hold. This is, in effect,

the intersection of the two classes just considered. To see if the specialization is con-

sistent, we first impose the constraint (I6), obtaining the additional conditions (4.1.1).

We then check to see if (I5) may be imposed on the new system ((LRSII) and (4.1.1)).

We find that (I5) is admitted unconditionally, since r = 0 is not specifically prohibited.

This is shown in figure 4.1.3.

Alternatively, the constraint (I5) may be imposed first, after which (I6) would be

applied. We would then work through a sequence of steps similar to those for (I6)

alone, except that the quantity r would be zero. Either way, we see that we have a

consistent specialization in which we have (LRSII), (4.1.1) and the additional equation

r = 0.

4.2 123R = 0 and Combinations of 23R = 0 and (0)23θ = 0

We shall now investigate the intrinsic symmetry (I1) — the vanishing of the Ricci scalar

of the hypersurfaces orthogonal to the fluid flow:

123R = 0 ⇔ 2∂1a− 3a2 + r = 0 (I1)

We shall also explore this condition along with either or both of (I5) and (I6), labelling

the combinations as follows:

123R = 0 and 23R = 0 (I1&5)
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identity identity

Figure 4.1.1: I5: 23R=0

123R = 0 and (0)23θ = 0 (I1&6)

123R = 0 and 23R = 0 and (0)23θ = 0. (I1&5&6)

The calculations involved in imposing these conditions will be outlined here in a fairly

detailed way.

We now show that the investigation of 123R = 0 splits naturally into two disjoint

cases: one in which (0)23θ 6= 0 and one in which (0)23θ ≡ 0. Using (F3), the equation

(I1) may be rewritten as an algebraic constraint:

Λ + µ + τ − β(2α + β) = 0. (I1)

Applying ∂0 to this equation gives the condition for preservation of the constraint along

e0. We then have

∂0µ + ∂0τ − 2(α + β)∂0β − 2β∂0α = 0 (I1,0)

⇔ 2β(∂1u̇ + u̇2) + (a2 − r)(α− β)− 2au̇(α + β) = 0,

by (BI1), (M5), (F2) and (F1). Similarly, preservation along e1 gives

∂1µ + ∂1τ − 2(α + β)∂1β − 2β∂1α = 0 (I1,1)

⇔ ∂1µ + 4aτ + εE − 2a(β2 − α2)− 2β∂1α = 0,

by (M6) and (F4). As before, we need not check the e2 and e3 propagation equa-

tions, since these operators give zero identically when applied to the quantities in (I1).

Examination of equations (I1,0) and (I1,1) indicates that we must indeed consider two
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Figure 4.1.3: I5&6: 23R=0 after imposing (0)23θ=0

disjoint cases: one in which β = (0)23θ/2 vanishes identically on the open set and another

in which β never assumes the value zero. We shall first consider the more general case,

in which β 6= 0 and the calculations are somewhat more involved, and then proceed to

the special case β ≡ 0.

(I1) 123R = 0 (β 6= 0)

In this subcase, division by β is possible since the quantity is never zero. Therefore we

may write the first propagation equations as

∂1u̇ = −u̇2 +
1

2
β−1(a2 − r)(β − α) + β−1au̇(α + β) (I1,0)

and

∂1α =
1

2
β−1[4ατ + εE − 2a(β2 − α2) + ∂1µ]. (I1,1)

Equation (I1,0) gives ∂1u̇. Since this is the first specification of a derivative of u̇ we

need not check any integrability condition. Equation (I1,1) relates two previously un-

known derivatives. We shall split this equation into two, each with only one previously

unknown derivative, by introducing a new function, M1, as follows:

∂1µ = M1 (I1,1a)

∂1α =
1

2
β−1[M1 + 4aτ + εE − 2a(β2 − α2)]. (I1,1b)
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(The notation M1 is used for consistency with cases done on the computer and is not

to be confused with the Maxwell’s equation M1.) Both ∂0µ and ∂0α are known, so we

must now check the commutators.

First we shall check the commutation relation for µ. Using ∂1µ from (I1,1a) and

∂0µ from (BI2), the integrability condition

∂0∂1µ− ∂1∂0µ = u̇∂0µ− α∂1µ

becomes

∂0M1 + ∂1[(µ + p)(α + 2β)] = −u̇(µ + p)(α + 2β)− αM1.

The ∂1 term may now be expanded employing (I1,1a), (BI2), (I1,1b) and (F4). The

resulting equation is solved for ∂0M1 to obtain

∂0M1 = −(µ+p)
β−1

2
[4aτ +εE +2a(β−α)2 +M1]+(α+2β)εE−2B(β +α). (I1,1a*)

This is the first derivative of M1 to be specified. Provided that the resulting constraints

are compatible with the commutation relation for α, M1 may be chosen arbitrarily and

no further checking is necessary.

Now we do a similar check of the commutation relation for α. With ∂1α given by

(I1,1b) and ∂0α by (F1) (substituting for ∂1u̇ from (I1,0), the commutator may be

expanded. After a straightforward but quite lengthy calculation using (I1) and most

of the equations specifying derivatives (including (I1,1a*)), the commutation relation

is found to be equivalent to

(α + β) ∈ E = 0. (I1,1b*)

There are now three possible cases, as well as their combinations:

α + β = 0 (I1,1b*A)

E = 0 (I1,1b*B)

ε = 0 (I1,1b*C)

We shall examine these cases in order, and show that the first two are special cases of

(I1,1b*C).

Consider the equation (I1,1b*A). Differentiating along e0, we use (F1) and (I1,0)

to substitute for ∂0α and (F2) for ∂0β. Then we apply (I1) and (I1,1b*A) to replace Λ

and β respectively, obtaining
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µ + p + 2τ + au̇ + 2α2 +
1

2
(r − a2) = 0 . (I1,1b*A0)

Similarly, we differentiate (I1,1b*A) along e1, using (I1,1b) to substitute for ∂1α and

(F4) for ∂1β. Then we employ (I1,1b*A) to replace β with −α, giving

M1 + 4aτ + εE + 4aα2 = 0 . (I1,1b*A1)

Normally we would now proceed to examine all four of the second propagation equations

of (I1,1b*A). However, upon comparing two of these second propagation equations, it

becomes apparent that further inquiry into the subcase A is not necessary. This is seen

as follows. First differentiate (I1,1b*A0) along e1 and substitute for the derivatives.

Next, replace in the resulting equation Λ, β, µ and M1 with their values according

to (I1), (I1,1b*A), (I1,1b*A0) and (I1,1b*A1) respectively. Simplification of the result

yields

4(u̇ + 2a)(α2 + τ)− a(a2 − r − 2au̇) = 0 . (I1,1b*A01)

In the same vein, differentiating (I1,1b*A1) along e0, replacing the derivatives and

substituting for Λ, β, µ and M1, yields

α[4(u̇ + 2a)(α2 + τ)− a(a2 − r − 2au̇) + 2εE] = 0 . (I1,1b*A10)

We know α = −β 6= 0 so the second factor must vanish. A comparison with (I1,1b*A01)

then shows we must have

εE = 0 .

Hence this subcase is merely a special instance of some combination of the subcases B

and C.

We now turn our attention to equation (I1,1b*B). Differentiation along e0 and using

M3 yields an identity but differentiation along e1 yields

ε = 0 . (I1,1b*B1)

using M1. Again we have a special instance of subcase C.

We now look at the last of the three subcases. As it has turned out, subcase

C includes both of subcases A and B as special cases. Therefore ε must be zero in

any solution admitting (I1) with β 6= 0. No further restrictions are necessary since

differentiation of (I1,1b*C) yields an identity.

Since no equations remain to be checked for compatibility, we have a consistent

specialization of the LRS type II space-times. From the preceding argument, any
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solution in the specialization is subject to

β 6= 0

Λ + µ + τ − β(2α + β) = 0 (I1)

ε = 0 (I1, 1b ∗ C)

∂1u̇ = −u̇2 + 1
2
β−1(a2 − r)(β − α) + β−1au̇(α + β) (I1, 0)

∂1α = 1
2
β−1[∂1µ + 4aτ − 2a(β2 − α2)] (I1, 1)

∂0∂1µ = −(µ+p)
2

β−1[∂1µ + 4aτ + 2a(β − α)2] (I1, 1a∗)

− 2(α + β)∂1µ .



(4.2.1)

as well as the system (LRSII) of Appendix A. The procedure followed for this special-

ization is outlined schematically in 4.1.4.

(I1&5) 123R = 0 and 23R = 0 (β 6= 0)

This is the specialization in which (I1) and (I5) both hold. Here we consider the more

general case of 123R = 0 (i.e. β 6= 0), leaving the special case to be considered separately.

We first impose the constraint given by (I1) on the system (LRSII). We then see that

(I5) may be imposed without requiring any additional conditions, since r = 0 is not

specifically prohibited. This is shown in 4.2.1.

Alternatively, the constraint given by (I5) may be imposed first, after which (I1)

would be applied. Either way, we see that the specialization is consistent and (LRSII),

(4.2.1) and (I5) hold.

(I1&6) 123R = 0 and (0)23θ = 0

This is the special case of (I1) in which β = 0. It was found in Section 4.1 that if β = 0,

then the equations (4.1.1) must also hold. In this case then, the intrinsic symmetry

(I1) reduces to

Λ + µ + τ = 0 . (I1&6)

Using (BI1), (M5), (I6) and (I6,1), we find that the ∂0 propagation of (I1&6) yields an

identity. Using (M6), we see that the ∂1 propagation gives

∂1µ = −4aτ . (I1&6,1)

Finally, employing (J2’), (M5) and (BI1), subject to α = β = 0, shows that equation

(I1&6,1) is consistent with (BI1), the prescription of ∂0µ.
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Figure 4.2.1: I1&5: 23R=0 after imposing 123R=0 with β 6= 0
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[∂0, ∂1]

identity

Figure 4.2.2: I1&6: 123R=0 after imposing (0)23θ=0

These steps are given in figure 4.2.2 and the equations which are to be satisfied in this

specialization are (I1&6) and (I1&6,1) as well as (4.1.1) n and (LRSII).

(I1&5&6) 123R = 0, 12R = 0 and (0)23θ = 0

We shall now consider the case in which all three of (I1), (I5) and (I6) hold. The

necessary conditions for (I1) and (I6) to hold together were found in the previous case.

We may now impose the additional constraint (I5) and no additional conditions are
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figure 4.2.2

r = 0

�
bbbbbbbbbbbbb \\\\\\\\\\\\\∂0 ∂1

identity identity

Figure 4.2.3: I1&5&6: 23R=0 after imposing 123R=0 and (0)23θ=0

necessary since r = 0 is again not specifically prohibited. This is indicated in figure

4.2.3.

The equations satisfied in this specialization are (I5), (I1&6), (I1&6,1) and those of

(4.1.1) and (LRSII).

4.3 123S = 0 and Combinations of 23R = 0 and (0)23θ = 0

The next intrinsic symmetry that we shall investigate is (I2) - the Ricci tensor of the

fluid rest space is to be isotropic:

123S = 0 ⇔ ∂1a− r = 0 . (I2)

We shall also explore this condition along with either or both of (I5) and (I6),

labelling the combinations as follows:

123S = 0 and 23R = 0 (I2&5)

123S = 0 and (0)23θ = 0 (I2&6)

123S = 0 and 23R = 0 and (0)23θ = 0 . (I2&5&6)

The course followed in imposing these conditions is similar in strategy to that followed

for (I1), since the investigation of 123S = 0 splits naturally into two disjoint cases:

(0)23θ ≡ 0 and (0)23θ 6= 0 .
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Here, the specialization has been performed with the aid of the symbolic computing

system MACSYMA. To do this, the basic equations of the LRS type II space-times were

placed in the file MC:SWATT;LRSII SETUP on the MACSYMA Consortium computer.

This file has been reproduced in Appendix D.

This file contains a few commands which tailor the manner in which MACSYMA

operates, before anything else is done.

Next, the atomic variables F, X, s, a, r, udt, alf, bet, E, H, tau, eps, mu, p and LAM

are defined. They represent, respectively, the unknown quantities F, X, s, a, r, u̇, α,

β, E, H, τ , ε, µ, p and Λ. All of these variables are made to depend on two more, the

coordinates t and x, except for LAM, since it corresponds to Λ, a constant.

The two functions, e0 and e1, are defined to act as the differentiation operators.

For example

e1(A) ↔ 1

X

∂A

∂x
Another function, CR, has been included for convenience to implement the commutation

relations. This function first computes the action of

[∂0, ∂1]− u̇∂0 + α∂1

on a quantity and then equates the result to zero.

Finally, all the equations of the (LRSII) system of Appendix A have been included

as GRADEFs. For instance, the Jacobi identity (J1) is given as

GRADEF (s, x, a ∗ s ∗X) ↔ ∂s

∂x
:= asX ⇔ ∂1s = as .

The computations to impose (I2) on the class of solutions are now given in the form of
a MACSYMA session. The first thing to be done is to load the file MC:SWATT;LRSII

SETUP.

(C1) BATCHLOAD("MC:SWATT\;LRSII SETUP") $

MLOAD FASL DSK MACSYM being loaded
loading done

We may now obtain the algebraic constraint equation equivalent to (I2). We shall
solve this equation for LAM, since we expect to substitute for this quantity later on. (In
trial computations it was found that substituting for other quantities yielded slightly
more complicated expressions.)

(C2) I2 : SOLVE(r: = e1(a), LAM)[1];
2 2

(D2) LAM = - tau + bet + 2 alf bet + 3 r - 3 a - mu
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This entire equation may now be referred to as (I2).

Now we find the first propagation equations. The MACSYMA function EV is used
to replace the occurrences of LAM in the differentiation results. Note that MACSYMA
syntax necessitates the inclusion of the character “\” in the variables names I2,0 and
I2,1 since “,” is non-alphanumeric (see Mathlab [1977]).

(C3) I2\,0 : RATSIMP(EV(e0(’I2), I2);
2 2

(D3) 0 = ((2 bet udt + (4 a bet - 2 a alf) udt + (2 a - 2 r) bet
2

+ (2 r - 2 a ) alf) X + 2 bet udt )/X
x

(C4) I2\,1 : RATSIMP(EV(e1(’I2), I2));
2 2

(4 a tau + E eps - 2 a bet + 2 a alf ) X - 2 alf bet + mu
x x

(D4) 0 = - -----------------------------------------------------------
X

Just as with the constraint (I1), we find we must consider two disjoint cases: β ≡ 0

on the open set or β 6= 0 on the open set. If β ≡ 0, then I2,0 is an algebraic constraint

and I2,1 specifies ∂1µ. If β 6= 0, then I2,0 specifies ∂1u̇ and I2,1 relates two unknown

derivatives.

We now consider the more general case β 6= 0, leaving the simpler case β ≡ 0 until

later.

(I2) 123S = 0 (β 6= 0)

First we reformulate I2,0:

(C5) I2\,0 : SOLVE(I2\,0, DIFF(udt, x))[1];

(D5) udt =
x

2 2 2
(bet udt + (2 a bet - a alf) udt + (a - r) bet + (r - a ) alf) x

- ------------------------------------------------------------------
bet

This gives a value for ∂1u̇ which we may substitute into the specification of ∂0α.

(C6) GRADEF(udt, x, RHS(I2\,0))$

(C7) GRADEF (alf, t, EV(DIFF(alf, t), DIFF))$

SPECIALIZATION OF THE LRS CLASS II USING INTRINSIC SYMMETRIES



49

The propagation equation (I2,1), along e1 relates the derivatives ∂1µ and ∂1α. We

shall split this equation by introducing a new variable, M1, defined by

∂1µ = M1 .

The propagation is then treated as follows.

(C8) DEPENDS(M1, COORDS) $

(C9) I2\,1a : DIFF(mu, x) = M1*X$

(C1O) GRADEF(mu, x, RHS(I2\,1a))$

(C11) I2\,1b : SOLVE(EV(el(’I2), I2), DIFF(alf, x))[1];
2 2

(D11) alf = (4 a tau + E eps + M1 - 2 a bet + 2 a alf )X
x ---------------------------------------------

2 bet

(C12) GRADEF(alf, x, RHS(I2\,1b))$

Equations (I2,1a) and (I2,1b) specify ∂1µ and ∂1α respectively. Since we already know
∂0µ and ∂0α, we must check for consistency through the commutation relationships for
the two unknowns, µ and α. We shall examine the commutator for µ first since it is
the simpler of the two.

(C13) I2\,1a\* :"SOLVE(EV(CR(mu), I2), DIFF(M1, t))[1];
2

(D13) M1 = - ((4 p + 4 mu) a tau +(- 4 bet - 2 alf bet + p + mu) E eps
t

2 2
+ (4 bet + 4alf bet + p + mu) M1 + (2 p + 2 mu) a bet

2
+ (- 4 P - 4 mu) a alf bet + (2 p + 2 mu) a alf )/(2 bet F)

(C14) GRADEF(M1, t, RHS(I2\,1a\*))$

Equation (I2,1a*) is the first specification for a derivative of M1 so this branch of the

investigation is complete and we may proceed to examine the commutator for α.

(C15) I2\,1b\* : RATSIMP(EV(CR(alf), I2));
(bet + alf) E eps

(D15) 0 = -----------------
bet

At least one of the factors in the numerator must vanish. We shall now examine the

vanishing of each factor in turn and show that ε = 0 is a necessary and sufficient

condition for (I2,1b*) to hold.
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We shall first examine the case β + α = 0.

(C16) I2\,1b\*A : bet =-alf $

The first propagation equations of (I2,1b*A) are computed as follows.

(C17) I2\,1b\*A0 : SOLVE(EV(eO(’I2\,1b\*A), I2, I2\,1b\*A), mu)[1];

2 2
(D17) mu = - 4 a udt - 2 tau - 2 alf + 4 r - 4 a - p
(C18) I2\,1b\*A1 : SOLVE(EV(el(’I2\,1b\*A), I2, I2\,1b\*A), M1)[1];

2
(D18) m1 = - 4 a tau - E eps + 2 a alf bet - 2 a alf

Comparing two of the second propagation equations of (I2,1b*a) shows we must have
εE = 0:

(C19) I2\,1b\*A01:
RATSIMP(EV(e1(RHS(’I2\,1b\*A0) - LHS(’I2\,1b\*A0) = 0),

I2, I2\,1b\*A, I2\,1b\*AO, I2\,1b\*A1));
2 2 2 3

(D19) (-2 tau - 2 alf + 8 a ) udt - 4a tau - 4 a alf - 8a r + 8 a = 0

(C20) I2\,1b\*A10:
RATSIMP(EV(e0(RHS(’I2\,1b\*A1) - LHS(’I2\,1b\*A1) = 0),

I2, I2\,1b\*A, I2\,1b\*AO, I2\,1b\*A1));

3 2
(D20) (- 4 alf tau - 4 alf + 16 a alf) udt - 8a alf tau - 2 alf E eps

3 3
- 8 a alf + (16 a - 16 a r) alf = 0

(C21) RATSIMP(I2\,1b\*A01 - I2\,1b\*A10/(2*alf));
(D21) E eps = 0

Hence the vanishing of β + α is merely a special case of the vanishing of εE.

We now examine the vanishing of the second factor, E, in (I2,1b*).

(C22) I2\,1b\*B : E = 0$

The first propagation equations of (I2,1b*B) are

(C23) EV(e0(’I2\,1b\*B), I2\,1b\*B);
(D23) 0 = 0 ,

an identity, and

(C24) EV(e1(’I2\,1b\*B), I2\,1b\*B);
(D24) eps = 0
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So the vanishing of E is merely a special case of the vanishing of ε. Since α + β = 0

necessitates εE = 0, we must have ε = 0 in that case as well.

Finally, we examine the vanishing of ε.

(C25) I2\,1b\*C : eps = 0$

We only know one of the derivatives of ε, namely ∂0ε, so it remains to verify that the
e0 propagation equation holds.

(C26) EV(eO(’I2\,1b\*C), I2\,1b\*C);
(D26) 0 = 0

Thus this propagation yields an identity.

We have found all the necessary conditions for this specialization to be consistent.

These conditions are, in summary:

β 6= 0

Λ + µ + τ − β(2α + β) + 3(a2 − r) = 0 (I2)

ε = 0 (I2, 1b ∗ C)

∂1u̇ = −u̇2 + β−1(a2 − r)(α− β) + au̇β−1(α− 2β) (I2, 0)

∂1α = 1
2
β−1[∂1µ + 4aτ − 2a(β2 − α2)] (I2, 1)

∂0∂1µ = −(µ + p)β−1

2
∂1µ + 4aτ + 2a(β2 − α2)

− 2∂1µ(β + α) (I2, 1a∗)



(4.3.1)

as well as the system (LRSII). The process we have followed is given diagramatically

in figure 4.3.1.

(I2&5) 123S = 0 and 23R = 0 (β 6= 0)

The case of 123S=0 with β 6= 0 does not require r 6= 0. We may therefore impose (I5) on

the system given by (LRSII) and (4.3.1) without requiring any additional conditions.

This is shown in figure 4.3.2. The specialization is consistent and (LRSII), (4.3.1) and

(I5) hold.

(I2&6) 123S = 0 and (0)23θ = 0

We now consider the case when 123S=0 with β = 0. The constraint (0)23θ=0 ⇔ β =
0, examined earlier, has been checked on the computer. The commands to do this
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have been placed in the file MC:SWATT;CASE I6, given in Appendix E. Loading this
file after MC:SWATT;LRSII SETUP performs the necessary computations, specifying the
derivatives with GRADEF and placing the additional algebraic constraints in a list
named I6LIST.

(C1) BATCHLOAD("MC:SWATT\LRSII SETUP")$

MLOAD FASL DSK MACSYM being loaded
Loading done.

(C2) BATCH LOAD ("MC:SWATT\;CASE I6")$

We proceed to apply the constraint 123S = 0. To begin, we find the algebraic constraint
equation.

(C3) I2&6 : EV(r e1(a), I6LIST, EXPAND);
2 p mu

(D3) r = a udt + a + - + --
2 2

We now compute the first propagation equations of (I2&6).

(C4) EV(e0(I2&6), I6LIST, EXPAND);
(D4) 0 = 0

(C5) I2&6\,1 : SOLVE(EV(e1(’I2&6), I2&6, I6LIST), DIFF(mu, x))[l]
(D5) mu = - 4 a tau X

x
(C6) GRADEF(mu, x, RHS(I2&6\,1))$

The ∂0 propagation yields an identity, while the propagation along e0 specifies a new

derivative, ∂1µ.

Since ∂0µ is already known from (BI1), we must now check the integrability condi-
tion for µ.

(C7) EV(CR(mu), I2&6, I6LIST, EXPAND);
(D7) 0 = 0

We have obtained an identity so the specification of ∂1µ is consistent. No equations

remain to be checked so this completes the case.

These steps are depicted schematically in figure 4.3.3. The equations which must

be satisfied are (I2&6) and (I2&6,1), as well as those of (4.1.1) and (LRSII).

(I2&5&6) 123S = 0 and 23R = 0 and (0)23θ = 0

The conditions for (I2) and (I6) to hold together were found in the case (I2&6). Upon

the original system with these additional conditions, we may now impose the additional

constraint (I5), since r = 0 is not specifically prohibitted. This is shown in figure 4.3.4.
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Figure 4.3.2: I2&5: 23R=0 after imposing 123S=0 with β 6= 0
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β = 0 r = au̇ + p+µ
2

+ a2

figure 4.1.1 �
bbbbbbbbbbb \\\\\\\\\\\∂0 ∂1

identity ∂1µ = −4aτ (I2&6,1)

[∂0, ∂1]

identity

Figure 4.3.3: I2&6: 123S=0 after imposing (0)23θ=0

The equations satisfied in this specialization are (I5), (I2&6), (I2&6,1) and those of

(4.1.1) and (LRSII).
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Figure 4.3.4: I2&5&6: 23R=0 after imposing 123S=0 and (0)23θ=0

4.4 12R = 0 and Combinations of 23R = 0 and (0)23θ = 0

The intrinsic symmetry

12R = 0 ⇔ ∂1a = a2 , (I4)

like (I1) and (I2) divides naturally into two disjoint subcases depending on the vanishing

or otherwise of (0)23θ = 0. The conditions necessitated by combinations of (I4), (I5)

and (I6) are summarized below.

(I4) 12R = 0 (β 6= 0)

In this specialization we have

β 6= 0

Λ + τ + µ + (a2 − r)− β(2α + β) = 0 (I4)

ε = 0 (I4, 1b ∗ C)

∂1u̇ = u̇β−1(αa− βu̇) (I4, 0)

∂1α = β−1

2
[4aτ + 2a(a2 − r) + 2a(α2 − β2) + ∂1µ] (I4, 1)

∂0∂1µ = − (µ+p)
2

β−1[4aτ + 2a(a2 − r) + 2a(α− β)2 + ∂1µ]

− 2(α + β)∂1µ (I4, 1a∗)



(4.4.1)
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as well as (LRSII). The equations are obtained in the manner depicted in figure

4.4.1.

(I4&5) 12R = 0 and 23R = 0 (β 6= 0)

The results here are the same as for (I4), except we also have r = 0. See figure 4.4.2.

(I4&6) 12R = 0 and (0)23=0θ

In addition to the system (LRSII) and the equations associated with β = 0, we also

have the algebraic representation of the constraint,

p + µ + 2au̇ = 0 , (I4&6)

and the following propagation equation:

∂1µ = −4aτ − 2a(a2 − r) , (I4&6,1)

The steps to arrive at these equations are shown in figure 4.4.3.

(I4&5&6) 12R = 0 and 23R = 0 and (0)23θ = 0

Here the results are the same as for (I4&6), except that we also have r = 0. See figure

4.4.4.

4.5 123R = 123S = 12R = 0 and Combinations of 23R = 0 and (0)23θ = 0

The constraints (I1), (I2) and (I4) are not independent. Using (4.0.1), it is easily seen

that taking any two of them automatically gives the third.

123R =123S = 0 ⇔ 123R = 12R = 0 ⇔ 123S = 12R = 0 (I1&2&4)

⇔ 123R = 123S = 12R = 0

⇔ ∂1a = a2 = r

Again we have two disjoint subcases, depending on whether or not β is zero.

(I1&2&4) 123R = 123S = 23R = 0 (β 6= 0)

We start by assuming all the conditions required for (I1) with β 6= 0. Then, in adding

123S = 0, we find the additional conditions necessary for this case are
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Figure 4.4.2: I4&5: 23R=0 after imposing 12R=0 with β 6= 0

�
bbbbbbbbbbbbbbbbbbbbbbb

\\\\\\\\\\\\\\\\\\\\\\\(I6) (I4)

β = 0 p + µ + 2au̇ = 0

figure 4.1.1 �
bbbbbbbbbbb \\\\\\\\\\\∂0 ∂1

identity ∂1µ = −4aτ − 2a(a2 − r) (I4&6,1)

[∂0, ∂1]

identity

Figure 4.4.3: I4&6: 12R=0 after imposing (0)23θ=0
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�
bbbbbbbbbbbbbbbbbbbbbbb

\\\\\\\\\\\\\\\\\\\\\\\(I4&6) (I5)

Λ + τ + µ + (a2 − r) = 0 and β = 0 r = 0

figure 4.4.3 �
bbbbbbbbbbb \\\\\\\\\\\∂0 ∂1

identity identity

Figure 4.4.4: I4&5&6: 23R=0 after imposing 12R=0 and (0)23θ=0

a2 − r = 0 (I1&2&4)

and

u̇ = 0 (I1&2&4,0)

(see figure 4.5.1). Note that (F3) now reduces to ∂1a = a2.

(I1&2&4&5) 123R = 123S = 12R = 23R = 0 (β 6= 0)

We first assume all the conditions of the case (I1&2&4). In particular note that r = a2.

Now, with 23R = 0 ⇔ r = 0, we may not have β = 0, since a = β = 0 has been shown

to give a contradiction. However, this problem cannot arise in this case.

Setting r = 0 in case (I1&2&4) gives no further conditions through propagation so

we have a consistent specialization. See figure 4.5.2.

(I1&2&4&6) 123R = 123S = 12R = 0 and (0)23θ = 0

We first assume all the conditions required for (I1&6). Then imposing (I2), we find

that

a2 − r = 0 (I1&2&4&6)

and

u̇ = 0 (I1&2&4&6,0)

are the only additional conditions necessary. This is depicted in figure 4.5.3.
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figure 4.1.4 �
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u̇ = 0 (I1&2&4,0) identity

�
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Figure 4.5.1: I1&2&4: 123S=0 after imposing 123R=0 with β 6= 0

�
bbbbbbbbbbbbbbbbbbbbbbb

\\\\\\\\\\\\\\\\\\\\\\\(I1&2&4) (I5)

Λ + µ + τ − β(2α + β) = 0 and a2 − r = 0 r = 0

figure 4.5.1 �
bbbbbbbbbbb \\\\\\\\\\\∂0 ∂1

identity identity

Figure 4.5.2: I1&2&4&5: 23R=0 after imposing 123R=123S=12R=0 with β 6= 0

(I1&2&4&5&6) 123R = 123S = 12R = 0 and 23R = 0 and (0)23θ = 0

In case (I1&2&4&6) we have a2 = r and β = 0. If we additionally impose 23R=0

⇔ r = 0, then a = β = 0 leads to a contradiction, as indicated in figure 4.5.4. This

specialization of the LRS type II solutions is inconsistent and yields an empty class.
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\\\\\\\\\\\\\\\\\\\\\\\(I1&6) (I2)

Λ + µ + τ = 0 and β = 0 a2 − r = 0

figure 4.2.2 �
bbbbbbbbbbb \\\\\\\\\\\∂0 ∂1

u̇ = 0 (I1&2&4&6,0) identity
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identity identity

Figure 4.5.3: I1&2&4&6: 123S=0 after imposing 123R=0 and (0)23θ=0

�
bbbbbbbbbbbbbbbbbbbbbbb

\\\\\\\\\\\\\\\\\\\\\\\(I1&2&4&6) (I5)

Λ + µ + τ = 0 and β = 0 and a2 − r = 0 a = 0

figure 4.5.3 �
bbbbbbbbbbb \\\\\\\\\\\∂0 ∂1

identity identity

Figure 4.5.4: I1&2&4&5&6: 23R=0 after imposing 123R=123S=12R=0 and (0)23θ=0

4.6 Summary

We have now examined all possible combinations of the intrinsic symmetries given at the

outset of this chapter. The inter-relation between these combinations is summarized in

two specialization diagrams: figures 4.6.1 and 4.6.2. Figure 4.6.1 gives the relationship
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between the combinations of intrinsic symmetries in the general case when β 6= 0. For

the special case β = 0, the relationship is given in figure 4.6.2. In these diagrams, each

box represents the class of space-times considered in the subsection of that title and

an arrow denotes the inclusion of one class in another. For example, in figure 4.6.1

the class of space-times which admit (I2) includes all space-times in the class with box

labelled I2&5. Since (I3) holds identically for all LRS type II space-times, it has not

been included in these diagrams.

The LRS type II space-times may then be characterized by division into these

classes. The classes which may not contain space-times of type IIc are I1&2&4,

I1&2&4&5 and I1&2&4&6, since for these classes u̇ = 0. All solutions from I1&2&4&5

will have a = 0 and so are of type IIa. The space-times in the class I1&2&4&6 have

β = 0, which implies a 6= 0, so are of type IIb.
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Chapter V

FURTHER RESULTS FOR LRS CLASS II
USING INTRINSIC SYMMETRIES

In this chapter, we give some further results for the LRS class II space-times. In section

5.1 we show that the method of Chapter 2 does not always terminate, by showing that

the intrinsic symmetry 01R=0 leads to an infinite sequence of computations. In section

5.2 we give results for intrinsic symmetries related to the congruence defined by the

spacelike axis of symmetry in the fluid restspace at each point of a space-time. Finally,

in section 5.3 we examine the consequences of imposing an equation of state of the form

A(p, µ) = 0.

5.1 A Non-terminating Process 01R = 0

So far, whenever we have used the procedure given in Chapter 2, the process has

terminated after a finite number of steps. There are situations, however, where this

does not happen. The following example, using the constraint propagation procedure

for a simple partial differential equation, is such a case.

Example 5.1.1. We shall attempt to impose Laplace’s equation,

∂2f

∂x2
+

∂2f

∂y2
= 0 ,

as a constraint on the class of C∞ real functions of two variables, x and y. The
differential operators are ∂x and ∂y and the commutator is [∂x, ∂y] = 0. The original
system is given by

∂xf = X ∂yf = Y

∂yX = A ∂xY = A ,

where we have ∂yX = ∂xY by [∂x, ∂y]f = 0. At this stage the functions f, X ,Y and A
are arbitrary apart from the four equations.

We now impose Laplace’s equation as a constraint:

∂xX + ∂yY = 0 .

This equation may be split up as

∂xX = B , ∂yY = −B .
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Applying the commutator to X gives

∂xA = ∂yB ⇒ ∂xA = C, ∂yB = C

and to Y gives
∂xB = −∂yA ⇒ ∂yA = D, ∂xB = −D .

Notice that the propagation equations for A and B are the same as those for X and Y
with the unknowns relabelled. Therefore the application of the commutator will lead to
an infinite sequence of equations, which is inconclusive from the present point of view.

When a situation such as this occurs, another method of approach may yield more
information. For instance, here if we introduce

D := ∂x + i∂y

then the original system plus Laplace’s equation is equivalent to

D(X − iY ) = 0 .

This is a single propagation equation for X - iY using D, so we may impose it as a
constraint. However, this and similar methods are unsatisfactory in that they are not
systematic, as we require.

In general, the procedure of Chapter 2 may involve checking three commutators
at any given stage and whether or not the process terminates depends on how the
equations are coupled. The exact nature of this dependency has not been thoroughly
studied by the present author.

This problem can occur in the investigation of intrisinc symmetries, even in the
case of LRS type II space-times where only one commutator is involved. We shall now
describe such a case.

With the usual tetrad, we have in LRS type II space-times that e0 and e1 are
surface-forming. Defining 01S∈ F ({e0, e1}), we find

R(01S ) = 2(∂0α + α2 − ∂1u̇− u̇2)

and
S(01S ) = θ(01S ,n) = σ(01S ,n) = 0

for all n such that n · e0 = n · e1 = 0. We shall examine the consequences of imposing
R(01S ) = 0:

∂0α = ∂1u̇ + u̇2 − α2 . (5.1.1)

Using (F3), (5.1.1) reduces to

2τ +
p + µ

2
− β2 + a2 − r = 0 . (5.1.1)
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Employing the usual methods we find the first propagation equations are

∂0p = β(6τ − 3p− µ + 2Λ) + α(p + µ) (5.1.2,0)

and
∂1µ = −a(6τ − 3p− µ + 2Λ) + u̇(p + µ)− 3εE . (5.1.1,1)

The commutaion relation for p yields

∂1α = −∂0u̇ + 2(3p + µ− 6τ − 2Λ)(βu̇ + βa + αa)(µ + p)−1 (5.1.1,0*)

+ (4εE(2β − 2α)− 24aβτ)(µ + p)−1

− 2au̇

and, using this, the commutation relation for µ gives

β ∈ E = 0 (5.1.1,1*)

which in turn implies
ε = 0 . (5.1.1,1*c)

The pair of equations (5.1.1) and (5.1.1,0*) is of the form

∂0α = ∂1u̇ + G1

∂1α = −∂0u̇ + H .

 (5.1.2)

This leads, in a manner similar to example 5.1.1, to an infinite sequence of equations.

When a stage such as this is reached the condition for the constraint to give a
consistent specialization is that the pair of equations admit a solution. In the case of
(5.1.2) the pair of equations is equivalent to a single partial differential equation, second
order in u̇ and α with over one hundred terms.

Under some circumstances, additional ground may be gained by introducing com-
plex differential operators. This approach has not been found to be useful in dealing
with (5.1.2), since both u̇ and α appear in G and H, leading to unintelligibly lengthy
expressions.

5.2 Intrinsic Symmetries Related to the Spacelike Congruence

In Chapter 4 we examined intrinsic symmetries related to the timelike congruence de-

fined by the fluid flow in LRS type II space times. We shall now consider the congruence

of curves tangent to the rest space axis of symmetry, e1. Examining the commutators

(1.3.2) shows that for LRS type II space-times the e1 congruence is hypersurface orthog-

onal. In fact, any subset of {e0, e2, e3} is surfaceforming. In this section, we investigate
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the intrinsic symmetries related to the e1 congruence, analogous to those studied in

Chapter 4. The equations are:

023R := R(023S ) = 0 ⇔ r = −2∂0β − 3β2 (I7)

023S := S(023S ) = 0 ⇔ r = ∂0β (I8)

023T := T (023S ) = 0 (holds identically) (I9)

02R := R(02S ) = 0 ⇔ 0 = ∂0β + β2 (I10)

23R := R(23S ) = 0 ⇔ r = 0 (I5)

(1)23θ := θ(23S , e1) = 0 ⇔ a = 0 (I11)


(5.2.1)

The subspaces are defined by

023S ∈ F1({e0, e2, e3})
02S ∈ F2({e0, e2}) ∈ {F2({e0,v})|v · e0 = v · e1 = 0}

and

23S ∈ F2({e2, e3})

with the usual tetrad. Each of the families F1({e0, e2, e3}) {F2({e0,v})|v·e0 = v·e1 =

0} and F2({e2, e3}) is geometrically well defined and F2({e0, e2}) is a representative

element of its class.

We shall summarize the results for these symmetries applied individually and in

combinations. The intrinsic symmetries, (I5) and (I11), related to the group orbits

will be dealt with first. Each of (I7), (I8) and (I10), then the three together will be

summarized by themselves and with combinations of (I5) and (I11). The details of the

calculations are given in Appendix F.

1.) Combinations of 23R = 0 and (1)23θ = 0 .

(I5) 23R = 0

We have already examined

23R = 0 ⇔ r = 0 (I5)

in Chapter 4 and have found that no additional conditions are necessary.
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(I11) (1)23θ = 0

The conditions found by propagating this constraint are:

a = 0 (I11)

u̇ = 0 (I11, 0)

Λ + µ + τ − β2 − 2αβ − r = 0 (I11, 1)

∂1µ = 2β∂1α (I11, 11)

ε = 0 (I11, 11a ∗ C)

∂0∂1µ = −∂1µ
2β

(4β2 + 4αβ + p + µ) (I11, 11b∗)


(5.2.2)

The steps followed are outlined in figure 5.2.1.

(I5&11) 23R = 0 and (1)23θ = 0

The results here are the same as for the previous case with r = 0.

2.) 023R=0 and Combinations of 23R = 0 and (1)23θ = 0 .

Here the main constraint is

023R = 0 ⇔ ∂0β + 3β2 + r = 0 (I7)

⇔ Λ− p + τ − 2au̇ + a2 = 0 .

The first propagation equations are

2a∂0u̇ + ∂0p + 2β(a2 − u̇2 + 2τ) = 0 (I7,0)

and

2a∂1u̇ + (a− u̇)(β2 + 2σβ + r)− a(2a2 − 2u̇2 + p + µ + 4τ)− 2εE = 0 . (I7,1)

Examination of (I7,0) and (I7,1) shows that we need to consider two disjoint cases: one

in which a = (1)23θ

−2
vanishes identically on the open set and another in which a is never

zero.
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We have the following cases:

(I7) 023R = 0 (a 6= 0)

In this specialization , we must have

Λ + τ − p + a(a− 2u̇) = 0 (I7)

∂0p = −2a∂0u̇ + 2β(u̇2 − a2 − 2τ) (I7, 0)

∂1u̇ = a2 − u̇2 + p+µ
2

+ 2τ + εE
a

+ (u̇−a)
2a

(β2 + r + 2αβ) (I7, 1)

∂1∂0u̇ = −β(3a2 + 2au̇− u̇2 + p + µ + 10τ)− (a + 3u̇)∂0u̇

−2βεE
a2 (2a− u̇) + a−1

2
(β2 + r + 2αβ)[2β

a
(a2 − au̇ + u̇2) + ∂0u̇]

+α(a2 − u̇2 + 2τ) (I7, 0a∗)


(5.2.3)

See figure 5.2.2.

(I7&5) 023R = 0 and 23R = 0 (a 6= 0)

The results for this case are the same as for (I7) with r set to zero.

(I7&11) 023R = 0 and (1)23θ = 0

In addition to the system (LRSII) and (5.2.2) we must have

r = −β2 − 2αβ + p + µ (I7&11)

and

∂0p = −4βτ . (I7&11,0)

The steps followed are shown in figure 5.2.3.

(I7&5&11) 023R = 0 and 23R = 0 and (1)23θ = 0

The results for this case are the same as for (I7&5) with r = 0.

3.) 023S=0 and Combinations of 23R = 0 and (1)23θ = 0 .

Just as with (I7) this case splits into two disjoint possibilities according as a 6= 0 and

a ≡ 0.
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(I8) 023S = 0 (a 6= 0)

Here we have

Λ + τ − p + a(a− 2u̇)− 3(β2 + r) = 0 (I8)

∂0p = −2a∂0u̇ + 2β(u̇2 − a2 − 2τ) (I8, 0)

∂1u̇ = a2 − u̇2 + p+µ
2

+ 2τ − (u̇+2a)
a

(β2 + r − αβ) (I8, 1)

∂1∂0u̇ = −β(3a2 + 2au̇− u̇2 + p + µ + 10τ)− (a + 3u̇)∂0u̇

−a−1(β2 + r − αβ)[2β
a

(a2 + 2au̇ + u̇2) + ∂0u̇]

+α(a2 − u̇2 + 2τ) (I8, 0a∗)

ε = 0 . (I8, 0b ∗ C)



(5.2.4)

See figure 5.2.4.

(I8&5) 023S = 0 and 23R = 0 (a 6= 0)

In this case the results are the same as for (I8) with r set to zero.

(I8&11) 023S = 0 and (1)23θ = 0

Here we have the results of (I11) and the additional relations

r = −β2 + αβ − p + µ

2
(I8&11)

and

∂0p = −4βτ . (I8&11,0)

This results was achieved in exactly the same way as for (I7&11).

(I8&5&11) 023S = 0 and 23R = 0 and (1)23θ = 0

The results are those of (I8&11) with r = 0.

4.) 02R=0 and Combinations of 23R = 0 and (1)23θ = 0 .

As with (I7) and (I8) this case divides naturally depending on the vanishing or otherwise

of a.
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(I10) 02R = 0 (a 6= 0)

For this specialization we must have

Λ + τ − p + a(a− 2u̇)− (β2 + r) = 0 (I10)

∂0p = −2a∂0u̇ + 2β(u̇2 − a2 − 2τ) + 2β(β2 + r) (I10, 0)

∂1u̇ = a2 − u̇2 + p+µ
2

+ 2τ − (β2 + r) + αβ u̇
a

(I10, 1)

∂1∂0u̇ = −β(3a2 + 2au̇− u̇2 + p + µ + 10τ)− (a + 3u̇)∂0u̇

− (β2 + r)(3β − α) + αβ
a2 (2βu̇2 + a∂0u̇)

+ α(a2 − u̇2 + 2τ) (I10, 0a∗)

ε = 0 . (I10, 0b ∗ C)



(5.2.5)

See figure 5.2.5.

(I10&5) 02R = 0 and 23R = 0 (a 6= 0)

Here the results are the same as (I10) with r = 0.

(I10&11) 02R = 0 and (1)23θ = 0

In addition to the results of (I11), here we have

0 = αβ − µ + p

2
(I10&11)

and

∂0p = −4βτ . (I10&11,0)

(I10&5&11) 02R = 0 and 23R = (1)23θ = 0

The results here are the same as for (I10&11) with r = 0. In particular, note that we

must put r = 0 in (5.2.2), the system of equations for (I11).
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5.) 023R=023S=02R=0 and Combinations of 23R = 0 and (1)23θ = 0 .

Any two of (I7), (I8) and (I10) implies the third. That is,

023R = 023S = 0 ⇔ 023R = 02R = 0 ⇔ 023S = 02R = 0 (I7&8&10)

⇔ 023R = 023S = 02R = 0

⇔ ∂0β = −β2 = r .

Since each of (I7), (I8) and (I10) divide naturally into the disjoint cases a 6= 0 and

a ≡ 0, so does their combination.

(I7&8&10) 023R = 023S = 02R = 0 (a 6= 0)

Imposing (I7) after (I8) we find the necessary conditions for this specialization are

r = −β2 (I7&8&10)

α = 0 (I7&8&10, 1B)

ε = 0

 (5.2.6)

in addition to the equations for (I7), (I8) or (I10). See figure 5.2.6.

(I7&8&10&5) 023R = 023S = 02R = 0 and 23R = 0 (a 6= 0)

Here we impose the condition 23R=0 on the case (I7&8&10). If r = 0, then by equation

(I7&8&10) β = 0. Since a 6= 0, we then have a consistent specialization.

(I7&8&10&11) 023R = 023S = 02R = 0 and (1)23θ = 0

Imposing (I11), (I7) and (I8), in that order, we find that we must have

αβ =
p + µ

2
(I7&8&1&11)

and

r = −β2 , (I7&8&10&11,0)

in addition to the equations (5.2.2) and (LRSII). See figure 5.2.7.
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(I7&8&10&5&11) 023R = 023S = 02R = 0 and 23R = 0 and (1)23θ = 0

We may not have r = 0 in (I7&8&10&11), since this would imply µ + p = 0. There are

therefore no LRS type II space-times with perfect fluid and, possibly, electromagnetic

field that exhibit all of the intrinsic symmetries of (5.2.1).

6.) Summary

We have examined all combinations of the intrinsic symmetries (5.2.1). The relation

between the cases considered is given in the specialization diagrams 5.2.8 and 5.2.9. As

in Chapter 4, we give separate diagrams for the general case and the special case.

The classes which may contain LRS type IIc space-times are those of the general

case a 6= 0. In the special case a ≡ 0, the space-times are LRS type IIa.

5.3 Equation of State with Intrinsic Symmetries

We now address the problem of an equation of state with the aid of intrinsic symmetries.

We shall assume there exists a functional relationship between the quantitites p and µ.

That is, we shall assume there exists a function A, of two variables such that

A(p, µ) = 0 (5.3.1)

We shall see that even with a general restriction of this sort it is possible to gain some

ground using the present approach.

Equation (5.3.1) may be viewed as a constraint equation which must be propagated.

Since the 2 and 3 operators yield zero for p and µ, we need only consider the ∂0 and

∂1 propagation equations for A:

∂0A = 0 ⇔ ∂A
∂p

∂0p + ∂A
∂µ

∂0µ = 0

∂1A = 0 ⇔ ∂A
∂p

∂1p + ∂A
∂µ

∂1µ = 0

 (5.3.2)

A necessary and sufficient condition for the homogeneous system (5.3.2) to have a

solution (other than the trivial solution ∂A
∂µ

= ∂A
∂p

= 0) is

det

 ∂0p ∂0µ

∂1p ∂1µ

 = ∂0p∂1µ− ∂1p∂0µ = 0 . (5.3.3)

Above, the second term, ∂1p∂0µ, is known from the Bianchi identities to be

∂1p∂0µ = (u̇(µ + p) + εE)(µ + p)(α + 2β) . (5.3.4)
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identity

identity

Figure 5.2.3: I7&11: 023R=0 after (1)23θ=0

Since we do not, in general, know the propagation equations for ∂0p or ∂0µ we shall

examine equation (5.3.3) with the aid of intrinsic symmetries. We shall divide the

investigation into three disjoint and exhaustive cases: β = 0, a 6= 0; β 6= 0, a = 0; and

β 6= 0, a 6= 0. (Recall β = 0, a = 0 gives a contradiction.)

1.) β = 0, a 6= 0

This is the intrinsic symmetry (I6), examined in 4.1. There, we found β = 0 implies

α = 0 and ∂0p = −2a∂0u̇. Equation (5.3.3) now reads

−2a∂0u̇∂1µ = 0

so we have two possibilities: either ∂0u̇ = 0 or ∂1µ = 0. If ∂0u̇ = 0, then using (I6,0)

to specify ∂1u̇ tne commutation relation for u̇ is identically satisifed. If ∂1µ = 0 then

µ is a constant, since α = β = 0 implies ∂0µ = 0. Thus both of the possibilities are

consistent in the LRS class II space-times.

2.) β 6= 0, a = 0

In this case we have the intrinsic symmetry (I11) from section 5.2. Among the condi-

tions necessary for a = 0, it was found that we must have u̇ = ε = 0 and ∂1µ = 2β∂1α.
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identity identity

Figure 5.2.6: I7&8&10: 023R=0 after 023S=0 with a 6= 0

Since u̇ and ε vanish we have ∂1p = 0 so equation (5.3.3) becomes

2β∂0p∂1α = 0 .

If ∂0p = 0 then p is a constant and trivially satisfies the integrability condition. If

∂0α = 0 then, using (F1) for ∂0α, we see that α would also satisfy the commutation

relation. Therefore both of these possibilities are consistent in the LRS class II space-

times.

3.) β 6= 0, a 6= 0

In this case we divide the investigation into two parts according as ∂1µ is zero or

nonzero.
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Figure 5.2.7: I7&8&10&11: 023R=023S=02R=0 and (1)23θ=0

(3a) ∂1µ = 0

From (5.3.3), (5.3.4) and µ + p 6= 0, we have

(α + 2β)(u̇(µ + p) + εE) = 0 .

Since at least one factor must vanish we have two main subcases, which we shall examine

in turn.

(3ai) α + 2β = 0

We must check the consistency of the constraint

α + 2β = 0 (5.3.5)

propagation along e0 yields

∂1u̇ = u̇(2a− u̇) + τ − Λ + 6β2 +
µ + 3p

2
, (5.3.5,0)

which is the first propagation equation for u̇. Using this, propagation of (5.3.5) along

e1 gives

∂1α = −6aβ . (5.3.5,1)
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Checking the commutation relation for α gives εE = 0 which implies

ε = 0 (5.3.5,1*)

and there are no futher constraints to satisfy.

(3aii) u̇(µ + p) + εE = 0

In this case we may write

u̇ =
−εE

(µ + p)
(5.3.6)

so these space-times are accelerating if and only if ε 6= 0. Introducing two new quantities

∂1ε = Q1

∂0p = P0

the first propagation equations of (5.3.6) are

∂0u̇ =
[P0 + 2(p + µ)]εE

(p + µ)2
(5.3.6,0)

and

∂1u̇ =
(p + µ)(εE + ε2 + 2aεE + EQ1) + (εE)2

(p + µ)2
(5.3.6,1)

The commutators for ε and p yield, respectively,

∂0Q1 = −2(α + β)Q1

∂1P0 =
εE

µ + p
[P0 + 4β(µ + p)]

and the commutator for u̇ is satisfield identically.

Since we have specified ∂1µ = 0 we must check the integrability condition for µ.

Doing this yields

∂1α = 2a(α− β) +
εE(α + 2β)

µ + p
.

Checking the commutator for a yields a lengthy propagation equation for ∂1Q1 and

checking the commutation relation for Q1 yields an even lengthier propagation equation

for ∂1P0. The unknown P0 then satisifes the integrability condition if and only if an

algebraic constraint with approximately 200 terms holds.
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The consistency of imposing the equation of state has not been checked in full for

this case since, propagating the 200 term constraint along e0, we obtain an equation

with nearly 19,000 terms and we do not feel it worthwhile to pursue this case further.

Imposing some additional constraints would be appropriate in a case such as this.

However, since most of the intrinsic symmetries we have examined require ε = 0,

imposing one of them reduces this case to checking the consistency of u̇ = 0, which is

trivial.

(3b) ∂1µ 6= 0

In this case we may use (5.3.3) to obtain

∂0p =
[u̇(µ + p) + εE](µ + p)(α + 2β)

M1
,

where we have defined

∂1µ = M1 .

We have found this too complicated to check for consistency in the full generality and

have restricted our attention to the case where 123R=0. (The investigation would be

quite similar if another intrinsic symmetry had been used instead.) With this restric-

tion, we have

∂0p =
u̇(µ + p)2(α + 2β)

M1
. (5.3.7)

checking the commutation relation for p we obtain a propagation equation for ∂0u̇

involving ∂1M1. Splitting this propagation equation by defining

∂1M1 = M11 ,

we must check the commutation relations for both u̇ and M1, since ∂1u̇ and ∂0µ have

been found in the investigation of 123R=0. Checking the commutator for u̇, we obtain

an algebraic constraint, if α + 2β = 0, or a lengthy propagation equation for ∂1M11,

if α + 2β 6= 0. Checking the commutator for M1 yields a propagation equation for

∂0M11. Therefore this case divides naturally, depending on whether the expansion is

zero or non-zero.

(3bi) α + 2β = 0

In this case ∂0µ = ∂0p = 0, and we must propagate the constraint

α = −2β . (5.3.8)
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We shall show that (5.3.8) leads to a contradiction. Propagating the constraint along

e0 we obtain

6au̇ + 4τ + 18β2 − 3a2 + 3(p + µ) + 3r = 0 (5.3.8,0)

Differentiating (5.3.8,0), we obtain

3u̇2 − 12aτ − 18β2 − 3(p + µ) + 8τ = 0 (5.3.8,00)

and

u̇3 − 3au̇2 + (6β2 − 4a2 − p− µ)u̇ + a(30β2 − p− µ) = 0 . (5.3.8,01)

Then propagation of (5.3.8,00) along e0 yields

− 9u̇2 + 8au̇ + 6β2 + µ + p = 0 . (5.3.8,000)

Another propagation along e0, then comparing the result with (5.3.8,00) gives

u̇ =
5a

17
. (5.3.8,0000)

Substituting this back into (5.3.8,01) and using (5.3.8,000) gives

a(3468β2 + 55a2) = 0 .

This holds if and only if a = 0, which is a contradiction.

We have shown that the LRS class II space-times with 123R=0 and aβ∂1µ 6= 0 do

not admit an equation of state of the form A(p, µ) = 0, if the expansion vanishes.

(3bii) α + 2β 6= 0

In this case, we have propagation equations for both ∂0M11 and ∂1M11 so we must

check the commutator of M11. Doing this yields an equation with approximately 13,000

terms so this case remains intractable unless further conditions are imposed.

We have now completely examined all of the cases except (3aii) and (3b). The case

(3bi) has been examined in full with the additional condition 123R=0. Even with this

additional condition, the case (3bii) remains too complicated to handle unless further

restrictions are imposed. All of the cases we have examined completely contain solutions

with an equation of state A(p, µ) = 0. The case (3bi) does not admit an equation of

state of this form if 123R=0. The cases which have not been examined in full remain

inconclusive.

Finally, we note that in cases (2) and (3) we may have space-times of LRS class IIc.

In case (3bii) we may not use the intrinsic symmetries 123S=0 or 12R=0 to complete

the investigation if we wish to obtain solutions in class IIc, since we have shown that

any two of (I1), (I2) and (I4) imply u̇ = 0.

AUTOMATING THE CONSTRAINT-CHECKING PROCEDURE



Chapter VI

AUTOMATING THE CONSTRAINT-CHECKING PROCEDURE

We now revisit the topic of Chapter 2 — the method for checking whether a constraint

may be imposed consistently on a class of solutions. Although the procedure does not

always terminate, we have seen that in many cases it does and that in these cases

it is a useful computational method. There are at least two reasons why we might

consider writing a computer program for the constraint-checking procedure. One reason

is simply that such a program could prove useful in investigating problems similar to

those with which we have dealt. Another reason is that to write such a program we

must describe in detail all aspects of the problem and would therefore be forced to

consider fine points which might otherwise be overlooked. In this chapter we discuss

some aspects of implementing our procedure as a computer program.

6.1 General Considerations

In the calculation of previous chapters, we have encountered many possible situations,

using the method for checking the consistency of a constraint equation. Often we have

come to a stage where any one of a number of new constraint equations is sufficient

for the equation under consideration to hold. Sometimes when this happens the inves-

tigation is divided into cases, as with the vanishing or otheriwse of β while examining

123R = 0. At other times one of the conditions includes the others as special cases

so only the general case need be considered. This occurs, for example, when εE = 0,

because E = 0 implies ε = 0 so only the latter case need be examined.

Another possibility is that we have a number of new conditions, all of which must

hold. This happens whenever both propagations yield non-trivial equations that must

both be checked. A second situation where this would happen occurs when we split

an equation with more than one derivative into separate propagation equations, which

must all hold.

We shall abstract away from the specifics of propagation equations and integrability

conditions and deal with the problem from a more general point of view.

Suppose we have a constraint which implies that at least one of a number of further

conditions hold. Then this divides the investigation into a number of cases in which

the consistency of each of the new condtions is checked. If there was more than one

case to start with, then each of the new conditions must be checked with each of the

old ones, giving a new set of cases in which the constraint may hold.
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If we have a constraint which implies that a number of new conditions all hold, then

one way of checking for consistency is to apply the new constraints one after another

and demand that all of the generated conditions hold. When there is more than one

case to start with, then this should be done for each case and the original constraint

may hold only if it may hold in at least one of these cases.

The methods for handling these two general situations may be given as the following
two MACSYMA procedures:

CHECK%OR(CONSTRAINT%LIST, CASE%LIST) :=

BLOCK([NEW%CASE%LIST, THIS%CASE%LIST],
NEW%CASE%LIST : [],
FOR CASE IN CASE%LIST DO

FOR CONSTRAINT IN CONSTRAINT%LIST DO
(THIS%CASE%LIST : CHECK%ONE(CONSTRAINT, CASE),
IF THIS%CASE%LIST # CONTRADICTION THEN

NEW%CASE%LIST : APPEND(NEW%CASE%LIST,
THIS%CASE%LIST)),

RETURN(IF NEW%CASE%LIST = [] THEN
CONTRADICTION

ELSE
NEW%CASE%LIST))$

CHECK%AND(CONSTRAINT%LIST, CASE%LIST) :=

BLOCK([NEW%CASE%LIST],
NEW%CASE%LIST : CHECK%OR([FIRST(CONSTRAINT%LIST)],

CASE%LIST),
FOR CONSTRAINT IN REST(CONSTRAINT%LIST)
WHILE NEW%CASE%LIST # CONTRADICTION DO

NEW%CASE%LIST : CHECK%OR([CONSTRAINT], NEW%CASE%LIST),
RETURN(NEW%CASE%LIST))$

In these procedures, CHECK%ONE is the function used to check the consistency of a single

constraint in a single case, returning either a list of cases or the atom CONTRADICTION.

If the above procedures had been used in performing the calculations in the preced-

ing chapters, then the use of CHECK%OR would correspond to the OR gates (�) in the

diagrams and the use of CHECK%AND would correspond to the AND gates (�).

6.2 A Prototype Computer Program

In this section we shall discuss a prototype program which can be used for simple prob-

lems. The purpose of this program is not to implement the full constraint-checking
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procedure, but rather to illustrate the feasibility of doing so. A listing of the MAC-

SYMA procedures and two example runs are given in Appendix G.

Before describing the operation of the functions, we define a few data types to

facilitate the discussion. First, we define an “algebraic rule” to be an equation of the

form variable = expression, where expression is free of derivatives. We shall define

a “propagation rule” to be a list of the form [variable, variable, expression]. This

shall be interpreted as an argument list to the function GRADEF. Finally, we define a

“case” to be a two element list of the form [list of algebraic rules, list of propagation

equations]. The main procedure of the constraint-checking program is CHECK%ONE,

which is a recursive function of two arguments. The first argument is an equation, which

represents the constraint, and the second argument is a case, which should contain

algebraic and propagation rules for the basic equations of the class of space-times. If

the constraint equation may not be imposed consistently for the given case, then the

atom CONTRADICTION is returned. When the constraint may be applied consistently,

then the list of cases for which the constraint may hold is returned. Each case in the list

would contain the rules for the basic equations, the constraint and additional necessary

conditions.

A number of simplifying assumptions are made about the problems with which

CHECK%ONE deals. First, it is assumed that the space-time is spatially homogeneous so

that only one propagation equation need be checked for a given algebraic constraint.

Second, it is assumed that an equation which contains derivatives which are not known

is always a propagation equation. That is, it is assumed that such an equation does not

necessitate checking two cases in which a coefficient is zero or non-zero, accordingly.

Also, it is assumed that the expressions with which the procedures deal are rational

functions of the unknowns and their derivatives.

Interinally, CHECK%ONE performs the following actions. First local GRADEFs are set

up using the propagation rules from the given case and a list of algebraic rules, to be

used in simplifications, is taken from the first element of the case. These initializations

are performed by the function INITIALIZE%LEVEL. The function CLEAN is then used

to recast the equation in a form in which it will be easier to divide the investigation

into spacial cases if necessary. CLEAN first collects all terms on the right-hand side of

the equation and then performs an evaluation, using the local GRADEFs and the list of

algebraic rules. The resulting expression is then factored and returned to CHECK%ONE.

The constraint equation is then examined to see what type it is. If it is an identity

for the current case, then no additional conditions are necessary and a list of cases is

returned which contains only the one input case. If the equation is recognized as a

contradiction then the atom CONTRADICTION is returned. If the equation does not fall

into either of these categories, we check whether it may be a propagation equation by

AUTOMATING THE CONSTRAINT-CHECKING PROCEDURE



90

looking for first derivatives. At this point one of PROPN%PROCESS or ALG%PROCESS is

called according to the result of the test. The function called returns a list of cases (or

CONTRADICTION) and this result is returned by CHECK%ONE.

With the assumptions we have made, whenever PROPN%PROCESS is called nothing

further need be done than record the equation and return the current case.

When ALG%PROCESS is invoked, the constraint equation is reshaped to give an alge-

braic rule. In fact a number of cases may need to be investigated if the constraint equa-

tion gives rise to a product as zero or if the equation is not linear in any of its unknowns.

The propagation equation(s) are then checked recursively and the result is returned.

(Note that for the spatially homogeneous case CHECK%AND(DIFF%LSTI, [CASE]) is

equivalent to CHECK%ONE(D%OP(1, eqn), CASE) ).

There are a number of possible directions in which this prototype may be im-

proved. First, it would be desirable to implement a more intelligent version of

MAY%NOT%ZERO%PRED, which remembered the answers to the prompts for each case,

and used them in future deductions. It would be useful to extend the scope of the pro-

gram to include spatially inhomogeneous space-times. This would be achieved mainly

by rewriting PROPN%PROCESS, using CHECK%OR and CHECK%AND to combine the results of

division in cases and checking commutators.

There is one final point we shall note. When these calculations are performed by

hand and a stage is reached where a number of conditions must all hold, it is easiest

to perform a “breadth first” investigation. That is, one would normally compute all

the first propagation equations for the conditions before proceeding on to second and

further propagations. A procedure such as CHECK%AND, on the other hand, performs

a “depth first” investigation, completely investigating one constraint before going on

to the rest. This is done to take advantage of the recursion stack to simplify the

specification of the procedures.
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CONCLUDING REMARKS

We have used our method of imposing constraints both for intrinsic symmetries and

for an equation of state, with LRS Class II space-times.

The intrinsic symmetries we have examined are related to the u and e1 congruences

and the subspaces orthogonal to them. Imposing any one of the intrinsic symmetries

leads to a number of additional relationships between the unknowns. Using this method,

a number of identities have been obtained for Class IIa by imposing a = 0 as the

intrinsic symmetry (1)23θ = 0 on Class II. By examining all combinations of intrinsic

symmetries associated with each of the u and e1 congruences, we have shown which

may hold simultaneously and have obtained the related necessary conditions. With the

intrinsic symmetries we have examined, the simplification of the field equations has not

yet led to the discovery of new solutions. This is a question which the author intends

to investigate further.

We have examined the restriction that the equation of state be of the general form

A(p, µ) = 0. Dividing the investigation into a number of disjoint cases, we have com-

pletely examined most of the cases and determined the additional conditions which

must hold. In the most general cases we have been forced to impose additional con-

ditions, otherwise the calculations become impractical even using a large system for

symbolic computation.

In the last chapter we have shown how the procedure for checking the consistency

of a constraint may be implemented on a computer. Even though the general theory

of imposing constraints in this way is still incomplete, the method presented could well

be useful in other areas besides general relativity.
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Appendix A BASIC EQUATIONS FOR LRS CLASS II

For the tetrad of section 1.3 with LRS class II space-times, the commutation relations,

Jacobi identities, Maxwell equations, field equations and Bianchi identities reduce to

the following formulæ (Steward & Ellis [1968]).

Commutation Relations:

[e0, e1] = u̇e0 − αe1 (CR1)

[e0, e2] = − βe2 (CR2)

[e0, e3] = − βe3 (CR3)

[e2, e3] = se3 (CR4)

[e3, e1] = − ae3 (CR5)

[e1, e2] = ae2 (CR6)

Jacobi Identities:(
3

123

)
⇔ ∂1s = as (J1)(

2

012

)
⇔ ∂1β + ∂0a = −βu̇− αa (J2)(

3

023

)
⇔ ∂0s = −βs (J3)

Maxwell Equations:

∂1E = 2aE + ε (M1)

∂1H = 2aH (M2)

∂0E = −2βE (M3)

∂0H = −2βH (M4)
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Field Equations:

(00)

(11)

(22)

 ⇔


∂0α = −1

2
(µ + p) + β2 − α2 − a2 + r + ∂1u̇ + u̇2 − 2τ (F1)

∂0β = 1
2
(Λ− p− 3β2 + a2 − r − 2au̇ + τ) (F2)

∂1a = 1
2
(Λ + µ− β2 − 2aβ + 3a2 − r + τ) (F3)

(01) ⇔ ∂1β = a(β − α) (F4)

Bianchi Identities:

(0) ⇔ ∂0µ = −(µ + p)(α + 2β) (BI1)

(1) ⇔ ∂1p = −(µ + p)u̇− εE (BI2)

From the Jacobi identities, we obtain further useful relations. Since ∂1β is known

from (F4), the identity (J2) gives a propagation equation for ∂0a:

∂0a = −β(a + u̇). (J2’)

From the definition r := ∂2s− s2, the identities (J3) and (J1) imply, respectively,

∂0r = −2βr (J4)

∂1r = 2ar (J5)

Using Maxwell’s equations, three additional propagation equations may be obtained.

The definition τ = 1
2
(E2 + H2) implies

∂0τ = −4βτ (M5)

and

∂1τ = 4aτ + εE. (M6)

Applying (CR1) to E and simplifying using (M1), (M3) and (J2) yields

∂0ε = −(α + 2β)ε. (M7)

Finally, let

LRSII = {CR1, . . . , CR6, J1, J2′, J3, J4, J5, M1, . . . , M7, F1, . . . , F4, BI1, BI2} .

Then, for any space-time of LRS class II, each equation of the basic set (LRSII) holds.
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In this appendix, we prove two results, the first referred to in section 1.3 and the other

in section 3.1.

Result 1. If a space time containing perfect fluid and electromagnetic field is LRS in

the region of interest, then in a tetrad with e0 = u and e1 an axis of symmetry, the

electromagnetic stress-energy tensor has τ01 = 0 if and only if E = Ee1 and B = Be1.

Proof. We shall use the following formulæ:

τ00 = 1
8π

(E · E + B ·B)

τ0α = − 1
4π

(E×B)α

ταβ = 1
4π

[
− (EαEβ + BαBβ) + 1

2
gαβ (E · E + B ·B)

]
 (B.1)

and by LRS we have

τab =


τ00 τ01 0 0

τ10 τ11 0 0

0 0 τ22 0

0 0 0 τ33


where τ22 = τ33 as well as τ01 = τ10 and τa

a = 0.

Suppose τ01 = 0. Then, examinging the components of τab, we see

τ22 = τ33 ⇒ (E2)
2 + (B2)

2 = (E3)
2 + (B3)

2 (B.2a)

τ23 = 0 ⇒ E2E3 = −B2B3 (B.2b)

τ01 = 0 ⇒ E2B3 = B2E3 (B.2c)

Without loss of generality, assume E2 ≥ 0. If E2 = 0 then either B2 = 0, in which

case E3 and B3 are zero by (B.2a), or B2 6= 0, in which case B3 = E3 = 0 by (B.2b)

and (B.2c) and (B.2a) gives a contradiction. If E2 > 0 then (B.2b) ·B3 and (B.2c) ·E3

combine to give

−B2(B3)
2 = B2(E3)

2.

Then if B2 6= 0 we have B3 = E3 = 0 and (B.2a) gives a contradiction. Otherwise

B2 = 0 so (B.2b) and (B.2c) imply B3 = E3 = 0 and (B.2a) again gives a contradiction.

The only case which does not lead to a contradiction is E2 = E3 = B2 = B3 = 0.

Therefore we have shown

τ01 = 0 ⇒ E = Ee1 and B = Be1.
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Now suppose E = Ee1 and B = Be1. Substituting the tetrad component values of

E and B into (B.1) gives τ01 = 0.

Assuming the cosmological constant is zero, we have

Result 2. In a space-time with perfect fluid admiting a homothetic vector field h such

that h · u = 0, we have either p = µ or h is a Killing vector (McIntosh [1976]). If

in addition there is an electromagnetic field, with stress energy-tesnsor τab, this result

remains true only if the additional condotion

τab
; a hb =

1

3

[(
τabu

aub
)

, c
hc + 2bτabu

aub
]

holds.

Proof. Since h is a homothetic vector we have

Lhgab = 2bgab,

for some constant b. We may define fab = f[ab] and ja such that ja
; a = 0 by

ha; b = bgab + fab

and

ja = fab
; b = Rabhb

(c.f. McIntosh [1976]).

The field equations give

Rab = (µ + p)uaub +
1

2
(µ− p)gab + τab.

We have h · u = 0 by hypothesis, so contracting the above equation with h gives

ja =
1

2
(µ− p)ha + τabhb

and ja
; a = 0 implies

0 =
1

2
(µ− p), ah

a +
1

2
(µ− p)ha

; a + τabhb; a + τab
; a hb

=
1

2
Lh(µ− p) + 2b(µ− p) + τab

; a hb (B.3)
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using the fact that τab is symmetric and trace-free to deduce that τabhb; a = 0. To

evaluate Lh(µ− p), we use the relations

Lh

(
Tabu

aub
)

= −2bTabu
aub

Lh (T a
a ) = −2bT a

a

 (B.4)

(Eardley [1974]). From these we have

Lh

(
µ + τabu

aub
)

= −2b
(
µ + τabu

aub
)

Lh (−µ + 3p) = −2b (µ + 3p)

so

Lh (µ− p) = −2b (µ− p)− 2

3

[(
τabu

aub
)

, c
hc + 2bτabu

aub
]
.

Using this result, (B.3) becomes

b(µ− p) =
1

3

[(
τabu

aub
)

, c
hc + 2bτabu

aub
]
− τab

; a hb.

Finally, if p = µ or h is a Killing vector then the left-hand side of the above equation

vanishes and

τab
; a hb =

1

3

(
τabu

aub
)

, c
hc + 2bτabu

aub.

Remark. Note that if the perfect fluid and electromagnetic field are non-interacting,

then

τab
; a = 0.

If it is also assumed that

Lh

(
τabu

aub
)

= −2bτabu
aub,

thent he condition of Result 2 is satisfied and therefore p = µ or h is a Killing vector,

as in the perfect fluid case.
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Appendix C SOME POSSIBLE INTRINSIC SYMMETRIES

FOR LRS CLASS II

With space-times from LRS class II all combinations of the basis vectors given in 1.3 are

surface-forming. This gives several geometrically well defined families of submanifo1ds

with which we may use intrinsic symmetries. The combinations of basis vectors lead

us to consider the following surfaces:

123S ∈ F1({e1, e2, e3})

023S ∈ F1({e0, e2, e3})

012S ∈ F1({e0, e1, e2})† ∈ {F1({e0, e1,v})|v · e0 = v · e1 = 0}

01S ∈ F2({e0, e1})

02S ∈ F2({e0, e2})† ∈ {F2({e0,v})|v · e0 = v · e1 = 0}

12S ∈ F2({e1, e2}) ∈ {F2({e1,v})|v · e0 = v · e1 = 0}

23S ∈ F2({e2, e3})

Letting

a . . . bRde := Rde(a...bS )

and

(c)a . . . bθde := θde(a...bS , ec) ,

we may consider the intrinsic symmetries listed below.

123S :

123R = 2r + 4∂1a− 6a2 = 0 (0)123θ = α + 2β = 0

123S
2 = (∂1a−r)2

3
= 0 (0)123σ

2 = (α−β)
3

= 0

123T
6 = 0 (holds identically) (0)23τ

6 = 0 holds identically

023S :

023R = 2r + 4∂0β + 6β2 = 0 (1)023θ = u̇− 2a = 0

023S
2 = (∂0β−r)2

3
= 0 (1)023σ

2 = (u̇+a)2

3
= 0

123T
6 = 0 (holds identically) (1)023τ

6 = 0 (holds identically)

†These families are not defined uniquely but are representative of their classes.
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012S :

012R = 0

012S
2 = 0

012T
6 = 0

01S :

01R = −2∂1u̇− 2u̇2 + 2∂0α + 2α2 = 0

01S
2 = 0 (holds identically)

02S :

02R = 2∂0β + 2β2 = 0 (1)02θ = u̇− a = 0

02S
2 = 0 (1)02σ

2 = (u̇+a)2

4
= 0

12S :

12R = 2∂1a− 2a2 = 0 (0)12θ = α + β = 0

12S
2 = 0 (0)12σ

2 = (α−β)2

4
= 0

23S :

23R = 2r = 0 (0)23θ = 2β = 0

23S
2 = 0 (0)23σ

2 = 0 (holds identically)

(1)23θ = −2a = 0

(1)23σ
2 = 0 (holds identically)

Here we have not included the equations for the extrinsic curvature of a surface

with normal e2 or e3, since γ3
23 = s and the equations depend on the choice of tetrad.

Also, we have omited the explicit formulae for the intrinsic symmetries of 012S because

their subspace is quite general and the expressions are lenghty compared to the other

cases.
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Appendix D INITIALIZATION FILE FOR LRS CLASS II

/*******************************************************************/
/* */
/* This file defines the basic equations for LRS Class II */
/* space-times. First a few control variables are reset */
/* and the unknowns are defined. Then the propagation */
/* equations are implemented as GRADEF’s. */
/* */
/*******************************************************************/

/* TAILOR THE MACSYMA ENVIRONMENT */

LINEL : 65$ /* Set output line length. */
BOTHCASES : TRUE$ /* Distinguish upper and lower case. */
DECLARE("&", ALPHABETIC)$ /* Treat & as a..z,A..Z and %. */
DERIVABBREV : TRUE$ /* Use subscriptt notation. */
PROGRAMMODE : TRUE$ /* Make SOLVE return evaluated list. */
INFEVAL : TRUE$ /* Make EV use INFEVAL mode. */
LOADPRINT : FALSE$ /* . Suppress loading messages. */

/* DEFINE UNKNOWNS */

ORDERGREAT(F, X)$ /* Change default ordering so */
ORDERLESS(mu, p, a, r, alf, bet)$ /* expressions group nicely. */
UNKNOWNS: [F, X, Y, s, a, r, udt, alf, bet, E, H, tau, eps, mu, p]$
COORDS : [t, x]$
DEPENDS (UNKNOWNS,’ COORDS, LAM, []) $

/* DEFINE DIFFERENTIAL OPERATORS AND THE COMMUTATOR */

e0(ARG) := DIFF(ARG, t)*F$
e1(ARG) := DIFF(ARG, x)/X$
CR(ARG) := 0 = e0(e1(ARG)) - e1(e0(ARG)) - udt*e0(ARG) + alf*el(ARG)$

/* GIVE THE BASIC SYSTEM OF EQUATIONS */

/* Jacobi identities: */

/* Jl */ GRADEF(s,x, a*s*X)$
/* J2’*/ GRADEF(a,t, -bet*(a+ udt)/F)$
/* J3 */ GRADEF(s, t, -bet*s/F)$
/* J4 */ GRADEF(r,t, -2*bet*r/F)$
/* J5 */ GRADEF(r,x, 2*a*r*X)$

/* Maxwell’s equations: */

/* M1 */ GRADEF(E, x, (2*a*E + eps)*X)$ GRADEF(H, x, 2*a*H*X)$
/* M2 */ GRADEF(H, x, 2*a*H*X)$
/* M3 */ GRADEF(E, t, -2*bet*E/F)$
/* M4 */ GRADEF(H, t, -2*bet*H/F)$
/* M5 */ GRADEF(tau, t, -4*bet*tau/F)$
/* M6 */ GRADEF(tau, x, (4*a*tau + eps*E)*X)$
/* M7 */ GRADEF(eps, t, -eps*(alf + 2*bet)/F)$

/* Field equations: */
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/* F1 */ GRADEF(alf, t, (-mu/2 - p/2 + bet^2 - alf^2 - a^2 + r
+ e1(udt) + udt^2 - 2*tau)/F )$

/* F2 */ GRADEF(bet, t, (LAM - p - 3*bet^2 + a^2 - r - 2*a*udt
+ tau)/(2*F) )$

/* F3 */ GRADEF(a, x, (LAM + mu - bet^2 - 2*alf*bet + 3*a^2 - r
+ tau) *X/2 ) $

/* F4 */ GRADEF(bet, x, a*(bet - alf)*X )$

/* Bianchi identities: */

/* BI1 */ GRADEF(mu, t, -emu + p)*(alf + 2*bet}/F )$
/* BI2 */ GRADEF(p, x, (-(mu + p)*udt - eps*E)*X )$

/* END OF FILE */
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Appendix E DETAILS OF CALCULATIONS FOR CHAPTER IV

The following pages give the details of the calculations, in the form of a MACSYMA

session, for the intrinsic symmetries examined in Chapter 4. The symmetry (I2) has

been omitted since the MACSYMA session was discussed in the text.

101



102

I1: 123R = 0 with β 6= 0

(C1) BATCHLOAD("MC:SWATT\;LRSII SETUP");
(D1) DONE
(C2) BATCH("MC:SWATT\;CASE I1");
(C3) I1 : SOLVE (r = -2*e1 (a) + 3*a^2, LAM) [1];

2
(D3) LAM = - tau + bet + 2 alf bet - mu

(C4) I1\,0: SOLVE(EV(e0(’I1), I1), DIFF(udt, x))[1];

(D4) udt = - (2 bet udt + (- 2 a bet - 2 a alf) udt
x

2 2
+ (r - a) bet + (a - r) alf) X/(2 bet)

(C5) GRADEF(udt, x, RHS(I1\,0))$
(C6) GRADEF(alf, t, EV(DIFF(alf, t), DIFF))$
(C7) DEPENDS(M1, COORDS)$
(C8) I1\,1a : DIFF(mu, x) = M1*X$
(C9) GRADEF(mu, x, RHS(I1\,1a))$
(C10) I1\,1b : SOLVE(EV(e1(’I1), I1), DIFF(alf, x)) [1];

2 2
(4 a tau + E eps + M1 - 2 a bet + 2 a alf ) X

(D10) alf = -----------------------------------------------
x 2 bet

(C11) GRADEF(alf, x, RHS(I1\,lb))$
(C12) I1\,1a\*: SOLVE(EV(CR(mu), I1), DIFF(M1, t))[1];

2
(D12) M1 = - ((4 p + 4 mu) a tau + (- 4 bet - 2 alf bet + p + mu) E eps

t
2 2

+ (4 bet + 4 alf bet + p + mu)M1 + (2 p + 2 mu) a bet
2

+ (- 4 p - 4 mu) a alf bet + (2 p + 2 mu) a alf)/(2 bet F)

(C13) GRADEF(M1, t, RHS(I1\,1a\*))$
(C14) I1\,1b\* : RATSIMP(EV(CR(alf), I1));

(bet + alf) E eps
(D14) 0 = -----------------

bet

(C15) I1\,1b\*A : bet = -alf$
(C16) I1\,1b\*A0 : SOLVE(EV(e0(’I1\,1b\*A), I1, I1\,1b\*A), mu) [1];

2
(D16) - 2 a udt + 4 tau + 4 alf + r - a + 2p
(D16) mu= -------------------------------------

2

(C17) I1\,1b\*A1 : SOLVE(EV(e1(’I1\,1b\*A), I1, I1\,1b\*A), M1)[1];
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2
(D17) M1 = - 4 a tau - E eps + 2 a alf bet - 2 a alf

(C18) I1\,1b\*A01 :
RATSIMP(EV(e1(RHS(’I1\,1b\*A0) - LHS(’I1\,1b\*A0) = 0),

I1, I1\,1b\*A, I1\,1b\*A0, I1\,1b\*A1));

2 2 2
(D18) -(4 tau + 4 alf + 2a)udt + 8 a tau + 8 a alf + ar - a3 = 0

(C19) I1\,1b\*A10 :
RATSIMP(EV(e0 (RHS (’I1\,1b\*A1) - LHS(’I1\,1b\*A1) = 0),
I1, I1\,1b\*A, I1\,1b\*A0, I1\,1b\*A1));

3 2
(D19) (- 4 alf tau - 4 alf - 2 a alf) udt - 8 a alf tau

3 3
- 2 alf E eps - 8 a alf + (a - ar)alf = 0

(C20) RATSIMP(I1\,1b\*A01 - I1\,1b\*A10/(2*alf));
(D20) E eps = 0
(C21) I1\,1b\*B : E = 0$
(C22) EV(e0(’I1\,1b\*B), I1\,1b\*B);
(D22) a = 0
(C23) EV(e1(’I1\,1b\*B), I1\,1b\*B);
(D23) eps = 0
(C24) I1\,1b\*C : eps = as
(C25) EV(e0(’I1\,1b\*C), I1\,1b\*C);
(D25) 0 = 0
(C26) I1LIST:[I1, I1\,1b\*C];
(D26) [LAM = - tau + bet + 2 alf bet - mu, eps = 0]
(D27) BATCH DONE
(C28) KILL(ALL)$
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I1&6: 123R = 0 After Imposing (0)23θ = 0

(C1) BATCHLOAD("MC:SWATT\;LRSII SETUP");
(D1) DONE
(C2) BATCH("MC:SWATT\;CASE I1&6");
(C3) BATCHLOAD("MC:SWATT\; CASE I6");
(D3) DONE
(C4) I1&6 : EV(r = -2*e1(a) + 3*a^2, I6LIST, EXPAND);

2
(D4) r = - 2 a udt + a - p - mu

(C5) EV(e0(’I1&6), I6LIST, EXPAND);
(D5) 0 = 0
(C6) I1&6\,1 : SOLVE(EV(e1(’I1&6), I6LIST), DIFF(mu, x)) [1];

(D6) mu = - 4 a tau X
x

(C7) GRADEF(mu, x, RHS(I1&6\,1))$
(C8) EV(CR(mu), I6LIST, I1&6, EXPAND};
(DS) 0 = 0
(D9) BATCH DONE
(C10) KILL (ALL) $
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I4: 12R = 0 with β 6= 0

(C1) BATCHLOAD("MC:SWATT\;LRSII SETUP");
(Dl) DONE
(C2) BATCH("MC:SWATT\;CASE I4");
(C3) I4 : SOLVE(0 = e1(a) - a^2, LAM) [1];

2 2
(D3) LAM = - tau + bet + 2 alf bet + r - a - mu
(C4) I4\,0 : SOLVE(EV(e0(’I4), I4), DIFF(udt, x))[1];

2
(bet udt - a alf udt) X

(D4) udt = - ------------------------
x bet

(C5) GRADEF(udt, x, RHS(I4\,0))$
(C6) GRADEF(alf, t, EV(DIFF(alf, t), DIFF))$
(C7) DEPENDS(M1, COORDS)$
(C8) I4\,1a : DIFF(mu, x) = M1*X$
(C9) GRADEF(mu, x, RHS(I4\,1a))$
(C10) I4\,1b : SOLVE(EV(e1(’I4), I4), DIFF(alf, x))[1];

2 2 3
(D10) alf = (4 a tau + E eps + M1 - 2 a bet + 2 a alf - 2ar + 2a ) X

x -----------------------------------------------------------
2 bet

(C11) GRADEF(alf, x, RHS(I4\,1b))$
(C12) I4\,1a\* : SOLVE(EV(CR(mu), I4), DIFF(M1, t))[1];

2
(D12) M1 = - ((4 p + 4 au) a tau + (- 4 bet - 2 alf bet + p + mu) E eps

t
2 2

+ (4 bet + 4 alf bet + p + mu) M1 + (2 p + 2 mu) a bet

2
+ (- 4p - 4 mu) a alf bet + (2 p + 2 mu) a alf

3
+ (- 2p - 2 mu) a r + (2 p + 2 mu) a )/(2 bet F)

(C13) GRADEF(M1, t, RHS(I4\,1a\*))$
(C14) I4\,1b\* : RATSIMP(EV(CR(alf), I4));

(bet + alf) E Eps
(D14) 0 = -----------------

bet

(C15) I4\,1b\*A : bet = -alf$
(C16) I4\,lb\*A0 : SOLVE(EV(e0(’I4\,1b\*A), I4, I4\,1b\*A), mu) [1];

2 2
(D16) mu = -2 a udt - 2 tau - 2 alf + r - a - p

(C17) I4\,1b\*A1 : SOLVE(EV(e1(’I4\,1b\*A), I4, I4\,Ib\*A), M1) [1];
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2 3
(D17) M1 = - 4 a tau - E eps + 2 a alf bet - 2 a alf+ 2 a r - 2 a

(C18) I4\,1b\*A01 :
RATSIMP(EV(e1(RHS(’I4\,1b\*A0) - LHS(’I4\,1b\*A0) = 0),

I4, I4\,1b\*A, I4\,1b\*A0, I4\,1b\*A1));

2 2 2
(D18) (- 2 tau - 2 alf + r - a) udt - 4 a tau - 4 a alf = 0

(C19) I4\,1b\*A10 :
RATS1MP(EV(e0(RHS(’I4\,1b\*A1) - LHS(’I4\,1b\*A1) = 0),

I4, I4\,1b\*A, I4\,1b\*A0, I4\,1b\*A1));

3 2
(D19) (-4 alf tau - 4 alf + (2 r - 2 a) alf) udt - 8 a alf tau

3
- 2 alf E eps - 8 a alf = 0

(C20) RATSIMP(I4\,1b\*A01 - I4\,1b\*A10/(2*alf));
(D20) E eps = 0
(C21) I4\,1b\*B : E = 0$
(C22) EV(e0(’I4\,1b\*B), I4\,1b\*B);
(D22) 0 = 0
(C23) EV(e1(’I4\,1b\*B), I4\,1b\*B);
(D23) eps = 0
(C24) I4\,1b\*C : eps = 0$
(C25) EV(e0(’I4\,1b\*C), I4\,1b\*C);
(D25) 0 = 0
(C26) I4LIST: [I4, I4\,1b\*C];

2 2
(D26) [LAM = - tau + bet + 2 alf bet + r - a - mu, eps = 0]

(D27) BATCH DONE
(C28) KILL(ALL)$
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I4&6: 12R = 0 After Imposing (0)23θ = 0

(C1) BATCHLOAD("MC:SWATT\;LRSII SETUP");
(D1) DONE
(C2) BATCH("MC:SWATT\;CASE I4&6");
(C3) BATCHLOAD("MC:SWATT\;CASE I6");
(D3) DONE
(C4) I4&6 : EV(r = -2*e1(a) + 3*a^2, I6LIST, EXPAND);

2
(D4) r = - 2 a udt + a - p - mu

(C5) EV(e0(’I4&6), I6LIST, EXPAND);
(D5) 0 = 0
(C6) I4&6\,1 : SOLVE(EV(e1(’I4&6), I6LIST), DIFF(mu, x))[1];
(D6) mu = - 4 a tau X
(C7) GRADEF(mu, x, RHS(I4&6\,1))$
(C8) EV(CR(mu), I6LIST, I4&6, EXPAND);
(D8) 0 = 0
(D9) BATCH DONE
(C10) KILL(ALL)$

I5: 23R = 0

(C1) BATCHLOAD("MC:SWATT\;LRSII SETUP");
(D1) DONE
(C2) BATCH("MC:SWATT\;CASE I5");
(C3) I5 : r = 0$
(C4) EV(eO (’I5), I5);
(D4) 0 = 0
(C5) EV(e1(’I5), I5);
(D5) 0 = 0
(D6) BATCH DONE
(C7) KILL(ALL)$
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I6: (0)23θ = 0

(C1) BATCHLOAD("MC:SWATT\:LRSII SETUP"):
(D1) DONE
(C2) BATCH("MC:SWATT\:CASE I6");
(C3) I6 : bet = 0$
(C4) I6LIST : [I6]$
(C5) I6\,O : S0LVE(eV(e0(’I6), I6LIST), LAM) [1];

2
(D5) LAM = 2 a udt - tau + r - a + p

(C6) I6LIST : ENDCONS(I6\,0 , I6LIST)$
(C7) /* Show that a = 0 is a contradiction */
CONTR : a = 0 $

(C8) EV(e1(2*’CONTR), I6LIST, CONTR, EXPAND);
(D8) p + mu = 0
(C9) KILL(CONTR)$
(ClO) /* Continue with the propagation of bet=O */
I6\,1 : EV(e1(-’I6), I6LIST)/a:
(D10) alf = 0
(C11) I6LIST : ENDCONS(I6\,1 , I6LIST)$
(C12) DEPENDS(U0, COORDS)$
(C13) GRADEF(udt, t, UO/F)$
(C14) I6\,00: SOLVE(EV(eO(’I6\,O), I6LIST), DIFF(p, t))[1];

2 a U0
(D14) p = ------

t F

(C15) GRADEF(p, t, RHS(I6\,00))$
(C16) I6\,00\*: FACTOR(SOLVE(EV(CR(p), I6LIST), DIFF(U0, x))[1]);

(D16) U0 = -U0(3 ud t + a) X
x

(C17) GRADEF(U0, x, RHS(I6\,OO\*))$
(C18) I6\,01 : FACTOR(SOLVE(EV(e1(’I6\,O), I6LIST), DIFF(udt, x))[1]);
(D18) udt =

x

2 3
(2 a -udt - 4 a tau - 2 E eps + 2 a r - 2 a - p a - mu a) X

- -----------------------------------------------------------
2 a

(C19) GRADEF(udt, x, RHS(I6\,01))$
(C20) GRADEF(alf, t, EV(DIFF(alf, t), DIFF))$
(C21) EV(CR(udt), I6LIST, EXPAND);
(D21) 0 = 0
(C22) I6\,10 : EV(e0(’I6\,1), I6LIST, EXPAND)*a;
(D22) E eps = 0
(C23) I6\,10A : E = 0$
(C24) I6\,10B : eps = 0$
(C25) EV(e0(’I6\,10B), I6\,10B);
(D25) 0 = 0
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(C26) I6LIST : ENDCONS(I6\,10B , I6LIST)$
(C27) I6\,11 : e1(I6\,1);

alf
x

(D27) ----- = 0
X

(C28) GRADEF(alf, x, RHS(I6\,11))$
(C29) EV(CR(alf), I6LIST, EXPAND);
(D29) 0 = 0
(C30) I6LIST;

2
(D30) [bet = 0, LAM = 2 a udt - tau + r - a + p, alf = 0,

eps = 0]

(D31) BATCH DONE
(C32) KILL(ALL)$
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I7: 023R = 0 with a 6= 0

(C1) BATCHLOAD("MC:SWATT\;LRSII SETUP");
(D1) DONE
(C2) BATCH("MC:SWATT\;CASE I7");
(C3) I7:EV(SOLVE(e0(bet)=-(3*bet^2+r)/2,LAM) [1]);

2
(D3) LAM = 2 a udt - tau - a + p
(C4) DEPENDS(U0,[t,x])$
(C5) GRADEF(udt,t,U0/F)$
(C6) I7\,O:EV(SOLVE(EV(e0(’I7), I7),DIFF(p,t))[1]);

2 2
2 bet udt - 4 bet tau - 2 a UO - 2 a bet

(D6) p = -----------------------------------------
t F

(C7) GRADEF(p,t,RHS(I7\,O))$
(C8) I7\,1:EV(SOLVE(EV(e1(’I7), I7),DIFF(udt,x))[1]);

2 2
(D8) udt = - (2 a udt + (- bet - 2 alf bet - r) udt - 4 a tau

x

2 3
- 2 E eps + a bet + 2 a alf bet + a r - 2 a + (- p - mu) a) X

/(2 a)
(C9) GRADEF(udt,x,RHS(I7\,1))$
(C10) GRADEF(alf,t,RATSIMP(EV(DIFF(alf,t),DIFF)))$
(C11) I7\,Oa\* :EV(SOLVE(EV(CR(p), I7) ,DIFF(U0,x)) [1]);

3 2 2 2
(D11) U0 = ((2 bet + 4 alf bet + (2 r + 2 a ) bet - 2 a alf)

x

2 2 3 2
udt + (4 bet E eps - 6 a U0 - 2 a bet - 4 a alf bet

3 2 2
+ (- 2 a r - 4 a ) bet) udt + (4 a alf - 20 a bet) tau

2 3
- 8 a bet E eps + (a bet + 2 a alf bet + a r - 2 a ) U0

2 3 2 2 2 4
+ 2 a bet + 4 a alf bet + (2 a 4 r - 6 a

2 4 2
+ (-2p - 2 mu) a ) bet + 2 a alf) X/(2 a )
(C12) GRADEF(U0,x,RHS(I7\,0a\*))$
(C13) I7\,0b\*:RATSIMP(EV(CR(udt) , I7));
(D13) 0 = 0
(C14) I7LIST : [I7];

2
(D14) [LAM = 2 a udt - tau - a + p]
(D15) BATCH DONE
(C16) KILL(ALL)$
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I7&11: 023R = 0 After Imposing (1)23θ = 0

(C1) BATCHLOAD("MC:SWATT\;LRSII SETUP");
(D1) DONE
(C2) BATCH("MC:SWATT\;CASE I7&11");
(C3) BATCHLOAD("MC:SWATT\;CASE I11");
(D3) DONE
(C4) I7&11 : SOLVE (EV (e0 (bet)=-(3 *bet^2+r) /2, I11LIST) ,mu) [1];

2
(D4) mu = bet + 2 alf bet + r - p

(C5) I7&11\,0:SOLVE(EV(e0(I7&11) ,I11L1ST) ,DIFF(p, t)) [1];

4 bet tau
(D5) p = - -----------

t F

(C6) GRADEF(p,t,RHS(I7&11\,O))$
(C7) RATSIMP(EV(e1(’I7&11) ,I11LIST);
(D7) M1 = M1
(C8) EV(CR(p),I11LIST,I7&11,EXPAND);
(D8) 0 = 0
(D9) BATCH DONE
(C10) KILL (ALL)$
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I8: 023S = 0 with a 6= 0

(C1) BATCHLOAD("MC:SWATT\;LRSII SETUP");
(D1) DONE
(C2) BATCH("MC:SWATT\;CASE I8");
(C3) I8:EV(SOLVE(e0(bet)=r,LAM) [1];

2 2
(D3) LAM = 2 a udt - tau + 3 bet + 3 r - a + p

(C4) DEPENDS(U0,[t,x])$
(C5) GRADEF(udt,t,U0/F)$
(C6) I8\,O:EV(SOLVE(EV(e0(’I8), I8), DIFF(p,t)) [1]);

2 2
2 bet udt - 4 bet tau - 2 a U0 - 2 a bet

(D6) p = -----------------------------------------
t F

(C7) GRADEF(p,t,RHS(I8\,O))$
(C8) I8\,1:EV(SOLVE (EV(e1 (’I8), I8) ,DIFF(udt,x)) [1]);

2 2
(D8) udt = - (2 a udt + (2 bet - 2 alf bet + 2 r) udt

x

2 3
- 4 a tau - 2 E eps + 4 a bet - 4 a alf bet + 4 a r - 2 a

+ (- p - mu) a) X/(2 a)

(C9) GRADEF(udt,x,RHS(I8\,1))$
(C10) GRADEF(alf,t,RATSIMP(EV(DIFF(alf,t) ,DIFF)))$
(C11) I8\,0a\*:EV(SOLVE(EV(CR(p) , I8),DIFF(U0,x)) [1]);

3 2 2 2
(D11) U0 = - ((2 bet - 2 alf bet + (2 r - a ) bet + a alf)

x

2 2 3 2
udt + (- 2 bet E eps + 3 a U0 + 4 a bet - 4 a alf bet

3 2 2
+ (4 a r + 2 a ) bet) udt + (10 a bet - 2 a alf) tau

2 3 2 3
+ 4 a bet E eps + (a bet - a alf bet + a r + a ) U0 + 2 a bet

2 2 2 4 2 4
- 2 a alf bet + (2 a r + 3 a + (p + mu) a ) bet - a alf) X

2
/a

(C12) GRADEF(U0,x,RHS(I8\,0a\*))$
(C13) I8\,0b\* :RATSIMP (EV(CR (udt) , I8));
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3 bet E eps
(D13) 0 = ----------

a

(C14) I8\,Ob\*A:bet = 0;
(D14) bet = 0
(C15) I8\,0b\*AO:RATSIMP(EV(e0(’I8\,0b\*A), I8\,0b\*A, I8));
(D15) r = 0
(C16) I8\,0b\*A1:EV(e1(’I8\,0b\*A), I8\,0b\*A)/(-a);
(D16) alf = 0
(CI7) RATSIMP (EV(e0 (’I8\,0b\*A1) , I8\,0b\*A, I8\,0b\*A0, I8\,0b\*A1));

E eps
(D17) ----- = 0

a

(C18) I8\,0b\*B:E = 0;
(D18) E = 0
(C19) EV(e1(’I8\,0b\*B), I8\,0b\*B);
(D19) eps = 0
(C20) I8\,0b\*C:eps = 0;
(D20) eps = 0
(C21) EV(e0 (’I8\,0b\*C), I8\,0b\*C);
(D21) 0 = 0
(C22) I8LIST : [I8, I8\,Ob\*C];

2 2
(D22) [LAM = 2 a udt - tau + 3 bet + 3 r - a + p, eps = 0]

(D23) BATCH DONE
(C24) KILL (ALL)$
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I8&11: 023S = 0 After Imposing (1)23θ = 0

(C1) BATCHLOAD("MC:SWATT\;LRSII SETUP"):
(D1) DONE
(C2) BATCH("MC:SWATT\;CASE I8&11");
(C3) BATCHLOAD("MC:SWATT\;CASE I11");
(D3) DONE
(C4) I8&11 : SOLVE (EV(eO (bet)=r ,I11LIST) ,mu) [1];

2
(D4) mu = - 2 bet + 2 alf bet - 2 r - p.

(C5) I8&11\,0:SOLVE(EV(e0(’I8&11) ,I11LIST, I8&11),DIFF(p, t)) [1]:

4 bet tau
(D5) p = - -----------

t F

(C6) GRADEF(p,t,RHS(I8&11\,0))$
(C7) RATSIMP(EV(e1(’I8&11),I11LIST));
(D7) M1 = M1
(C8) EV(CR(p) ,I11LIST,I8&11,EXPAND);
(DS) 0 = 0
(D9) BATCH DONE
(C10) KILL(ALL)$
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I10: 02R = 0 with a 6= 0

(C1) BATCHLOAD("MC:SWATT\;LRSII SETUP");
(D1) DONE
(C2) BATCH("MC:SWATT\;CASE I10");
(C3) I10 :EV(SOLVE (e0 (bet) =-bet^2, LAM) [l]) ;

2 2
(D3) LAM = 2 a udt - tau + bet + r - a + p

(C4) DEPENDS(U0,[t,x])$
(C5) GRADEF(udt,t,U0/F)$
(C6) I10\,0:EV(SOLVE(EV(e0 (’I10), I10) ,DIFF(p,t)) [1]);

(D6) p =
t

2 3 2
2 bet udt - 4 bet tau - 2 a UO + 2 bet + (2 r - 2 a ) bet
----------------------------------------------------------

F

(C7) GRADEF(p,t,RHS(I10\,0))$
(C8) I10\,1:EV(SOLVE(EV(e1(’I10), I10),DIFF(udt,x))[1]);

2
(D8) udt = - (2 a udt - 2 alf bet udt - 4 a tau - 2 E eps

x

2 3
+ 2 a bet + 2ar - 2a + (- P - mu) a) X/(2 a)

(C9) GRADEF(udt,x,RHS(I10\,1))$
(C10) GRADEF(alf,t,RATSIMP(EV(DIFF(alf,t) ,DIFF)))$
(C11) I10\,0a\*:EV(SOLVE(EV(CR(p) , I10),DIFF(U0,x))[1]);.

2 2 2 2
(D11) UO = ((2 alf bet + a bet - a alf) udt

x

2 3
+ (2 bet E eps - 3 a - UO - 2 a bet) udt

2 2
+ (2 a alf - 10 a bet) tau - 4 a bet E eps

3 2 3 2 2
+ (a alf bet - a ) U0 + 3 a bet - a alf bet

2 4 2 4 2 2
+ (3 a r - 3 a + (- p - mu) a ) bet + (a - a r) alf) X/a

(C12) GRADEF(U0,x,RHS(I10\,0a\*))$
(C13) I10\,0b\*:RATSIMP(EV(CR(udt) , I10));
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bet E eps
(D13) 0 = -----------

a

(C14) I10\,0b\*A:bet = 0;
(D14) bet = 0
(C15) I10\,0b\*A1:EV(e1(’I10\,0b\*A), I10\,0b\*A)/(-a);
(D15) alf = 0
(C16) RATSIMP(EV(e0(’I10\,0b\*A1), I10\,0b\*A,I10\,0b\*A1));

E eps
(D16) ------- = 0

a

(C17) I10\,0b\*B:E = 0;
(D17) E = 0;
(C18) EV(e1(’I10\,0b\*B), I10\,0b\*B);
(D18) eps = 0
(C19) I10\,0b\*C:eps = 0;
(D19) eps = 0
(C20) EV(e0(’I10\,0b\*C), I10\,0b\*C);
(D20) 0 = 0
(C21) I10LIST : [I10, I10\, 0b\ *C];

2 2
(D21) [LAM = 2 a udt - tau + bet + r - a + p, eps = 0]

(D22) BATCH DONE
(C23) KILL(ALL)$
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I10&11: 02R = 0 After Imposing (1)23θ = 0

(C1) BATCHLOAD("MC:SWATT\;LRSII SETUP");

(D1) DONE

(C2) BATCH("MC:SWATT\;CASE I10&11");

(C3) BATCHLOAD("MC:SWATT\;CASE I11");

(D3) DONE

(C4) I10&11:SOLVE(EV(e0(bet)=-bet^2,I11LIST) ,mu) [1];

(D4) mu = 2 alf bet - p

(C5) I10&11\,0:SOLVE(EV(e0(’I10&11) ,I11LIST, I10&11),DIFF(p,t))[1];

3

4 bet tau - 2 bet - 2 r bet

(D5) p = - ---------------------------

t F

(C6) GRADEF(p,t,RHS(I10&11\,0))$

(C7) RATSIMP(EV(e1(’I10&11) ,I11LIST));

(D7) M1 = M1

(C8) EV(CR(p) ,I11LIST,I10&11,EXPAND);

(D8) 0 = 0

(D9) BATCH DONE

(C10) KILL(ALL)$
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I11: (1)23θ = 0

(C1) BATCHLOAD("MC:SWATT\;LRSII SETUP");
(D1) DONE
(C3) I11:a = 0;
(C2) BATCH("MC:SWATT\;CASE I11");
(C3) I11:a = 0;
(D3) a = 0
(C4) I11\,0:-EV(e0(’I11),I11)/bet;
(D4) udt = 0
(C5) I11LIST:(I11,I11\,0]$
(C6) I11\,1:SOLVE(EV(e1(’I11),I11LIST) ,LAM) (1];

2
(D6) LAM = - tau + bet + 2 alf bet + r - mu

(C7) I11LIST:ENDCONS(I11\,1,I11LIST)$
(C8) RATSIMP(EV(e0(’I11\,1),I11LIST));
(D8) 0 = 0
(C9) DEPENDS(M1,COORDS)$
(C10) GRADEF(mu,x,M1*X)$
(C11) I11\,11a:SOLVE(EV(e1(’I11\,1),I11LIST),DIFF(alf,x)) [1];

(E eps + M1) X
(D11) alf = ---------------

x 2 bet

(C12) GRADEF(alf,x,RHS(I11\,11a))$
(C13) I11\,11b\*:SOLVE(EV(CR(mu) ,I11LIST) ,DIFF(M1,t)) [1];

2
(D13) M1 = ((4 bet + 2 alf bet - p - mu) E eps

t

2
+ (- 4 bet - 4 alf bet - p - mu) M1)/(2 bet F)

(C14) GRADEF(M1,t,RHS(I11\,11b\*))$
(C15) I11\,11a\*:RATSIMP(EV(CR(alf) ,I11LIST));

(bet + alf) E eps
(D15) 0 = --------------------

bet

(C16) I11\,11a\*A:alf = -bet;
(D16) alf = - bet
(C17) I11\,11a\*A0:SOLVE(EV(e0(’I11\,11a\*A),I11LIST,I11\,11a\*A) ,mu) [1];

2
(D17) mu = - 2 tau - 2 bet + r - p

(C18) ALIST:[I11\,11a\*A,I11\,11a\*A0]$
(C19) I11\,11a\*A1:SOLVE(EV(e1(’I11\,11a\*A),I11LIST,ALIST) ,M1) [1];
(D19) M1 = - E eps
(C20) ALIST:ENDCONS(%,ALIST)$
(C2l) RATSIMP(EV(e0(I11\,11a\*A1) ,ALIST,I11LIST));
(D21) bet E eps = 3 bet E eps
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(C22) KILL(ALIST)$
(C23) I11\,11a\*B:E = 0;
(D23) E = 0
(C24) EV(e0(’I11\,11a\*B) ,I11\,11a\*B);
(D24) 0 = 0
(C25) EV(e1(’I11\,11a\*B) ,I11\,11a\*B);
(D25) eps = 0
(C26) I11\,11a\*C:eps = 0;
(D26) eps = 0
(C27) EV(e0(’I11\,11a\*C) , I11\,11a\*C) ;
(D27) 0 = 0
(C28) I11LIST:ENDCONS(I11\,11a\*C,I11LIST);

2
(D28) [a = 0, udt = 0, LAM = - tau + bet + 2 alf bet + r - mu, eps = 0]

(D29) BATCH DONE
(C30) KILL(ALL)$
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Appendix G A PROTOTYPE PROGRAM

This appendix contains a listing of the proqram discussed in Chapter 6. Two sample

runs, corresponding to examples 2.2.1 and 2.2.2, are included after the listing.

Program Listing

/************************************************************************/
/* This file contains a collection of functions to check the */
/* consistency of a constraint with aset of equations. To do */
/* this the function CHECK%ONE is invoked at command level and */
/* questions regarding whether or not certain quantities are */
/* zero aust be answered. The result returned is either a list */
/* of possible cases or the atom CONTRADICTION. The method used */
/* is discussed in Chapter 6. */
/************************************************************************/

/* These two names shall be used as mnemonic indices to case lists. */

(ALG : 1, PROPN : 2)$

CHECK%ONE(CONSTRAINT, CASE) :=
BLOCK(/* This procedure checks whether the given constraint

may hold in the given case. The result is returned
as either a list of possible cases or as the
atom CONTRADICTION. */

[ALG\LIST PROPN\LIST],
LOCAL(UNKNOWNS),
INITIALIZE%LEVEL() ,
CONSTRAINT : CLEAN(CONSTRAINT),
IF IDENT%PRED(CONSTRAINT) THEN

RETURN([CASE])
ELSE IF ALG%CONTRADICT%PRED(CONSTRAINT)

RETURN(CONTRADICTION)
ELSE
IF PROPN%PRED(CONSTRAINT) THEN
RETURN(PROPN%PROCESS(CONSTRAINT))
ELSE
RETURN(ALG%PROCESS(CONSTRAINT)))$
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CHECK%OR(CONSTRAINT%LIST, CASE%LIST):=
BLOCK(/* This procedure checks each of the list of

constraints against each of a list the cases.
The list constructed by concatenating all the resulting
constraint lists is returned. */

[NEW%CASE%LIST, THIS%CASE%LIST],
NEW%CASE%LIST : [],
FOR CASE IN CASE%LIST DO
FOR CONSTRAINT IN CONSTRAINT\LIST DO
(THIS%CASE%LIST : CHECK%ONE(CONSTRAINT, CASE),
IF THIS%CASE%LIST # CONTRADICTION THEN
NEW%CASE%LIST : APPEND(NEW%CASE%LIST,

THIS%CASE%LIST)),
RETURN(IF NEW%CASE%LIST = []

CONTRADICTION
ELSE

NEW\CASE%LIST))$

CHECK%AND(CONSTRAINT%LIST, CASE%LIST) :=
BLOCK(/* This procedure checks whether all of the constraints

in CONSTRAINT%LIST hold for any of the cases in CASE%LIST.
This is achieved by iteratively checking the results of
one constraint using the next. The resulting list
of cases is returned. */

[NEW%CASE%LIST],
NEW\CASE%LIST : CHECK%OR([FIRST(CONSTRAINT%LIST)],

CASE%LIST),
FOR CONSTRAINT IN REST(CONSTRAINT%LIST)
WHILE NEW%CASE%LIST # CONTRADICTION DO

NEW\CASE%LIST : CHECK%OR([CONSTRAINT], NEW%CASE%LIST),
RETURN(NEW%CASE%LIST))$

INITIALIZE%LEVEL() :=
(/* Define the list of equations to be used with EV and
the local GRADEFs for this level. */
ALG%LIST : CASE(ALG],
PROPN%LIST : CASE(PROPN],
FOR GRAD%SPEC IN PROPN%LIST DO

APPLY(’GRADEF,GRAD%SPEC) ,
DONE)$

ADD(KIND, WHAT%TO%ADD, CASE) : =
/* This function is to add new results to the collection of
old results stored in the variable CASE. */
SUBSTPART(ENDCONS(WHAT%TO%ADD,CASE(KIND]), CASE, KIND)$
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CLEAN(EQN) :=
BLOCK(/* Put the equation in a form amenable to spotting

special cases. */

[RHSIDE1,
RHSIDE : FACTOR(EV(RHS(EQN)-LHS(EQN),ALG%LIST,DIFF,INFEVAL)),
IF (NOT ATOM(RHSIDE)) AND (PART(RHSIDE,0)="-") THEN

RHSIDE : -RHSIDE,
RETURN(0=RHSIDE))$

IDENT%PRED(EQN) :=
/* This predicate checks for a syntactic identity. */

IS(0 = RHS(EQN))$

ALG%CONTRADICT%PRED(EQN) :=
/* Check if the equation gives a contradiction by
seeing if the RHS may never be zero. */

MAY%NOT%ZERO%PRED(RHS(EQN))$

PROPN%PRED(EQN) :=
BLOCK(/* See if the equation is a propagation equation

by looking for first derivatives. */
[EXPR, VARIABLE%LIST, RESULT],
EXPR : RHS(EQN),
VARIABLE%LIST : SORT(LISTOFVARS(EXPR)),
RESULT: FALSE,
FOR COORD IN COORDINATES UNLESS RESULT DO

FOR VAR IN VARIABLE%LIST UNLESS RESULT DO
IF 1 = DERIVDEGREE(EXPR, VAR, COORD) THEN

RESULT: TRUE,
RETURN(RESULT))$

PROPN%PROCESS(EQN) :=
/* Nothing need be done in the spatially homogeneous case. */
PRINT("Base of recursion reached checking",

"the propagation equation:",
EQN)$
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ALG%PROCESS(EQN) :=
BLOCK(/* In this procedure we first solve the constraint equation for one

of the variables so that the result may be used to simplify any
further propagation equations. If the equation is not linear in
all of the variables, then we have more than one possible solution.
We check each one of the possibilities by calling CHECK%OR with
the solution list as an argument. Otherwise, there is only one
solution so we check the propagation(s) of that constraint. */
[SOLN%LIST, DIFF%LIST, N],
PRINT("Checking algebraic constraint:", EQN),
SOLN%LIST : RESHAPE(EQN),
N : LENGTH (SOLN%LIST) ,
IF N > 1 THEN

RETURN(CHECK%OR(SOLN%LIST,[CASE]))
ELSE IF N = 1 THEN

(CASE : ADD(ALG, SOLN%LIST[1], CASE),
DIFF%LIST : [],
FOR COORDNO : 1 THRU LENGTH(COORDINATES) DO

DIFF%LIST : ENDCONS(CLEAN(D%OP(COORDNO, SOLN%LIST[1])),
DIFF%LIST) ,

RETURN (CHECK%AND(DIFF%LIST,[CASE])))
ELSE IF N = 0 THEN

RETURN (CONTRADICTION)
ELSE

ERROR("ALG%PROCESS: internal error"))$

MAY%NOT%ZERO%PRED(EXPR) :=
BLOCK(/* This function checks whether an expression may not be zero,

by asking about appropriate parts. */
[PIECE, RESULT],
EXPR : NUM(FACTOR(EXPR)),
IF ATOM(EXPR) THEN

IF NUMBERP(EXPR) THEN
RESULT: IS(0 # EXPR)

ELSE
RESULT: IS(NO = MAY%ZERO%PROMPT(EXPR))

ELSE
(PART(EXPR, 0),
IF PIECE = "-" THEN

RESULT : MAY%NOT%ZERO%PRED(-EXPR)
ELSE IF PIECE = "*" THE~

RESULT : MAY%NOT%ZERO%PRED(FIRST(EXPR)) AND
MAY%NOT%ZERO%PRED(REST(EXPR))

ELSE IF PIECE = "^" THEN
RESULT : MAY%NOT%ZERO%PRED(FIRST(EXPR))

ELSE
RESULT: IS (NO = MAY%ZERO%PROMPT(EXPR))),

RETURN(RESULT))$
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MAY%ZERO%PROMPT(EXPR) :=
(PRINT("May the following expression ever assume",

"the value zero?", EXPR),
READ("Enter YES\; or NO\; or DONTKNOW\; ."))$

D%OP(COORDNO, EXPR) :=
/* This is the differentiation operator.
By specifying the list of coefficients or by
giving an alternative function, we may choose the
directional derivative operators as we wish. */

D%OP%COEFF%LIST[COORDNO]*DIFF(EXPR, COORDINATES[COORDNO])$

RESHAPE(EQN) :=
BLOCK (/* From the input equation, this procedure constructs

a list of solutions for the same varable. First the
procedure checks for a linear varable so as to
return a one element list if possible. If the equation
is not linear in any of the variables,
then the varaible of the lowest degree is sought. */

[EXPR,VARIABLE%LIST, RESHAPED, MIN%DEGREE,
MIN%DEGREE%VAR, RESULT],
EXPR : RHS(EQN), /* The input is factored. */
IF (NOT ATOM(EXPR)) AND (PART (EXPR, 0) = "*") THEN

(RESULT: [],
FOR FACTOR IN EXPR DO

IF NOT MAY%NOT%ZERO%PRED(FACTOR) THEN
RESULT: APPEND(RESHAPE(O=FACTOR), RESULT))

ELSE
(EXPR : RAT (EXPR) ,
VARIABLE%LIST : SORT(LISTOFVARS(EXPR)),
RESHAPED: FALSE,
FOR VAR IN VARIABLE%LIST UNLESS RESHAPED DO

IF HIPOW(EXPR, VAR) = 1 AND LOPOW(EXPR, VAR) >=0 THEN
IF MAY%NOT%ZERO%PRED(RATCOEF(EXPR, VAR, 1)) THEN
(RESULT: SOLVE (EQN, VAR),
RESHAPED: TRUE),

IF NOT RESHAPED THEN
(MIN\DEGREE : HIPOW(EXPR, FIRST(VARIABLE%LIST)),
MIN%DEGREE%VAR : FIRST(VARIABLE%LIST),
FOR VAR IN REST(VARIABLE%LIST) DO

IF HIPOW(EXPR, VAR) < MIN%DEGREE THEN
(MIN%DEGREE : HIPOW(EXPR,VAR),
MIN%DEGREE%VAR : VAR),

RESULT: SOLVE (EQN, MIN%DEGREE%VAR))),
RETURN(RESULT))$
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Sample Runs

Bianchi-Behr type V Ih=0 : n1 = 0, n2 > 0, n3 < 0

(C1) BATCHLOAD("MC:SWATT\;CHECK V0")$
(C2) BATCHLOAD("MC:SWATT\;TEST BIAN6H")$
(C3) CHECK%ONE(N1+N2+N3=0, CASE)$

May the following expression ever assume the value zero? N3 + N2
Enter YES; or NO; or DONTKNOW; .
DONTKNOW;

Checking algebraic constraint: 0 = N3 + N2
May the following expression ever assume the value zero? N3
Enter YES; or NO; or DONTKNOW; .
NO;

May the following expression ever assume the value zero? TH3 - TH2
Enter YES; or NO; or DONTKNOW; .
DONTKNOW;

Checking algebraic constraint: 0 = 2 N3 (TH3 - TH2)
May the following expression ever assume the value zero? N3
Enter YES; or NO; or DONTKNOW; .
NO;

May the following expression ever assume the value zero? TH3 - TH2
Enter YES; or NO; or DONTKNOW; .
DONTKNOW;

(C4) GRIND(D3);

[[[THETA = TH3+TH2+TH1,N1 = 0,N2 = -N3,TH2 = TH3],
[[N1,T,N1*{2*TH1-THETA)],(N2,T,N2*(2*TH2-THETA)],(N3,T,N3*C2*TH3-THETA)],
[THETA,T,-TH3^2-TH2^2-THl^2-(3*P+MU)/2+LAM],
[TH1,T,-TH1*THETA+(MU-P)/2+(N2-N3)^2/2-N1^2/2+LAM],
[TH2,T,-TH2*THETA+(MU-P)/2+(N3-Nl)^2/2-N2^2/2+LAM],
[TH3,T,-TH3*THETA+(MU-P)/2-N3^2/2+(N1-N2)^2/2+LAM],(MU,T,-(P+MU)*THETA]]]]$
(D4) DONE
(C5) KILL(ALL)$
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Bianchi-Behr type VIII: n1 > 0, n2 > 0, n3 < 0

(C1) BATCHLOAD("MC:SWATT\;CHECK VO")$
(C2) BATCHLOAD("MC:SWATT\;TEST BIAN8")$
(C3) CHECK%ONE na+N2+N3=O, CASE);

May the following expression ever assume the value zero? N2 + Nl + N3
Enter YES; or NO; or DONTKNOW; .
DONTKNOW;

Checking algebraic constraint: 0 = N2 + N1 + N3
May the following expression ever assume the value zero?

N2 TH2 + Nl THl - TH3 N2 - TH3 NI
Enter YES; or NO; or DONTKNOW; .
DONTKNOW;

Checking algebraic constraint: 0 = 2 (N2 TH2 + N1 TH1 - TH3 N2 - TH3 N1)
May the following expression ever assume the value zero?

N2 TH2 + N1 TH1 - TH3 N2 - TH3 N1
Enter YES; or NO; or DONTKNOW; .
DONTKNOW;

May the following expression ever assume the value zero? N2 + N1
Enter YES; or NO; or DONTKNOW; .
NO;

May the fol1owing expression ever assume the value zero? N1
Enter YES; or NO; or DONTKNOW; .
NO;

May the following expression ever assume the value zero? N2
Enter YES; or NO; or DONTKNOW; .
NO;

May the following expression ever assume the value zero?

2 2 2 2
TH2 - 2 TH1 TH2 + TH1 + 3N2 + 6N1 N2 +3N1

Enter YES; or NO; or DONTKNOW; .
NO;

(D3) CONTRADICTION
(C4) KILL(ALL)$
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Input files for Sample Runs

MC:SWATT;TEST BIAN6H

UNKNOWNS: [Nl,N2,N3,TH1,TH2,TH3,P,MU,THETA]$
COORDINATES: [T]$
D%OP%COEFF%LIST : [1] $
DEPENDS (UNKNOWNS, COORDINATES)S
ALGL: [THETA = TH1+TH2+TH3, N1 = 0]$
PRL: [[N1,T,N1*(2*TH1-THETA)],

[N2,T,N2*(2*TH2-THETA)],
[N3,T,N3*(2*TH3-THETA)],
[THETA,T,-(TH1^2+TH2^2+TH3^2)-(MU+3*P)/2+LAM] ,
[TH1,T,-THETA*TH1-N1^2/2+(N2-N3)A2/2+(MU-P)/2+LAM],
[TH2,T,-THETA*TH2-N2^2/2T(N3-Nl)A2/2+(MU-P)/2+LAM],
[TH3,T,-THETA*TH3-N3^2/2+(NI-N2)A2/2+(MU-P)/2+LAM],
[MU,T,-(MU+P)*THETA] ]$

CASE: [ALGL, PRL];

MC:SWATT;TEST BIAN8

ORDERLESS(N3,TH3)$
UNKNOWNS : [N1, N2, N3, TH1, TH2, TH3, P ,MU, THETA]$
COORDINATES: [T] $
D%OP%COEFF%LIST : [1] $
DEPENDS (UNKNOWNS, COORDINATES)S
ALGL: [THETA = THl+TH2+TH3]$
PRL : [[N1,T,N1* (2*TH1-THETA)],

[N2,T,N2* (2*TH2-THETA)],
[N3,T,N3* (2*TH3-THETA)],
[THETA,T,-(TH1^2+TH2^2+TH3^2)-(MU+3*P)/2+LAM] ,
[TH1,T,-THETA*TH1-N1^2/2+(N2-N3)^2/2+(MU-P)/2+LAM],
[TH2,T,-THETA*TH2-N2^2/2+(N3-N1)^2/2+(MU-P)/2+LAM],
[TH3,T,-THETA*TH3-N3^2/2+(N1-N2)A2/2+(MU-P)/2+LAM],
[MU,T,-(MU+P)*THETA] ]$

CASE : [ALGL, PRL];
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Colophon

This is a typeset version of the original work that was prepared using an IBM

SelectricTM typewriter, in multiple scripts, with xiii + 190 pages. In this typeset

version, the following conventions have been used:

• text originally underlined has been typeset in italics;

• symbols originally marked with an undertilde have been displayed in bold;

• bibliographic entries have been renumbered using the year of publication and a

unique letter, if necessary, to facilitate automatic processing.

Errata

The following typographical corrections have been applied:

• page xi: ... mnemonic equation labels [was “tables”] ...

• page 3: ... T a
b ea ⊗ eb [was “T a

b ea ⊗ eb”] ...

• page 5: ... be two nearby [was “nearly”] world lines ...

• page 6: ... eα · ∇ueβ [was “eα · ∇ueβ”] ...

• page 7: ... for observers [was “observer’s”] with velocity u, [was “ua”] ...

• page 15: ... the original system and the commutators (1.2.10) [was (1.2.29)].

• page 50: ... bet=−alf$ [was “bet=−α$”]

• page 96: ... and electromagnetic field [inserted “field”] are non-interacting, ...

September 2006


	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF ILLUSTRATIONS
	NOTATION AND CONVENTIONS
	1 INTRODUCTION AND PRELIMINARIES
	1.1 Introduction
	1.2 The Orthonormal Tetrad Formalism
	1.3 Local Rotational Symmetry
	1.4 Symbolic Computation with MACSYMA

	2 A METHOD FOR SPECIALIZING CLASSES OF SPACE-TIMES
	2.1 Checking the Consistency of a Given Constraint
	2.2 Two Spatially Homogeneous Examples
	2.3 A Spatially Inhomogeneous Example

	3 INTRINSIC SYMMETRIES IN GENERAL RELATIVITY
	3.1 The Role of Intrinsic Symmetries
	3.2 Families of Surfaces: Intrinsic and Extrinsic Curvatures

	4 SPECIALIZATION OF THE LRS CLASS II USING INTRINSIC SYMMETRIES
	4.1 Combinations of 23R = 0 and (0)23 = 0
	4.2 123R=0 and Combinations of 23R=0 and (0)23=0
	4.3 123S=0 and Combinations of 23R=0 and (0)23=0
	4.4 12R=0 and Combinations of 23R=0 and (0)23=0
	4.5 123R=123S=12R=0 and Combinations of 23R=0 and (0)23=0
	4.6 Summary

	5 FURTHER RESULTS FOR LRS CLASS II USING INTRINSIC SYMMETRIES
	5.1 A Non-terminating Process 01R = 0
	5.2 Intrinsic Symmetries Related to the Spacelike Congruence
	5.3 Equation of State with Intrinsic Symmetries

	6 AUTOMATING THE CONSTRAINT-CHECKING PROCEDURE
	6.1 General Considerations
	6.2 A Prototype Computer Program

	7 CONCLUDING REMARKS
	Appendices
	A BASIC EQUATIONS FOR LRS CLASS II
	B TWO RESULTS
	C SOME POSSIBLE INTRINSIC SYMMETRIES FOR LRS CLASS II
	D INITIALIZATION FILE FOR LRS CLASS II
	E DETAILS OF CALCULATIONS FOR CHAPTER IV
	F DETAILS OF CALCULATIONS FOR CHAPTER V
	G A PROTOTYPE PROGRAM
	BIBLIOGRAPHY
	INDEX



