BEPARHMENT

DEPARTMENT
DEPARTMENT

ARRAYS AND TABLES IN MAPLE:
Supplement to the
Maple User’s Manual

QHEER NG
OMPUTER SCIENCE

Stephen Watt

AERSS &

Research Report
CS-83-10

SE WA
FW,
VERSITY OF WATERLOO C

Y
iy
my

May, 1983

VERS

ARRAYS AND TABLES IN MAPLE:

Supplement to the
Maple User’s Manual

Stephen M. Watt

Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canada, N2L 3G1

ABSTRACT

Maple is a language for symbolic mathematical computation under
development at the University of Waterloo. The Maple User’s Manual *
describes Maple as of December 1982 (version 2.2). Since thenm, the
language has been extended to have array and table data types, This
report is a reference guide for using these new data types.

—_— .
K.O. Geddes, G.H. Gonnet and B.W, Char, Maple User’s Manual, Second Edition,
University of Waterloo Research Report CS-82-40.

CONTENTS

PREFACE
1. OVERVIEW

2. CREATING TABLES
2.1. Explicit Table Creation
2.2. Implicit Table Creation
2.3. User Interface for Table Creation

3. TABLE COMPONENTS
3.1. Evaluating Components
3.2. Assigning and Unassigning Components

4. TABLES AS OBJECTS
4.1. Copying Tables
4.2. Tables Local to a Procedure
4.3. Tables as Parameters.
4.4. Automatic Loading of Tables

5, INDEXING FUNCTIONS
5.1. The Purpose of Indexing Functions
5.2. Indexing Functions Known to the Basic System
5.3. User-Defined Indexing Functions

6. LIBRARY FUNCTIONS
6.1. array (indexing_function, init_list, lol1.hil, lo2.hi2, ...)
6.2. convert { expr, typename)
6.3. copy (expr)
6.4. indices { tbl)
6.5. maparray { f, A, arg2, arg3, ...)
6.6. table (indexing_function, init_list)
6.7. type (expr, typename)

APPENDIX

PREFACE

Before describing arrays and tables, it is necessary to mention changes concerning
two data types that existed previously in Maple:

i) An expression sequence is now syntactically valid as input wherever an expression
may appear.

(i) Subscripted names are no longer of type ‘mame’, but belong to a new type,
‘indexed’.

These features are described below.

Expression Sequences

An expression sequence is a valid expression in its own right. The comma operator
(‘') is used to concatenate expressions to form an expression sequence. It has the lowest
precedence of all operators. When expression sequences are concatenated, the result is
simplified to a single, un-nested expression sequence.

A zero-length expression sequence is syntactically valid only in certain constructs,
namely: an empty list, an empty set, a function cail with no parameters, or an indexed
name with no subscripts. The special name ‘NULL’ is initially assigned a zero-length
expression sequence which can be used in any expression.

Examples:
a:=A B, C,D; assigns to ‘a’ a 4 element expression sequence
b ;= NULL; assigns to ‘b’ a 0 element expression sequence
¢:=a,b,a; assigns to ‘c’ an 8 element expression sequence
fels yields {A, B, C, D, A, B, C, D}
nops([a}); yields 4
f 1= proc() param(6) end;
f(e); yields B

Indexed Expressions

One form of expression in Maple is the indexed expression. The input syntax is
<name>>|<expression sequence>>] .

For an indexed expression, the zeroth operand is the <name> and the itk operand is the
ith element of the <expression sequence> .

An indexed expression is syntactically legal anywhere a name is. It follows that an
indexed expression may also be input using the syntax

<indexed expression>|<expression sequence>] .

4 Arrays and Tables in Maple

Examples:
nops(Tt,x,y,2]); yields 4
nops(S]); yields 0
op(2, T[t,x,y,3]); yields x
op(0, Alsin{x)+ t])% yields A

op{0, B{1,2][3,4]); yields BJ1,2]

Arrays and Tables in Maple 5

1. OVERVIEW

Two of the data types in Maple are array and teble. Arrays are used similarly to
those in other programming languages, while tables correspond roughly to the ones
provided in Snobol or Ieon.

In Maple, the type ‘array’ is a specialization of the type ‘table’. An array is a table
for which indices must be integer expression sequences lying within user-specified bounds.

As with other data types in Maple, tables are self-describing data objects, which
may be created dynamically, passed as parameters, and so on. No declarations are
needed; to make a name refer to a table, an assignment statement is used in which the
right-hand side evaluates to a table object.

A table object consists of three parts:

e an indexing function
o an index bound (for arrays only)
® a collection of components

The indexing function allows a table to have a user-defined interface. A detailed
discussion of indexing functions is given in section 5. If no special interface is to be used,
the indexing function should have the value NULL. (This is the default.}

The only tables which have index bounds are arrays. The index bound is an
expression sequence of integer ranges. The number of ranges is called the dimension of
the array. Whenever a component of an array is referenced, the index is checked against
the index bound. The ith range gives the bounds on the ith integer in the expression
sequence used as the index.

The op function may be used to extract the operands of a table. The indexing
function is available as the first operand of a table object. For arrays, the index bound is
available as the second operand. The components are not available using the op function.
The reason for this is that the collection of components is stored in an internal hash table
and is not a user-level exptression. (This is analogous to the statement sequence in a
procedure not being available to the op function.)

Components of tables are referred to using brackets (‘[’ and |’) for indexing. If T
evaluates to a table, then components of T are referenced using the syntax T[<expression
sequence>] . For example, executing the following statements

T(1,2) := a; T{2,0]:=b; V:= T[1,2]+ T]2,0]

causes V to be assigned the value a+ b.

Tables may be created either (i) explicitly, by calling one of the builtin functions
array or table, or (ii) implicitly, by making an assignment to an indexed expression of the
form A[<expression sequence>>] when A does not evaluate to a table. The creation of
tables is described in section 2.)

Expressions of type ‘array’ and of type ‘table’ are represented internally using the
same data structure. The external representation is as a call to one of the functions array

6 Arrays and Tables in Maple

or table which would re-create the object. Specifically, the external representations are:
array(<indexing function>>, <range sequence>>, {<equation sequence >])

and
table(<indexing function>, [<equation sequence>]) ,

where each equation in the <equation sequence> is of the form
(index} = component_value .

The equation sequence enclosed in brackets is a representation of an internal hash table.
The equations will appear in an apparently arbitrary order. The order in which they
appear can not easily be controlled by the user.

2. CREATING TABLES

2.1, Explicit Table Creation

The function array is used to create an array explicitly. To explicitly create a table
which is not an array, the function fable is used. These functions take a number of
optional parameters which specify information about the table to be created.

Probably the most common uses of these functions are illustrated by the following
examples:

t ;= table(};
a := array(l..n);
b := array(l..n, 1..m);

Here, ‘t’ has been assigned a new table object, ‘a’ has been assigned a one-dimensional
array with n» components, and ‘b’ has been assigned an n by m, two-dimensional array.

The table function, in general, takes two parameters: an indexing function and an
initialization list. The function array takes an indexing function, an initialization list,
and an index bound. The index bound is passed as a number of integer ranges appearing
adjacently in the parameter sequence, The indexing function, initialization list and, for
arrays, index bound are all optional and may appear in any order in the parameter
sequence.

When a table is created using one of these functions, the following sequence of
events takes place:

(1) The parameters are sorted out.

Arrays and Tables in Maple 7

(2) If no indexing function is supplied, NULL is taken as the default.
(3) If no initialization list is supplied, an empty list is taken as the default.

(4) If it is an array that is being created and no index bound has been supplied, the
index bound to be used is deduced from the initialization list.

{5) If the initialization list is not empty, the initial values are inserted into the table.
(6) The table is returned.

The indexing function must be given as either a procedure or as a name. Not
specilying an indexing function is the only way to obtain NULL.

The deduction of index bounds for arrays and the initialization of table values are
done by two procedures from the Maple library. It is possible to change the actions
performed by redefining these procedures within the Maple session. This possibility is
discussed further in section 2.3. The remainder of this section describes the actions
performed by the standard functions.

The initializations must be given either as a list of equations or as 3 list of values.
To avoid ambiguity, with a list of values, none of the values may be an equation. With a
list of equations, the left-hand sides are the indices (of the components to be initialized)
and the right-hand sides are the values. A list of values may be given only for the
creation of a table or a one-dimensional array. If a list of values is given, the indices used
are consecutive integers starting at 1 or the lower bound on the indices, if one is given,
for an array.

If no index bound is given for an array, then one is deduced from the list of
initializations. This is done as follows. If the initialization list is empty, then the array is
assumed to be zero-dimensional and the index bound is NULL (i.e. a sequence of zero
integer ranges). If the initialization is given as a list of n values, then the array is taken
to be one-dimensional and the index bound is the range 1.n. Finally, if the
initializations are given as a list of equations, then each range in the index bound is made
as restrictive as possible while still encompassing all the indices used in the equations.

Examples:
table(); yields table([])
(The indexing function is NULL and no components have been initialized.)
table({a,b,c}); yields table([(1)=a,(3)=c,(2)=b]}
table({1=a0, cos{x)=al}); yields table([(1)=20,{cos(x)}=al])
array(0..3); yields array(0..3,[])
array([x.y,z{}; yields array(1..3,[(1)=x,(2)=y,(3)=2])
array([b,c,d], 0..3); yields array(0..3,[(1)==¢,(0)=b,(2)=4d])
array([NULL =vall]); yields array([()=vall])
array([(2,2)=22, (1,7)=17]); yields array(1..2,2..7,((2,2)=22,(1,7)=17]}

array(sparse,[5=x,100=y]); yields array(sparse,5..100,[(5)=x,(100)=y|}

8 Arrays and Tables in Maple

2.2. Implicit Table Creation

A table is implicitly created if an assignment is made to an indexed expression of
the form T|<expression scquence>>] where T does not evaluate to a table. Implicit table
creation is provided primarily as a convenience for interactive use.

If T does not evaluate to a table, then the assignment
Tleseq] := expr

is exactly equivalent to the following statement sequence which uses explicit table
creation:

T ;= table(); Tleseq} := expr
This rule is applied recursively if necessary.
Examples:
If A is a table but A[1] has not been assigned, then
All]i2x] i=y
is equivalent to
All] == table(); AlL][2x]:=y¥
If B does not evaluate to a table, then
Blik]li] := 1{i,])
is equivalent to

B := table(); Bli,k] := table(); B[ik]{i} := f(i,j)

2.3, User Interface for Table Creation

As stated earlier, when a table is being created, the deduction of an index bound {if
it is an array) and the initialization of components are done by two procedures. These
procedures are called “table/initbds® and ‘table/initvals’, respectively. By default, the
procedures from the Maple library are used.

It is possible to change the actions performed by redefining these procedures within
a Maple session. (It is nof necessary to know how to do this to use tables effectively.) As
an example, a default lower value of 0 may be desired for index bounds, rather than 1.
Another example would be if the user wanted an initialization of the form

table([1.3 = 0, 4 = 1, 5.8 = O]};

to yield

Arrays and Tables in Maple 9
table([{1)=0,(2)=0,(3)=0,(4)=1,(5)==0,(6)=0,(7)=0,(8)=0]) .

If a table being created is an array and no index bound has been specified, then the
procedure “table/initbds® is called. It is passed the initialization list and the value it
returns is used as the array’s index bound.

If the initialization list is not empty, the procedure “table/initvals® is used to install
the initial values in the table being created. It is passed the new, empty table object and
the initialization list from the call to table or array. The library version of “tablefinitvals®
simply assigns the components of the table in a loop.

To provide a model, the library functions are given in the Appendix.
3. TABLE COMPONENTS

3.1. Evaluating Components

The semanites of referencing a table’s components are defined by its indexing
function. With the default indexing function, NULL, the usual notion of subscripting is
used. With other indexing functions, a procedure determines how indexing is done. This
more complicated case is discussed in section 5. In this section, the default indexing
semantics are described.

Suppose that T evaluates to a table with 2 NULL indexing function. When
T|[<expression sequence>>] is evaluated, the value of the entry in the table is returned, if
there is one. If there is not an entry with the <expression sequence>> as its key, then the
table reference “fails”.

This is analogous to a FAIL return from a procedure. The value returned is an
indexed object where the index is the <expression sequence>, evaluated, and the zeroth
operand is the name which directly evaluated to the table. If T is a table rather than a
name which evaluates to a table, then the zeroth operand is the table itself.

10 Arrays and Tables in Maple

Examples:
t 1= table(}; yields t :== table(] |)
k] := 2Z; updates the table to table{|(k)=Z2Z])
5 ==t
s[1] == XX; updates the table to table([(1)=XX,(k)=ZZ}
t[k]; yields Z7Z
s[1]; yields XX
t[2); yields (2]
=1
tlil; yields t[2]
s|2}; yields t[2]
p := proc(a} 2[2] end;
p0s); yields t[2)
pls) yields table([(1)=XX,(k)=2Z])(2]

In the above examples, the name ‘s’ evaluates to the name ‘t’ which then evaluates to the
table. That is why s[2] yields t[2] when it fails. With the first procedure call, p(’s’), this
is what happens when the table reference fails. In the second call, p(s), the name ‘s’ gets
fully evaluated and it is the table object that is passed. Then, when the table reference
fails, that object is used as the zeroth operand of the result.

Even if the last name in the evaluation chain evaluates to some other object before
evaluating to the table, it is still used if a table reference fails.

Example:
2= b; yields a:=b
b := f{table()); yields b := {(table(]]))
f ;= proc(t) print(hello); t end;
afx); yields b{x] after printing “hello”

An array is zero-dimensional if its index bound is the null expression sequence. A
zero-dimensional array has only one component and the index for this component is
NULL.

Example:
b= array(); yields t := array(]]}
t[] 1= tval; updates t to array(()=tval);

t[]; yields tval

Arrays and Tables in Maple 11

3.2. Assigning and Unassigning Componentsa

If T is a table and an expression of the form T[<expression sequence>>] appears on
the left-hand side of an assignment statement, then an entry is assigned in the table. If
there was previously no entry in the table with the <expression sequence>, evaluated, as
its key, then a new entry is made. If there already is ar entry, then it is updated to
reflect the new value.

In many cases it is desired to assign a value to a parameter of a procedure. Table
components may be assigned this way, in the same way as names. To assign a table
component, an indexed expression is passed. Consider the procedure

assignsqr := proc(a,b) a := b**2 end

So long as the first parameter is a valid left-hand side, the assignment will be made.

Examples:
t := table();
assignsqr(¢[2], 4); assigns the value 16 to t[2]
5:="¢; unassigns s
assignsqr(s{3], 3); assigns 9 to s[3], implicitly creating a table

If the component to be assigned already has a value, then it is necessary to use
quotes or the evaln function to pass the indexed name.

Examples:
After executing the statements

t 1= table();
for i to 5 do assignsqr(t[i], i) od;

assigning new values to the components of ‘t' may be achieved by
for i to b do assignsqr(evaln{t[i]), 1/i) od;
When the subscript need not be evaluated, quotes may be used:

assignsqr(’t[1]’, x);

To make a name stand for itself in maple, a statement is executed to '‘unassign’’ it.
Exactly the same thing is done with the components of a table - to remove an entry
from a table, it is ‘“‘unassigned’’. This may be done either by quoting the right-hand side
or by using the evaln function.

12 Arrays and Tables in Maple

Examples:
a = array(|x, y, z}); yields a:= array(1..3,{(1)=x,(2)=y.,(8)=1])
a[1}; yields x
a1} :="af1]}
all}; yields afi];
a; yields array(1..3,[(2)==y,(3)=z2])
=3
afi] := evaln{al[i]);
a; yields array(1..3,[(2)=y])

4. TABLES AS OBJECTS

4.1, Copying Tables

In Maple, only objects of type ‘table’ may be altered after having been created.
This is because it is only with tables that it is valid to make an assignment to a par! of
the object.

The fact that a table object may be altered after creation means that if two names
evaluate to the same table, then an assignment to a component of one aflects the other as
well. To illustrate, if the following statements are executed:

a = array({t,xy,7);
b= a;
all} =9,

then b[1] will evaluate to 9, not ‘t’.

For this reason the copy function is provided (see section 6.3). It may be used to
create a copy of a table upon which operations may be performed without altering the
original. :

For example, if a procedure makes assignments to components of a table passed as
a parameter, then it may be necessary to pass a copy. Suppose that ‘decomp’ has been
assigned a procedure that does an in-place LU matrix decomposition, and takes an array
as its only parameter. If it is desired to find the LU decomposition of the matrix given
by ‘a’ while retaining ‘a’ for further use, then the following statements may be used:

b := copy(a);
decomp(b);

Arrays and Tables in Maple 13

4.2. Tablea Local to a Procedure

A variable local to a procedure may be assigned a table, just as it may be assigned
an object of any other type.

A table object which is created and assigned to a local variable may be returned as
the value of the procedure or passed out through one of the parameters, in exactly the
same way as any other expression.

Example:
put the coefficients of a polynomial in a table
getcoeffs 1=
proc(poly, var)
local Cs, ¢, i}
if not type(poly, polynom, var) then
ERROR('must have a polynomial‘}
B H
Cs == table();
for i from ldegree(poly, var) to degree(poly, var) do
¢ := coefl{poly, var, ij;
if ¢ <> 0 then Csfi] :=c fi

od;
Cs
end;
Os := table([this, that}); yields table([{1)==this,(2)=that])
geteoefls(3*x++67 + y, x); yields table([(0)=y,(67)=3})
Cs; yields table({(1)=this,(2)=that])

4.3. Tables as Parameters

A table may be passed as a parameter into or out of a procedure. Components
added to the table or removed from the table while the procedure is executing affect the
globally visible table, since it is the same object.

If a table is passed as a parameter in the following way:
a == table(); p(a);

then it should be noted that the name ‘a’ is evaluated to the table object before the
procedure is inveked. Therefore, if a reference to the table “fails” within in the
procedure, then the reselting indexed expression will have the table object as its zeroth
operand.

This can be avoided by passing the name of the table (i.e. p(’a’)), thereby making

it avatlable to any component references which may fail. Note that this situation does not
arise if all the components which are used have been assigned prior to the procedure call.

14 Arrays and Tables in Maple

Passing an un-named table object as a parameter may lead to awkward results if
components which do not have values are used. If the procedure makes a component
reference that fails and assigns it to another component of the same table, then doing the
assignment creates a self-referential data structure. (Just as doing x := y; yi="x#+2’
does.) This would lead to an infinite evaluation recursion the next time the component
was evaluated.

4.4, Automatic Loading of Tables

It is possible to define large tables that get loaded only when a component is
referenced. This is done in the same way that procedures can be made to be read in only
when used.

To cause a table to be loaded automatically, it is assigned an unevaluated call to
readlib. If a user wants T to be loaded when it is used, then he makes the assignment

T := 'readlib("T", filename)’;

where ‘filename’ is the name of the file in which the table has been saved.

Suppose a user enters Maple and executes the following statements:
Linverse := table();
Linverse[1/s#+n] := t#+(n-1)/(n-1)%
Linverse[1/(s+#2 + a**2)] := sin(a*t)/a;
save ‘fu/jgpublic/laplace.m’;
quit
1f in a subsequent Maple session the assignment
Linverse := 'readlib{'Linverse’, *fu/jgpublic/laplace.m’)’;
has been made, then evaluating

Linverse[1/s++n]

causes readlib to be executed and the table is read in. The indexed expression then
evaluates to

t*#(n-1)/(n-1)!

Arrays and Tables in Maple 15

5. INDEXING FUNCTIONS

5.1. The Purpose of Indexing Functions

The semantics of indexing into a table are described by its indexing function. Using
an indexing function, it is possible to do such things as efficiently store a symmetric
matrix or count how often each element of a table is referenced. Because each table
defines its own indexing method, generic programs can be written that do not need to
know about special data representations. For example, the same function would be used
to perform an operation on sparse matrices as for dense matrices.

The normal method of indexing, described in sectior 3, is used when the indexing
function of a table is NULL. The semantics correspond roughly to those of common
programming languages, with the added notion of “failing” if a component has not been
assigned.

If the indexing function for a given table is not NULL, then all indexing into that
table is done through a procedure. This procedure is invoked whenever an expression of
the form T[<expression sequence>>] is encountered and T evaluates to the table.

Three parameters are passed to the procedure:
(i) the object which is being indexed, T, (unevaluated)
(1) a list containing the index, <expression sequence>, (evaluated)

(iii) a Boolean value which is true (false) if the expression is being evaluated as on a
left-hand (right-hand) side of an assignment.

T is passed umevaluated so that a name will usually be available if a table reference
“fails”. The value returned by the procedure is used in the place of the indexed
ex pression.

The indexing function may be the procedure itself, or a name. Certain names are
known to the basic system as built-in indexing functions. If a name is given which is not
one of these, a function call is made using ‘indéx/‘.(na.me) . First the current session
environment is searched for this name. If it is not found, the Maple system library is
searched for the file “.libname index/".<name>."m'. If no such file exists, then
‘index/*.<name>> is applied as an undefined function.

5.2. Indexing Functions Known to the Baslc System

At present, three names are known to the basic Maple system as indexing functions.
These are symmetric, antisymmetric, and sparge.

The indexing function symmetric is used for tables in which the value of a
component i3 independent of the order of the expressions in the index. The most
common application is for symmetric matrices. When a component of a table with this
indexing function is referenced, the index expression sequence is re-ordered to give a
unique key. (The sort is done using the same internal ordering as for sets.)

16 Arrays and Tables in Maple

Examples:
A := array(1..10,1..10,symmetric); yields A := array(symmetric,1..10,1..10,[])
AlL2]; yields A[1,2]
Al2,1); yields A[L,2]
Alid] - Aliik yields 0
A3, 4] 1= x; yields A[3,4] :==x
Al4,3] :=y; yields A[3,4]:=y
A; yields array(symmetric,1..10,1..10,{(3,4)=y])
T :== table(symmetric); yields T :== table(symmetric,] })

T[function,continuous,odd] = f; yields T[odd,continuous,function] :== f

The antisymmetric indexing function yields the result of symmetric, multiplied by
1 if all components of the index are different and an odd number of transpositions were
necessary to re-order the index. If two or more components of the index are the same,
antisymmetric returns 0.

Examples:
B := table(antisymmetric); yields B :== table(antisymmetric,[])
Bli,j}; ’ yields BIi,j]
Bli,ij; yields -Bl[,j]
Bli,j,k] + Blik,j}; yields 0
BlikXk}; yields 0
Blij] == v; yields Blijji=v
Bl :==u; yields ERROR: invalid name forming operation

The indexing function sparse is used with tables for which a component is assumed
to have value 0 if it has not been assigned. Suppose T is a table with this indexing
function. Evaluating T{<expression sequence>] on a right-hand side yields the
component’s value, if it has been assigned, or O, if it hasn’t. When
T|<expression sequence>] is evaluated on a left-hand side, the indexing function always
returns the indexed expression T|<expression sequence>>]. (Returning O would make
assighing components impossible.)

Examples:
U := array(1..100,sparse,[80=ul]); yields U :== array(sparse,..100,[(90)=ul])
V := array(1..100,sparse,[34=v1}); yields V :== array(sparse,1..100,[(34)=v1])
s5:=0;
for i to 100 do
s:=s+ U[i] + V[i
od;
s; yields ul + v1

Arrays and Tables in Maple 17

5.3. User-Deflned Indexing Functions

A user may create his own indexing function by writing a procedure which returns
the expression to be used, given the object being indexed, the index, and an indication of
whether a left- or right-hand side is desired.

Suppose we wish to define a large tridiagonal matrix. To avoid storing the off-
diagonal elements, the following procedure may be used as the indexing function:

63 1=
proc(A, index) local dummy;
op(1,index) - op(2,index);
if not type(”, integer) or abs(") <== I then
subs{dummy = op(index), 'Aldummy}’}
else
0

end

The array may be created by the statement
Tri := array(1..10000, 1..10000, t3)

or by the statements

‘index ftridiagonal := t3;
Tri := array{1..10000, 1..10000, tridiagonal}

In the first case, “Tri’ would have the procedure as its first operand. In the second, it
would have the name ‘tridiagonal’. Assume for the following discussion, that ‘Tri’ has
been assigned by the second method.

To explain how this procedure works, suppose the statement
Tri[3,20] := rhs;

is executed. After the right-hand side has been evaluated, “T'ri' is evaluated and found to
be an array. Next, the index is evaluated and found to be within bounds. The indexing
function is then found to be ‘tridiagonal’ so the following procedure call is made:

‘index ftridiagonal ‘(' Tri’, {3,20], true)

The third parameter indicates that the evaluation is being done for the left-hand side of
an assignment. (In this case the procedure ‘index/tridiagonal® does not use the third
parameter, but it is passed anyway.) The element referred to is found not to be on the
tri-diagonal band so the else part is executed and the value O is returned. Since it is
impossible to make an assignment to 0, the assignment statement generates an error

18 Arrays and Tables in Maple

message. This is reasonable; it should not be possible to make assignments to the off-
band entries of a tridiagonal matrix.

If the statement
Tri[99,100];

is executed, then the following events occur. As before, “Tri’ is evaluated to a table and
the index is found to be within bounds. Then the procedure call

‘index /tridiagonal*("Tri’, op([99,100]), false)
is made. Since this component is found to be on the upper diagonal, the statement
subs(dummy = [99,100], *Tri[dummy}’}

is executed. This returns Tri]99,100{, unevaluated, as the procedure value. Then, if
Tri[99,100] has been assigned, its value is retrieved. Otherwise the table reference fails as
usual.

It is important to avoid evaluating the expression T]99,100] accidentally inside the
procedure, as this would cause an infinite recursion. This is the reason that subs was used
to create the expression returned by ‘index/tridiagonal’.

As a second example, suppose we want to count the number of assignments made
to components of various arrays and other tables. The counts will be kept in a table,
‘Count_table’, initialized by

Count_table :== table(sparse);

If ‘A’ is one of the tables to be monitored and an assignment is made to A[1,2], then
Count_table[A,[1,2]] will be incremented by one.

The procedure below may be used as the indexing function for the tables to be
motitored:

“index feount’ 1=
proc{T, index, is_Jhs)
local dummy;
if is_ths then
T
Count_table] 7, index] := Count_table[", index} + 1
7 is used to evaluate the name and get the table.
fi;
subs{dummy = op(index}, *T[dummy]’)
end

Then, the tables under investigation are created as follows

Arrays and Tables in Maple 19

t1 ;= table{count);
aa ;= array(1..100, count);

and used normally,

For a third example, we consider the “Riemann tensor” from general relativity.
For our purposes it may be considered to be an array with (0..3,0..3,0..3,0..3) as its index
bound. This object would have 256 components if all were independent, However, the
Riemann tensor has (among others) the following symmetry properties

Rfijkl = -Rf,ik,]
R{i.jk]] = -Rfi,j,Lk]
Rfijkl] = RlkLij .

These imply that at most 21 components are algebraically independent. The array
could be created with the following procedure as its indexing function:

‘index friemann’ :=
proe(A,ix)
local i,j,k,l,dummy;
option remember;
i:== op(l,ix); j := op(2,ix); k := op(3,ix); ! 1= op(4,ix};

ifi=jork=1then 0
¢lif not order(i,j) then -Afj,ik,1]
elif not order(k,l) then -AfijLk]
elif not order([3,j,[k.l]) then Alk,Lijj
else subs(dummy = op(ix), *A[dummy]’)
fi
end;
where ‘order’ is a boolean function defining an ordering on expressions, such as
order == proc{a,b) evalb(a = op{1,{a,b})) end

(which uses the ordering defined by Maple’s ordering of elements in 2 set). The procedure
‘index /riemann” is recursive, since evaluating the expressions —Alj,ik,1], -Ali,i,1k], and
Alk,L,i,j] causes the indexing function to be called again.

8. LIBRARY FUNCTIONS

8.1, array (indexing_function, Inlt_list, lol..hil, lo2..hi2, ...)
To create an expression of type array, a call is made to this function. The

parameters array takes are an indexing function, initializations, and an array bound.

Each of these is optional and they may appear in any order in the parameter sequence.

20 Arrays and Tables in Maple

The indexing function is given either a3 a procedure or as a name. If one is not
given, then a default of NULL is used. (Actually, that is the only way to obtain a NULL
indexing function.)

The initializations are given either as a list of equations or as a list of values. (To
avoid ambiguity, if a list of values is used, none of the values may itself be an equation.)
It a list of equations is given, then for each equation, the left-hand side is used as the
index of a component and the right-hand side is used as its value. With a list of values,
consecutive integer indices are used starting at the low index specified in the index bhound
if an index bound is given, or at 1 if one is not given. The default for initializations is
the empty list.

The index bound is passed as a number of integer ranges which appear adjacently in
the parameter sequence. If no index bound is given, then one is deduced from the list of
initializations. If the initializations are given as a list of equations, then the index bound
is taken to be a sequence of ranges of the same length as the indices. Each range is made
as restrictive as possible while still encompassing 2ll the indices from the equations. It
the initializations are given as a list of values then the array is taken to be one-
dimensional and the index bound is a range from 1 to the number of values given. If as
well as no index bound, no initializations are given (or if an empty list is given), then the
array is taken to be zero-dimensional. {In this case, the only valid index is NULL.}

Examples:
array(); yields array([]}
array([|); yields array([])
array{0..3); yields array{0..3,[])
array(1..4,0..3); yields array(1..4,0..3,[)
array([x,y,z]); yields array(1..3,[(1)=x,(2)=y.(3)=1]}
array(0..3, {x,y,2]); yields array(0..3,[{0)==x,(1)=y {2)=1])
array({x,y,z), 0..3); yields array(0..3,[(0)=x,{1)=y,(2)==1])
array([3=X,10=Y]); yields array(3..10,[(3)=X,(10)=Y])
array(9..11, [10=Y]); yields array(9..11,[{10)=Y)) .
array([(1,2)=12, (2,7)=27]); yields array(1..2,2..7,](1,2)==12,(2,7)=27])
array(sparse,{1=x,100=y]); yields array(sparse,1..100,[(1)=x,(100)=y]}

6.2. convert { expr, typename)

With the implementation of tables in Maple, an addition has been made to the
Maple library for conversion to type ‘array’.

When convert is called and ‘typename’ is ‘array’, an attempt is made to construct
an array from the input expression. Only expressions of type ‘list’ or type ‘table’ may be
converted. One important use of this is to extend the bounds of an existing array (e.g. to
add a column to a matrix).

The value returned by converf is a new array created by the array function. If
extra parameters are given after ‘typename’ in the call to convert, then they are used as

Arrays and Tables in Maple 21

the index bound. When ‘expr’ is a list, then array is created using ‘expr’ as the
initialization list. When ‘expr’ is a table, the initialization list used to create the array
has an equation of the form index = expr|index| for each component of ‘expr’.

Examples:
convert([a,b,c], array); yields array(1..3,[{1)=a,(2)=b,(3)=c¢])
table([(1,1)=11, (1,2)=0);
convert(”, array); yields array(l..1,1..2,[(1,1)=11,{1,2)=0])
convert(*, array, 0..3, 0..3); yields array(0..3,0..3,[(1,1)=11,(1,2)=0])
table(sparse,[=x, 100=y]);
convert(", array); yields array(sparse,1..100,[(1)=x,{100)=y])

8.3. copy (expr)

The copy function returns a copy of its parameter. The primary use of this function
is to copy tables.

A table is the only type of data object which can be modified after creation. (A
table is the only type of object for which it is possible to make an assignment to a part of
the object.} Therefore it would only ever be necessary to use copy when ‘expr’ was a table
or had a table as a subexpression. For other inputs, copy simply returns its parameter.

copy is applied recursively to the subexpressions of ‘expr’ so that all tables in it are

copied. The expression returned is immune to side effects caused by assignment to
components of tables that existed when copy was called.

Examples:
copy{2 + sin{x)); yields 2+ sin(x)
copy(proc() a end); yields proc() a end
u == table([X]); yields u:= table([(1)=X])
vi=uo yields v := table(](1)=X])
w = copy(u); yields w ;== table([(1)==X])
ufl] == 8;
v{i}; yields 8
w[l}; yields X

L := [uu}; N := copy(L); u[1] := &;

L; yields [table([(1)=19]),table([(1)=9])]
N; yields [table({(1)=8]),tzble([{1)=8])]

22 Arrays and Tables in Maple

8.4. indices (tbl)

This function takes a table as its parameter and constructs an expression sequence
containing the indices of all entries in that table. Each index is made into a list and the
expression sequence returned has these lists as its components. The indices are placed in
lists to prevent indices that ate themselves expression sequences from merging.

Examples:
table([(1,2)=A, (2,1)=B, 9=C]);
indices(”); yields {1,2],[9],{2,1]
indices(table()); yields the value of NULL
array({11, 22, 33, 44]);
indices("); yields [2],3],14],[1]

The indices will appear in the expression sequence in an apparently arbitrary order.
The order in which they appear can not easily be controlled by the user.

The indices function is useful for performing actions which use all entries in a given

table. For example, the following procedure will remove all zero-valued entries from a
table:

remove_zeros ==
proc{ thl)
local i, ix_set, index;
ix_set := {indices(tbl)};
for i to nops(ix_set) do
op(i, ix_set); # get the i-th list
index :== op("); # convert it to an expression sequence
if tbl[index] == 0 then
tblfindex] := evaln{tbl[index])

od
end;

6.5. maparray (f, A, arg2, arg3, ...)

This procedure applies a function to each component of an array. The parameter ‘T’
must evaluate to a procedure or to a name and the parameter ‘A’ must evaluate to an
array. There may be zero or more additional parameters and they may be of any type.

The procedure maparray makes one call
f{evaln{Alindex]), arg2, arg3, ...)

for each index within the index bounds of A. The value ‘A’ is returned. At the present
time, maparray must be loaded by the user from the maple library.

Arrays and Tables in Maple 23

As an example, to assign zero to all components of a 3 by 3 array, the following
statement may be used:

maparray(proc(a) a :== 0 end, array(1..3, 1.3) };
To print the elements of an array, A, in a readable order, one could use
maparray(proc(a) a; print(a, =", "} end, 'A’);
The procedure below does component-wise addition of an arbitrary number of arrays:
Use A := addarray(X, Y, ..) to give A:= X + Y + ...
addarray :== proc()
local bd, i
if nargs = 0 then ERROR(nothing to add’) fi;
bd := op{2,param(1)};

for i from 2 to nargs do
if op(2,param(i))< >bd then ERROR(different shapes’) fi

od;
proc(A) local i, ix, sum;
ix 1= op[A);
sum := 0;
for i from 2 to nargs do param(i); sum := sum + "[ix] od;
A 1= sum
end;

maparray(”, array(bd), paramseq)
end;

6.8. table (indexing_function, init_list }

To create a table which is mol an array, a call is made to this function. The
parameters are an indexing function, and a list for initializations. Both of these are
optional and they may appear in either order in the parameter sequence.

The indexing function is given as either a procedure or as a name. If one is not
given, then a default of NULL is used. (Actually, that is the only way to obtain a NULL
indexing function.)

The initializations are given cither as a list of equations or as a list of values. (To
avoid ambiguity, if a list of values is used, none of the values may itself be an equation.)
If a list of equations is given, then for each equation, the left-hand side is used as the
index of a component and the right- hand side is used as its value. With a list of values, -
consecutive integer indices are used starting at 1. The default for initializations is the
empty list.

24 Arrays and Tables in Maple

Examples:
table{); yields
table([22,33]); yields
table({2==22,3=33]); yields
table{[-9==-99, sin(s)=cos(x)}); yields
table([{1,2)=12, (2,1)=21}); yields
table(symmetric, [(0,1)=3, (cbye)=x]}; yields

6.7. type (expr, typename)

table([)

table([{1)=22,(3)=33])
table((3)=33,(2)=22])
table{[(~9)=—99,(sin(s))=cos(x)])
table([(2,1)=21,(1,2)==12])
table([(1,0)==a,{b,c,c)=x])

The two names ‘table’ and ‘array’ are known to the fype function to check for
tables and arrays. Because arrays are also tables, type(A,table) is true if A is an array.

Indexed expressions are recognized by the type function using the type name

‘indexed’.

Arrays and Tables in Maple 25

APPENDIX

This appendix contains edited versions of the procedures ‘table/initbds' and
‘table/initvals® from the Maple system library. These are given as model programs upon
which a user may wish to base his own procedures.

26

Arrays and Tables in Maple

This function is called to deduce the bounds when an array is being

created and no bounds are given but some initializing values are.
Input — the list of initializations supplied in the call to ‘array’.
OQutput -- a sequence of zero or more integer ranges.

#

The action taken depends on whether we have values or equations:

-~ If only values, then give bds for a 1-dimensional array.

- 1f only equations, then deduce the dimensions from the LHS's.
Fid (Al LHS’s must have the same number of components.)

- Otherwise, the input is erroneous.

‘table/inithds® :=

proc{init_list)
local i, j, rank, bds, lo, hi, err_msg;
err_msg := ‘improper array initializations’;

determine whether initializations are equations or values
{op(map(type, init_list, *="))};

if 7 = {false} then # list of values
1..nops(init_list)

elif ” = {true} then # list of equations
verify that all indices have same number of components
{op(map{ proc(eqn) nops{jop(1,eqn)]) end, init_list))};
if nops(”) <> 1 then ERROR(err_msg) fi;

find smallest “box” containing the indices
rank 1= op(");
bds := NULL;
for i to rank do
lo := op(i,[op(1,0p(1,init_list))]); hi := lo;
for j to nops(init_list) do
op(i,[op(1,0p(j,init_Llist))]);
if not type(”, integer) then ERROR(err_msg)
elif ” < lo then lo == "
elif > > hi then hi:="

fi
od;
bds ;= bds, lo..hi
od;
bds
else ERROR (err_msg) # list has some equations AND some values

fi
end;

S Hh R nHk

Arrays and Tables in Maple 27

This procedure is used to install the initial values in 2 table.
The first parameter is the table, the second is the list of
initializations from the call to ‘array’ or ‘table’.

This function is not called if the list of values is null.

The action depends on whether we have values or equations:

If only values, install with integer indices.
If only equations, install with the LHS's as indices.
Otherwise, the input is erroneous.

‘table/initvals® :=
proc(tbl, init_list)

end;

local i, ‘lo-17, err_msg;
err_insg ;= ‘improper initializations for table or array™;

{op(map(type,init_list, *="))};

if ” = {true} then
for i to nops(init_list} do
tbljop(L,op(i,init_list))] := op{2,0p(i,init_list))
od
elif 7 = {falsc} then
if type(tbl,array) then
if nops([op(2,tbl}])< >1 then ERROR({err_msg) fi;
Ylo-1" := op(1,0p(2,tbl)} - 1

else
To-1" =0
&
for i to rops(init_list) do tbi['lo-1'+ i} := op(i,init_list) od
else
ERROR (err_msg)
fi

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

