
A System for Parallel Computer Algebra Programs

Stephen M. Watt1

Department of Computer Science
University of Waterloo

Waterloo, Ontario
Canada N2L 3G1

Small problems in computer algebra can be done with moderate time
and storage. However, even simply stated problems of medium size can be
very expensive to compute. Many such problems run out of storage or take
excessive time. Large problems, if they can be done at all, can take hours.
As in many other fields, we run into the question as to what is the most
economical way to obtain raw processing power. We would like to investigate
the practicality of using multiprocessing in computer algebra applications.

Many activities in symbolic mathematical computation are suitable for
division into parallel processes. For example, when a sum is integrated, the
first thing that is usually tried is to integrate each of the terms. At this high
level, the tasks to be performed can be quite substantial so we expect the
overhead of process management to be small by comparison.

We have constructed a prototype for running parallel computer algebra
programs on a multiprocessor. The multiprocessor on which the system runs
is a local area network of Vax 11/780’s running Berkeley Unix version 4.2.2

This program was written using the internet socket support provided by this
version of Unix. The fact that the multiprocessor is a local area network is
transparent to the user programs.

The prototype is a multiprocessing version of the Maple computer algebra
system. It provides functions for dynamic process creation and interprocess
communication. The communication primitives are used for synchronization.

The system consists of two parts: a program which implements the mul-
tiprocessing primitives and a small library of functions which communicate
requests to that program. When running, a parallel program consists of
a number of application processes, each with an associated system process

1Present address: Computer Algebra Group, Computing Technology Department,
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 USA.

2Unix is a trademark of AT&T Bell Laboratories.

1



which acts as its agent. All input and output of an application process is
filtered by its agent for embedded requests.

Having the multiprocessing facilities independent of the Maple kernel al-
lows the application processes to be written in other languages. Thus the
prototype provides a mechanism for inter-language communication which
avoids the the overhead of repeated start-up of subordinate processes. For
example, if one were to write a program that used both asymptotic analysis
and Laplace transforms, then one could use Maple for the asymptotic analy-
sis and Macsyma for the Laplace transforms. If a distributed Maple program
had the need for an :q.inference server:eq., that portion of the code could
be written in Prolog. To do this by installing corresponding multiprocessing
facilities in each interpreter would be very difficult.

As an example, we will present a program for the computation of poly-
nomial GCD’s.

2


