
BOUNDED PARALLELISM IN COMPUTER ALGEBRA

by

Stephen Michael Watt

A thesis

presented to the University of Waterloo

in fulfillmentof the

thesis requirement of the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, 1985
c© S.M. Watt 1985

Permission has been granted to

the National Library of Canada to

microfilm this thesis and to lend or sell

copies of the film.

The author (copyright owner) has

reserved other publication rights, and

neither the thesis nor extensive extracts

from it may be printed or otherwise

reproduced without his/her written

permission.

L’autorisation a été accordée à la

Bibliothèque nationale du Canada de

microfilmer cette thèse et de prêter ou

de vendre des exemplaires du film.

L’auteur (titulaire du droit d’auteur) se

réserve les autres droits de publication;

ni la thèse ni de longs extraits de celle-ci

ne doivent être imprimés ou autrement

reproduits sans son autorisation écrite.

ISBN 0-315-29618-6

I hereby delcare that I am the sole author if this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or

individuals for the purpose of scholarly research.

Signature

I further authorize the University of Waterloo to reproduce this thesis by photocopying

or by other means in total or in part, at the request of other institutions of individuals

for the purpose of scholarly research.

Signature

ii

The University of Waterloo requires the signatures of all persons using or photocopying

this thesis. Please sign below, and give address and date.

iii

Abstract

This thesis examines the performance improvements that can be made by exploiting

parallel processing in symbolic mathematical computation. The study focuses on the

use of high-level parallelism in the case where the number of processors is fixed and

independent of the problem size, as in existing multiprocessors.

Since seemingly small changes to the inputs can cause dramatic changes in the

execution times of many algorithms in computer algebra, it is not generally useful

to use static scheduling. We find it is possible, however, to exploit the high-level

parallelism in many computer algebra problems using dynamic scheduling methods in

which subproblems are treated homogeneously.

Our investigation considers the reduction of execution time in both the case of AND-

parallelism, where all of the subproblems must be completed, and the less well studied

case of OR-parallelism, where completing any one of the subproblems is sufficient. We

examine the use of AND and OR-parallelism in terms of the problem heap and collu-

sive dynamic scheduling schemes which allow a homogeneous treatment of subtasks.

A useful generalization is also investigated in which each of the subtasks may either

succeed or fail and execution completes when the first success is obtained.

We study certain classic problems in computer algebra within this framework. A

collusive method for integer factorization is presented. This method attempts to find

different factors in parallel, taking the first one that is discovered. Problem heap

algorithms are given for the computation of multivariate polynomial GCDs and the

computation of Gröbner bases. The GCD algorithm is based on the sparse modular

GCD and performs the interpolations in parallel. The Gröbner basis algorithm exploits

the independence of the reductions in basis completion to obtain a parallel method.

In order to make evaluations in concrete terms, we have constructed a system for

running computer algebra programs on a multiprocessor. The system is a version

of Maple able to distribute processes over a local area network. The fact that the

multiprocessor is a local area network need not be considered by the programmer.

iv

Acknowledgements

I would like to thank my supervisor, K.O. Geddes, for his guidance and support through-

out my Ph.D. studies. The Symbolic Computation Group at the University of Waterloo

provided the stimulating environment in which this research was conducted. I would

like to express my gratitude to the Natural Sciences and Engineering Research Council

of Canada for financial support. In addition, I would like to acknowledge many fruitful

discussions with my friends and colleagues both in Waterloo and in Yorktown Heights.

v

Contents

1 INTRODUCTION 1

1.1 Motivation . 1

1.2 Views of Parallelism . 2

1.3 Scope . 4

1.4 Related Work . 5

1.5 Outline . 8

2 PARADIGMS FOR PARALLELISM IN COMPUTER ALGEBRA 10

2.1 Considerations for Computer Algebra 10

2.2 Considerations for High Level Parallelism 11

2.3 The Problem Heap and the Administrator Process 11

2.4 Collusion and the Don Process . 12

3 COLLUSION 14

3.1 Colluding Processes . 14

3.2 Execution Duration . 16

3.3 Parallelism . 18

3.4 Modelling Collusion . 19

3.5 Expected Execution Times . 20

3.6 Example: Satisficing Search . 24

3.7 The Existence of Extremely Collusive Densities 28

4 INTEGER FACTORIZATION 33

4.1 The Role of Integer Factorization . 33

4.2 A Brief Survey . 33

4.3 A Parallel Algorithm: llifactor . 36

4.4 Some Empirical Results . 37

5 POLYNOMIAL GREATEST COMMON DIVISORS 42

5.1 The Role of Greatest Common Divisors 42

5.2 A Survey of GCD Algorithms . 42

5.3 A Parallel Algorithm: llgcd . 44

5.4 Analysis . 46

6 GRÖBNER BASES 52

6.1 The Role of Gröbner Bases . 52

6.2 Buchberger’s Algorithm . 52

vi

7 DEVELOPING A PARALLEL COMPUTER ALGEBRA SYSTEM 59

7.1 Chapter Overview . 59

7.2 Parallel Processing Primitives . 59

7.3 Message Passing in the Administrator and the Don 64

7.4 Shared Memory in Maple . 65

7.5 A Multiprocessing Prototype . 67

7.6 A Multiprocessing Version of Maple . 70

8 IMPLEMENTATION ASPECTS 73

8.1 Chapter Overview . 73

8.2 The Architecture of the Multiprocessing Maple System 73

8.3 AND Parallelism . 79

8.4 OR Parallelism . 83

8.5 Broadcasting . 83

9 CONCLUDING REMARKS 85

9.1 Summary . 85

9.2 Contributions . 86

9.3 Directions for Further Work . 86

BIBLIOGRAPHY 88

General References . 88

Parallelism in Computer Algebra . 91

Scheduling . 94

Collusion . 95

Integer Factorization . 97

Greatest Common Divisors . 98

Gröbner Bases . 100

INDEX 101

vii

List of Figures

2.1 The Administrator Process . 11

2.2 The Don Process . 13

3.1 〈t〉ser/〈t〉par for various values of p̄, N and t/T 32

4.1 A Collusive Factor Finding Method . 35

4.2 A Parallel Factorization Algorithm . 36

4.3 Empirical Probability for Success . 38

4.4 Empirical Probability for Failure . 39

4.5 Tabulation of Probabilities at Certain Values 41

5.1 GCDs in Rational Function Arithmetic 43

5.2 The Sparse Modular GCD . 45

5.3 A Parallel GCD Algorithm . 47

6.1 Buchberger’s Algorithm . 55

6.2 A Parallel Gröbner Basis Algorithm . 56

6.3 A Parallel Gröbner Basis Using Administration 57

7.1 Message Passing for the Proprietor . 63

7.2 Message Passing for the Administrator 64

7.3 Message Passing for the Don . 65

8.1 Layers in the Implementation of the Multiprocessing Maple System . . 73

8.2 Library Used by Kernel of Multiprocessing Maple System 78

8.3 Implementation of AllOf using the Administrator Construct 80

8.4 Implementation of OneOf using the Don Construct 81

8.5 Implementation of Broadcast . 82

viii

1.0 INTRODUCTION

1.1 Motivation

Small problems in computer algebra can be solved with moderate time and storage.

However, even simply stated problems with moderately sized inputs, can be very ex-

pensive to compute. Many such problems run out of storage or take excessive time.

Large problems, if they can be done at all, can take hours or even days. As in many

other fields, we run into the question of what is the best way to obtain raw processing

power.

For many years now, it has been apparent that multiprocessing will ultimately be

the solution to the problem of reducing execution time. There are at least four reasons

for this. The first is that at any given time, manufacturing technology places limits on

how fast a uniprocessor can be. The second reason is cost effectiveness. It appears that

it will always be less expensive to produce several slow processors than a single very

fast one. If these slow processors can be combined in such a way that they perform

work together, then they may have a combined power that exceeds that of the single

fast processor. The third reason is reliability. If a failure occurs in a multiprocessor

then, with the proper software support, the affected element can be shut down while

the system continues to run. Finally, the fourth reason is extensibility. With certain

multiprocessor architectures it is possible to incrementally increase the performance by

adding processors. With a uniprocessor the entire unit needs to be replaced in order

to obtain an increase in speed.

From the point of view of the computer algebra community, it is natural to ask

what performance improvements can be made by exploiting parallelism in symbolic

mathematical computation. Many problems in this field seem suitable for division

into parallel processes. For example, when a sum is integrated, the first thing that is

usually tried is to integrate each of the terms separately. At this high level of problem

description, the tasks to be performed are quite substantial. One would therefore expect

the overhead of managing multiple processes to be relatively insignificant.

Although it is clear that it would be advantageous to exploit parallel processing,

there is the consideration of how to make the processors work together. There are

problems in both hardware and software that must be addressed in order to successfully

take advantage of multiprocessing. First there are abundant issues in the design of

suitable multiprocessor hardware. Then, given a particular multiprocessor, there is the

requirement of developing software that can utilize it. None of these problems is trivial.

In addition to these practical considerations, the problems exposed in examining

parallel algorithms for computer algebra are interesting in their own right.

1

2

1.2 Views of Parallelism

There are many possible reasons why one may wish to structure a program as multiple

processes. For example, it is often desirable to make inherent parallelism explicit (as

in a simulation) or to maintain program modularity (as in an operating system). As

far as this thesis is concerned, however, the aim of using parallelism in computing is to

decrease execution time.

The use of parallelism for performance improvement may be approached from several

different views. We outline four independent aspects of parallelism which can be used

to characterize investigations.

SIMD versus MIMD Parallelism

There is a classification of parallel computer architectures by Flynn [Flynn66] that

is based on the number of “instruction streams” and “data streams” (the number

of instruction streams is the number of processors.) The class to which a processor

belongs is determined by whether the processor accepts single or multiple streams of

each variety. This yields four classes, abbreviated SISD, SIMD, MISD and MIMD. In

this classification the traditional von Neumann machine would be classified as a single

instruction stream, single data stream (SISD) processor.

In the SIMD class a single program operates upon multiple data objects simultane-

ously (usually as vectors). Processors such as ILLIAC IV fall into this category. This

sort of parallel processing is most useful in numerical computation where the same

procedure must be applied at each one of a number of points.

Certain problems in computer algebra can also take this approach. For example, cer-

tain operations on dense univariate polynomials can be done as vector operations. The

same is true for dealing with arbitrary precision integers upon which most computer al-

gebra systems rely. Other candidates are problems solved by multiple homomorphisms.

However, the problems which can take advantage of this sort of parallelism are fairly

limited because of the inhomogeneity of the operations in computer algebra.

The category of multiple instruction stream, single data stream processors does not

seem to be widely useful.

In the most general form of parallel processor, several independent processes work

upon different sets of data. This is known as a MIMD processor in Flynn’s classification

and includes both SIMD and MISD as special cases. In this thesis we consider MIMD

processing and we shall use the term multiprocessor to refer to a MIMD machine.

INTRODUCTION

3

Bounded versus Unbounded Parallelism

The first question that must be addressed is the number of processors that are available.

This divides investigations into two categories — those that consider a fixed number

of processors, independent of the problem size, and those that consider the number of

processors available to grow with the size of the problem. We call the former bounded

parallelism and the latter unbounded parallelism.

Questions in which the number of processors does not have an a priori bound lie

in the domain of parallel complexity. Here the problem is to determine lower bounds

on the parallel time, allowing either an arbitrary number of processors or a number

of processors determined by a function of the problem size. For example, in sorting

n items what time is required if there are O(n) processors available? What time is

required if O(n log n) processors are available? Such questions are asked to give bounds

on performance, since in practice there are always only a fixed number of processors

available.

It is possible on the other hand, to ask how to use properly a given, fixed number

of processors. Here the objective is to schedule tasks on processors so as to minimize

(or approximately minimize) one of several measures. When the scheduling is done

statically, before execution, this problem is known in operations research as job-shop

scheduling (see, for example, [Salvador78]).
Some quantities which are of interest in job-shop scheduling are the completion time

(the time at which processing of all tasks is completed), the flow-time (the total time

from start to completion of a task) and the waiting time (that portion of the flow time

that a task spends inactive). It is usual to minimize either the expected- or worst-case

of one of these quantities. If there are deadlines on the tasks, then lateness may also

be a consideration.

In parallel processing applications, completion time is of the greatest interest. For

a problem where there is a certain fixed amount of work to be done, the objective is to

share it amongst the processors. If the time to perform the work on a single processor

is denoted by T , the goal is to take advantage of the structure of the data or of an

algorithm so that if there are N processors the completion time is reduced to as close

to T/N as possible.

High-level versus Low-level Parallelism

Another aspect is the level at which the parallelism is exploited. The division of a

problem for parallel execution can be done at many levels. If an algorithm is divided

at a level of abstraction close to the problem description, we say that it uses high-

level parallelism. If an algorithm is described in a serial fashion at the high level but

INTRODUCTION

4

makes use of parallelism in its primitives, we say that it uses low-level parallelism.

Investigations into the use of high-level parallelism address issues which arise from the

domain of the problem. The questions that arise in the use of low-level parallelism tend

to have a more general, system oriented flavour.

AND versus OR Parallelism

The most straightforward way to take advantage of parallelism is to divide a problem

into subtasks and to distribute the subtasks amongst the collection of processors. When

all of the subtasks have been completed then the original problem is solved. Alterna-

tively, it is sometimes possible to split a problem in such a way that only one of the

subtasks needs to be completed. We call the former AND parallelism and the latter

OR parallelism.

It is obvious how AND parallelism can be used to decrease execution time. What is

less clear is how OR parallelism can be exploited. If only one of the subtasks needs to

be completed, then how can executing it on one of the processors of a multiprocessor

have any advantage over simply executing that one subtask on a uniprocessor? The

advantage comes from the fact that the subtasks can have widely differing execution

times which cannot be determined in advance.

It is commonly assumed that, when a single processor is used, the structuring of a

program with processes always leads to a deterioration of performance (due to the over-

head of process management). This assumption is invalid. In fact, there are problems

where the execution time even on a uniprocessor can be reduced by taking advantage of

OR parallelism. When multiple processes work independently toward a common goal

we call them colluding processes after Hoare [Hoare76]. We use the term collusion to

describe the use of OR parallelism to decrease execution time.

1.3 Scope

Surveying previous and on-going work shows that the studies of parallelism in computer

algebra may be split into two categories. The first category encompasses work on the

suitability of certain key primitives to take advantage of low-level parallelism on special

purpose hardware. The second category contains the work on the parallel complexity

of algebraic problems.

Between these two lies the important but largely unstudied domain of parallel al-

gorithms for the classic problems in computer algebra that are suitable for existing

architectures. The hardware needed to take advantage of parallelism for these prob-

lems is widely available in the form of local area networks, and, less widely, in the form

of tightly coupled multiprocessors. This thesis attempts to fill this gap partially, by

INTRODUCTION

5

exploring the use of bounded, high-level parallelism for problems in computer algebra.

Since we are concerned with OR parallelism as well as the more often studied AND

parallelism, we begin by studying the use of collusion.

In our study of bounded parallelism, we maintain the overall objective that the

algorithms we develop be actually implementable. Since no multiprocessing computer

algebra systems, upon which the the algorithms could be tested, existed, the decision

was made to construct such a system. The issues involved in the design of such systems

subsequently formed a significant part of this thesis.

Certain algorithms are capable of using a particular number of processors but do

not generalize to the use of more. Although a speedup by a factor of two or three,

for example, is certainly worthwhile, the most valuable parallel algorithms are those

general enough to effectively take advantage of an arbitrary number of processors. We

restrict our attention to algorithms of this type.

We do not address reliablility issues such as handling processor or connection fail-

ures.

1.4 Related Work

There have been numerous investigations into the use of parallelism in other fields,

in parallel complexity theory, in utilizing a fixed number of processors, and in par-

allel computer architecture. Although some of the references occur in the computer

algebra literature, they do not pertain specifically to computer algebra (e.g., [Wise84]
[Legendi85]).

This section presents a summary of the work that has been done on the use of

parallelism in computer algebra. Since the body of literature is rather small, we do not

restrict our attention to bounded, high-level parallelism. The use of OR parallelism

for performance improvement has not received much attention and so we also present

a summary of the results which pertain to collusion.

Implementation Language Support

Since many computer algebra systems are based on LISP, developments in LISP for

concurrent programming and parallel LISP machines (e.g. the Bath concurrent LISP

machine [Marti83]) are of interest to the computer algebra community. Fortran has

also been an implementation language for computer algebra systems (e.g. Altran,

Aldes/SAC-II). The existence of vectorizing Fortran compilers provides an avenue for

Fortran based systems to take some advantage of low-level parallelism on super comput-

ers. Indeed, there is significant interest in the potential of super computers in computer

algebra [Arnon84] [Berman84].

INTRODUCTION

6

Low-Level Parallelism

There has been some work investigating the use of low-level parallelism in computer

algebra based on special-purpose hardware. Kung suggests VLSI designs for polynomial

multiplication and division based on systolic arrays [Kung81]. His systolic design

improves upon previous work which required broadcasting of data to all cells at every

cycle. Systolic arrays are also used in recent work by Yun and Zhang [Yun85] for

residue arithmetic. Davenport and Robert take advantage of the parallelism inherent

in the Modular GCD in their proposal for a VLSI implementation [Davenport84]. In

addition, Smit gives some preliminary thoughts on a single chip multiprocessor design

for computer algebra [Smit83].
The researchers working on the L-Network project at the University of Linz, Aus-

tria, are designing an interconnection network system intended to be used in computer

algebra and logic inference [Bibel84] [Buchberger85a]. This system is based on the

concept of L-modules. Each L-module consists of a processor, a shared memory compo-

nent and bus switches. Buchberger has presented arguments for the suitability of these

structures to the needs of symbolic computing. A prototype consisting of 8 L-modules

was exhibited at Eurocal’85.

Beardsworth has investigated the application of array processors to the manipula-

tion of polynomials [Beardsworth81]. He describes a system for the manipulation of

univariate polynomials with single word integer coefficients. This experimental system

runs on the I.C.L. Distributed Array Processor, a SIMD machine with 64 x 64 simple

processors.

Parallel Complexity

Recently von zur Gathen, Kaltofen and colleagues have initiated investigations into

the parallel complexity of algebraic algorithms [Borodin82] [Gathen83a, 83b, 84]
[Kaltofen 85a-d]. These papers give constructions for a number of algebraic problems

based on an abstract model of parallel computation. The results are given in high-

level descriptions which assume an underlying model of parallel computation equivalent

to an algebraic PRAM (a parallel RAM with arithmetic operations and tests over an

appropriate ground field). These results can also be expressed in terms of an equivalent

model of parallel computation, namely a parallel algebraic computation graph. In this

model each node processor can perform arithmetic and tests over a ground field. The

parallel time is given by the depth of the graph. The literature on algebraic computation

graphs is well established (see [Reif83], [Ben-Or83], [Valiant83] and references cited

therein). We summarize below the published results which follow this line of pursuit.

In each case the result can be viewed either as the construction of a parallel algorithm

INTRODUCTION

7

using a polynomial number of processors and requiring poly-logarithmic time or as a

circuit of polynomial size and poly-logarithmic depth.

The constructions are based on a result of Valiant et al for converting certain se-

quential programs to parallel ones [Valiant83]. The paper shows that a sequential

straight-line program that computes a polynomial of degree n in t steps using only

the operations of addition, subtraction and multiplication can be converted to a fast

parallel program requiring O(t3n6) processors and parallel time O(log n (log n+log t)).

In order to take advantage of this result it is necessary to recast the algebraic problems

in a form free of division.

Borodin, von zur Gathen and Hopcroft present constructions for determinants, char-

acteristic polynomials of matrices and the GCD of univariate polynomials [Borodin82].
In addition, a probabilistic method is given for computing the rank of matrices. Von

zur Gathen presents constructions for converting between various representations of

rational functions [Gathen83a]. In another paper he gives a number of constructions

for dealing with polynomials [Gathen83b]: an extended Euclidean algorithm, GCD

and LCM of many polynomials, factoring polynomials over finite fields and square free

decomposition of polynomials over fields of characteristic zero or finite fields. The algo-

rithms are for univariate polynomials and are deterministic for certain fields (including

the rational numbers and the reals). These constructions are based on a reduction to

solving systems of linear equations. In a subsequent paper von zur Gathen treats the

parallel powering of one integer modulo another [Gathen84] and constructions for Chi-

nese remaindering and polynomial powering are given as secondary results. Kaltofen

shows how multivariate polynomial GCDs can be constructed from straight-line pro-

grams [Kaltofen85a] and he conjectures that the irreducible factors of a polynomial

given by a straight-line program can also be represented by straight-line programs

[Kaltofen85b]. In another paper, he uses Padé approximants to show how to obtain

a straight-line program for computing a rational function if degree bounds are known

in advance for the numerator and denominator [Kaltofen85c]. Along slightly different

lines, Kaltofen, Krishnamoorthy and Saunders give constructions for computing the

Hermite and Smith normal forms for polynomial matrices [Kaltofen85d].

Parallel Algorithms

Sasaki and Kanada present parallel algorithms for symbolic determinants and linear

systems [Sasaki81]. They observe the opportunity for parallelism in minor expansion

and exploit this in computing determinants and in solving linear equations by Cramer’s

method. Their empirical study is based on a serial version of the determinant algorithm.

INTRODUCTION

8

Collusion

It has been previously noted that the use of parallel processes can lead to a decrease

in execution time by taking advantage of differing execution times of similar tasks. In

a paper on heuristic search, Kornfeld remarks that a program for puzzle solving which

is structured into parallel processes on a uniprocessor runs faster than the sequential

version [Kornfeld81]. Subsequently, he expanded upon these observations and devel-

oped language primitives to take advantage of this phenomenon [Kornfeld82]. In this

paper such algorithms are termed combinatorially implosive. Kornfeld’s observations

are qualitative and are based on extensive empirical evidence. In his thesis, Baudet

observed that it was possible to take advantage of fluctuations in processor loads to

obtain an average speedup of a chess game tree search [Baudet78].

1.5 Outline

This chapter has discussed the idea of using parallelism in computer algebra. Although

there are several ways to examine parallelism, we have presented reasons why we restrict

our view to the problem of utilizing a bounded number of processors for high-level

parallelism.

Parallel processing can be used in many application areas and the requirements

in each application vary. In Chapter 2 we discuss the issues specific to the use of

parallelism in the field of computer algebra. If parallelism is to be used at a high level

of abstraction we wish to formulate its usage in general paradigms that can be applied

in many situations. We describe the so-called problem heap paradigm, in which all of

the subproblems must be performed, and the collusion paradigm, where the completion

of any single subtask is sufficient. The parallel algorithms described in this thesis can

be formulated in terms of these paradigms. The problem heap paradigm has been used

by others and its suitability for parallel processing is obvious. (The subproblems can be

executed in parallel on separate processors.) The suitability of collusion is less obvious

and we therefore examine it in greater detail.

Chapter 3 presents a mathematical model of collusion. We view the running time

of a program as a random variable. In this framework we determine the relationship

between the expected execution times of running several collusive tasks serially versus

running them in parallel.

Each of the next three chapters presents a parallel algorithm for a specific problem.

They are integer factorization, the calculation of polynomial greatest common divisors

and the computation of Gröbner bases. These problems were chosen because of their

general importance in computer algebra and because they seemed representative. They

INTRODUCTION

9

were not chosen because they exhibited either any more or any less opportunity for

parallelism than other problems in computer algebra.

Chapter 4 examines integer factorization. After briefly surveying existing methods

we conclude that none of these methods can be expressed in parallel form except at a

very low level. We then formulate a collusive solution to this problem as an example

illustrating how collusion can be used to take advantage of high level parallelism in

cases such as this. The key idea is that when factoring an integer the order of discovery

of the factors is not important. In fact an integer factorization algorithm proceeds

by attempting to find any factor and if one is found proceeding from there. We use

collusion to take advantage of this.

Chapter 5 examines the computation of greatest common divisors. Many algorithms

in computer algebra, such as rational function arithmetic and square free decomposi-

tion, pre-suppose the existence of a polynomial GCD algorithm. Because GCDs play

a fundamental role in computer algebra systems, it is worth while to study parallel

algorithms to compute them. We examine a parallel modular algorithm that takes

advantage of sparseness of the input polynomials.

Chapter 6 examines the determination of Gröbner bases, a relatively new topic in

computer algebra. They can be used to solve many of the traditional problems such

as solution of equations, Hensel lifting, GCD computations and simplification. We

examine how the problem heap paradigm can be applied to Buchberger’s algorithm to

obtain a Gröbner basis in parallel.

Chapter 7 begins by describing the selection of the parallel processing primitives

and how they can be used to implement the high-level constructs we desire for com-

puter algebra. Following this we discuss the steps that led to the development of our

multiprocessing computer algebra system.

Chapter 8 describes the multiprocessing version of the Maple system upon which

we implemented and tested our algorithms.

Finally, in Chapter 9, we conclude by summarizing our results and indicating pos-

sible directions for future work.

PARADIGMS FOR PARALLELISM IN COMPUTER ALGEBRA

2.0 PARADIGMS FOR PARALLELISM IN COMPUTER ALGEBRA

2.1 Considerations for Computer Algebra

We begin by questioning whether the application of parallelism in computer algebra is

different than in other areas of mathematical computation (such as numerical compu-

tation) and if so, why?

The traditional methods of exploiting parallelism in numeric mathematical compu-

tations rely on homogeneity of execution time. In computer algebra execution times can

be very inhomogeneous so we must use more sophisticated methods to take advantage

of parallelism.

The algorithms of computer algebra work upon a wide variety of objects. The

information contained in a polynomial is much greater than the information contained in

a single precision floating point number and the data structure for it is correspondingly

more complex. Whereas all single precision floating point numbers are represented by

the same layout of bit fields in a machine word, a sparse multivariate polynomial over

the ring of two by two complex matrices could be represented naturally in a number of

different ways. The usual notion of the size of an integer or the precision of a floating

point number is given by its absolute value (or alternatively by its precision). Since

the floating point numbers are of a fixed precision all additions will take the same

time, likewise, each multiplication will take exactly as long as any other. Under such

circumstances it is natural to talk about vectorized algorithms where a number of these

operations all taking the same time are performed in parallel. This line of development

has lead all the way to present day supercomputers which attain their speed in part by

heavy reliance on vector operations.

Now on the other hand what can be said about operations on our polynomial in

GL (2, C) [x, y, z]? There are many possible different measures of size for elements

of this domain and algorithms which work upon these elements will have execution

times which can vary considerably for inputs that appear to be very similar. The

reason for this is that the latitude introduced by the extra information content allows

for a subtle underlying mathematical structure. For example, in one computer algebra

system (Maple 3.3 on a Vax 11/780) factoring the polynomial

f1 = x64 − 3

over the integers takes 3 seconds and factoring

f2 = x64 − 5

takes 2 seconds. This compares with over 200 seconds for the polynomial

f3 = x64 − 4.

10

11

Administrator(nWorkers, severalProblems) ==

for i in 1..nWorkers repeat

spawnWorker()

while not allDone() repeat

waitForWorkRequestFromAnyWorker()

if problemsRemain() then

giveProblemToWorker()

return results

Figure 2.1: The Administrator Process

The only difference between these polynomials is a small change in one of the co-

efficients. In other problems, equally small changes can have an equally great impact

while having a less directly obvious connection with the final form of the answer.

It is possible to characterize the classical methods in computer algebra as being

algorithmic yet having execution times which can not always be predicted in advance.

2.2 Considerations for High Level Parallelism

If we are to exploit high level parallelism successfully, then we must be able to keep

each one of a set of processors as busy as possible. Additionally we will want the al-

gorithms to be described in such a way that they are independent of the number of

processors. As stated earlier, the traditional parallel methods in mathematical comput-

ing may be inappropriate because of the variance in execution time. For example, in

Wallach’s scheme of alternating parallel dispatch with serialized synchronization points

for algorithms in linear algebra, computations in a symbolic domain would leave many

of the processors idle while waiting for the longest running subprocess to complete.

[Wallach82]

2.3 The Problem Heap and the Administrator Process

One finds in the study of operating systems much discussion on how to structure parallel

programs. Although these operating systems do not necessarily run on a multiprocessor,

many of the concerns they address are similar to ours. A survey of the operating system

PARADIGMS FOR PARALLELISM IN COMPUTER ALGEBRA

12

literature presents us with the concepts of a “problem heap” and an “Administrator”

process.

To obtain parallel execution, a problem must be split into a number of tasks which

can be performed simultaneously. Sometimes the splitting can be performed statically

before execution. Often, static splitting is not possible and splitting of the tasks can

only be determined dynamically. In this case there will be a number of (perhaps

identical) processes cooperating in the solution of the problem. The data structure

that contains the partial results and the parts of the problem that remain has been

called a problem heap by Moller-Nielsen and Staunstrup [Moller-Nielsen84]. They

assume this data structure is shared between the processes in common memory and is

accessed via some mechanism such as monitors.

Often it is not desirable to presume the existence of shared memory. It is possible

to extend the problem heap concept to a message passing environment. When message

passing is used, the problem heap can belong to one process, with which the others

communicate to obtain tasks. The concept of an Administrator process, as described

by Gentleman, fills this role [Gentleman81]. The Administrator concept described in

Gentleman’s paper is based on the semantics of certain communication primitives used

in a highly stylized way. Leaving the communication details until Chapter 7, we may

express the idea of an Administrator process as follows. There is a certain amount of

work to be done and there are a certain number of worker processes to perform the

work. The Administrator begins by assigning a task to each worker process. It then

sits and waits for its workers to finish these assigned tasks. Whenever a given worker

finishes its job it communicates the result back to the Administrator. At this point

the Administrator assigns a second task to that worker. This is continued until there

exists no more work for the worker processes to perform. (This termination condition

is usually not appropriate in operating systems.) A sketch of the Administrator process

is given in Figure 2.1.

The Administrator process can be used as a generalization of the parallel be-

gin/parallel end which is often found in the literature. It is appropriate to use it

whenever there are several independent computations that can be performed in paral-

lel.

2.4 Collusion and the Don Process

There does not always exist high level splitting to which the Administrator construct

can be applied. This does not mean that parallelism must be foregone. Since execution

times can be quite variable between different methods or even between the same method

PARADIGMS FOR PARALLELISM IN COMPUTER ALGEBRA

13

Don(nWorkers, oneProblem) ==

for i in 1..nWorkers repeat

spawnWorker(variant(i, oneProblem))

result := waitForResultFromAnyWorker()

for i in 1..nWorkers-1 repeat

terminateRemainingWorker()

return result

Figure 2.2: The Don Process

on different inputs, we can use several processes to try to find the answer independently.

This is the notion of collusion which is examined in detail in Chapter 3.

Just as the Administrator is the name given to a process which supervises a collec-

tion of worker processes, we shall say that a process which dispatches a collection of

colluding processes is called a “Don”. When any one of the colluding processes yields

a result the Don process may decide to terminate the others. This will be the case if

the result returned makes the results of the others unnecessary. Sometimes, though,

the results of the first n colluding processes, when combined, yield the result. A sketch

of the Don process is shown in Figure 2.2.

The effectiveness of the Administrator construct and the Don construct depend on

how many processors they can keep performing useful work at any given time. It is clear

that the Administrator construct will be able to keep all processors busy if there are

enough independent quantities to be computed. The effectiveness of the Don construct

depends on how much of the work performed by the collusive processes is useful. This

question is addressed in the next chapter, where a mathematical model of collusion is

used to analyze the problem.

COLLUSION

3.0 COLLUSION

In this chapter we develop a quantitative framework in order to understand how OR

parallelism can be used to reduce execution times. In order to best understand the

issues that pertain to OR parallelism, we restrict the investigation to its use on a single

processor: How does running the tasks in parallel on a uniprocessor affect the execution

time? Once this question has been addressed, then using a multiprocessor to exploit

OR parallelism is not substantially different than using it to exploit AND parallelism.

3.1 Colluding Processes

In order to perform several tasks simultaneously on a single processor we use time-

slicing. That is, a little bit of work is done on each task as the processor is switched

rapidly between them. Rather than viewing the execution of a task as being constantly

interrupted, suspended, and restarted, we may abstractly view the machine as simulta-

neously performing all the tasks, albeit each more slowly than if performed individually.

We call the execution of a task a process.

The practical implementation of the process abstraction is usually an operating

system function. However, it is possible for a single program to interlace the perfor-

mance of several functions independently of an operating system. It is in the sense that

logically distinct tasks are to be performed that we ask the questions we do.

Hoare has categorized the relationships between parallel processes based on the

exchange of information between them [Hoare76]. We shall outline his classification

here.

Disjoint processes are completely independent. They do not communicate and they

do not share data. Competing processes also neither share data nor communicate,

however, they do contend for resources such as disks and line printers. It is clear that

on a uniprocessor these two forms of parallelism cannot lead to a speed up because

the computations that must be performed for any task are independent of the results

obtained by others. Cooperating processes are allowed to update common data but are

not allowed to read it. Again, with this type of relationship between processes a certain

amount of work must be done and the use of parallelism cannot possibly decrease the

total execution time.

Communicating processes pass information between one another. This is done

through shared variables which may be both updated and read or some other sort

of message passing.

If several tasks are to be performed, it could be that the necessity of executing

(or even completing, if execution has commenced) some of the tasks is determined by

the results of other tasks. In this case, the order of execution will influence the total

14

15

amount of work that is done. For example, one process may tell the others that it has

“the result” and they may terminate.

A particular case of this would be processes which follow alternate strategies for

attaining a common goal. Hoare calls such processes colluding. Colluding processes

work together toward a common goal; when one process succeeds in accomplishing

that which was desired, all the processes are terminated. The colluding processes may

communicate to share partial results but aside from this the work spent on the processes

which do not “succeed” is wasted.

We shall call tasks collusive if they may be executed as colluding processes. If, in

performing one of a group of collusive tasks, the common goal is attained by a particular

task, then we say that task succeeds. If in the execution of a group of collusive tasks, a

task terminates without having attained the common goal, then we say that task fails.

If colluding processes can be exploited to give a decrease in computation time,

then this fact will be of practical import only if there are real problems which take

advantage of collusion. Kornfeld has reported timings in which colluding processes

more than doubled the speed in a particular heuristic search program [Kornfeld81].
We give three broad problem categories which use collusion in essentially different ways:

• problems in which there are alternate methods for attaining the common goal

• problems for which there are several equally acceptable solutions

• divide and conquer problems.

We shall discuss each of these classes in turn.

Alternate Methods

In this category, a problem has a single ultimate goal and there is more than one

known method of achieving it. In many problems it is not possible to determine which

alternate method is the least expensive for given data without performing a costly

analysis. The cost of the analysis may well outweigh the savings gained from using the

most economical method.

This situation can occur if the operation to be performed can be done cheaply using

special methods for certain types of input. This is illustrated in the following example.

Example: We consider two methods of computing the GCD of a pair of polynomials,

each of which is much cheaper than the other under particular circumstances.

The first method is a generalization of Euclid’s method for computing the GCD of

integers, the subresultant PRS algorithm (see, for example, [Brown71b]). If the GCD

COLLUSION

16

of two polynomials is large, then this method finds it quickly, since only a few iterations

are required. However, if the GCD of the polynomials is small, then this method

becomes extremely costly due to the exponential growth of intermediate results.

The second method, the EZGCD finds the GCD of related polynomials in one

variable and with coefficients in a finite field. From this GCD, the GCD of the original

polynomials can be constructed [Moses73]. The cost of this construction depends on

the size of the final GCD — the larger the GCD the greater the cost.

Comparing these two methods we find the first is less costly when the GCD is

large and the second is less costly when the GCD is small. We may take advantage of

collusion in the following way: To compute the GCD of two polynomials, two processes

are used — one using each method. When either of the processes produces the GCD,

the goal has been attained. (On a uniprocessor, it would be desireable for one of the

methods to give up gracefully when it discovered a problem was not one of its good

cases, otherwise the parallel algorithm could take twice as long as the quicker method.)

Alternate Goals

Another class of problems well suited for collusion are those for which there are equally

acceptable different solutions. An example of this would be to find a divisor of a large

integer — any integer that exactly divides the given number is as good as any other.

A more detailed example is the “satisficing search” problem which is analyzed later in

this chapter.

Divide and Conquer

The divide and conquer approach is to divide a problem into subproblems, solve the sub-

problems, and combine the results [Bentley80]. In some divide and conquer algorithms

the subproblems contribute different amounts toward the final solution, depending on

the problem instance. This type of problem can utilize collusion in situations where

not all the subproblems’ results are needed to determine the final answer. In cases such

as this, OR parallelism is used in conjunction with AND parallelism.

3.2 Execution Duration

The first step in building our mathematical model is to incorporate the expected exe-

cution duration for tasks. Exactly what do we mean by the “expected” duration? It

is clear that any given program with particular input data will either require a certain

fixed amount of execution time, if it terminates, or it will require an infinite amount

COLLUSION

17

of execution time, if it does not. However, even when a task is guaranteed to halt, to

determine the exact time needed for execution may be just as costly as performing the

execution in the first place. Therefore, it is not reasonable to assume that, in practice,

the execution time required can be known prior to performing the task. Rather than

assigning to each task an exact assessment of the required time, we shall treat it as a

random variable, based on the behavior of the program over many inputs.

Both in theoretical models of computation and in real machines, computation pro-

ceeds in discrete steps. To perform a serious computation takes very many basic ma-

chine operations. In view of this, we can simplify the calculations that arise in using

our model by taking execution time to be a continuous, rather than a discrete, variable.

To each task we will assign a probability density for the execution time. The choice

of the density will be based on the overall behavior of the algorithm for the domain of

input. From this density, we get the expected execution time.

Example: Consider the following Pascal procedure:

procedure action (x: real);

var k : integer;

begin

k := trunc(1000 * sin(x)) mod 100;

if k <> 37 then

subaction1(x);

subaction2(x)

end

It can be seen that the routine subaction1 is called for roughly ninety-nine out of every

one hundred inputs, while the routine subaction2 is always called. Suppose that the

computation of k takes time Tk and that the routines subaction1 and subaction2 take

times T1 and T2 respectively. Then roughly 1% of the valid inputs will take time Tk +T2

and the remaining 99% will take time TK + T1 + T2.

If the inputs to this routine are uniformly distributed in the input domain, then the

probability density for execution time is

p(t) = .01 δ(Tk + T2 − t) + .99 δ(Tk + T1 + T2 − t) .

Here δ is the Dirac delta function, defined by

δ(x) =
1

2π

∫ ∞

−∞
eikxdk

and having the properties

δ(x− x′) = 0, if x 6= x′

COLLUSION

18

∫ a

b
δ(x− x′) dx′ =

{
0, if x < a or b < x

1, if a < x < b

As in the above example, it is sometimes possible that the input domain can easily

be seen to be divided into a number of disjoint subsets where the time required for an

instance of the problem depends only on the subset to which the input belongs. In

fact, for any procedure the input domain may be partitioned based on the criterion of

execution duration; there exists a partition of the input domain into classes such that

all the elements (i.e. inputs) in a particular class require the same amount of execution

time. As noted before, sufficiently analyzing a given element of the input domain to de-

termine this membership may be exactly as costly as performing the operation. Instead

of examining each input, we assign a weight to each of the classes in the partition. This

gives the probability density for the execution time. The assignment of weights can

be done either theoretically through analysis of the application, or empirically through

simulation or collection of data on actual usage.

3.3 Parallelism

There is a broad range of possible degrees of parallelism in executing processes for

a set of tasks. At one extreme, we could execute the tasks completely serially (no

parallelism at all). Another possibility would be to give all the tasks an equal share

of the available processing time (complete parallelism). In the general case, it must be

decided for each time interval what portion of the processor time each process should

receive. This budgeting of time can be done either statically, before execution begins,

or dynamically, with the time allotments based on the processes’ dynamic behavior.

In this section, for simplicity of the model, we shall use static time allotment. We

do this by assigning a time allotment function νi(t), to each task Ti. The function

νi(t) has as a value the amount of processor time that the process for task Ti will have

received after a total time t has passed. Suppose that the set of tasks to be executed

is {T1, ...,Tn}. The νi(t) may be any non-decreasing functions such that

n∑
i=1

νi(t) ≤ t (3.1)

and

νi(0) = 0. (3.2)

We allow the inequality in the definition so that overhead may be accounted for, if

desired. So far, what we have said about the functions νi(t) allows the time variable to

COLLUSION

19

be either discrete or continuous. In this thesis we are using a continuous variable for

time. In this case, the derivative ν ′i(t) indicates the instantaneous proportion of the

processor time which the process for task Ti is receiving at time t.

Example: If N tasks are all to receive an equal share of time, then we let

νi(t) =
t

N
, i = 1, ..., N.

Example: Suppose we have two tasks T1 and T2 which require times T1 and T2 to

complete, respectively. If we execute task T1 and when it is done we execute task T2,

then

ν1(t) = min(t, T1)

ν2(t) = max(0, t− T1) .

3.4 Modelling Collusion

In our model of collusion we start with a set of tasks {T1,T2, ...,Tn}. The execution

of each of the tasks can result in one of three possibilities:

1. It succeeds; the execution terminates and the remaining tasks need not be exe-

cuted (or completed if execution has commenced).

2. It fails; the execution of the task terminates and the remaining tasks are unaf-

fected.

3. It does not halt.

To each task Ti we assign two probability density functions, pi(t) and qi(t). The

density pi(t) gives the probability that the task will succeed when it has consumed a

total time t. The density qi(t) gives the probability that the task Ti will fail when it

has consumed a total time t. If the execution of task Ti halts, then∫ ∞

0
[pi(t) + qi(t)] dt = 1.

COLLUSION

20

3.5 Expected Execution Times

In this section we develop formulas for the expected completion times of groups of

collusive tasks as we have modelled them. We first examine the time for serial execution

of the tasks and then the time for parallel execution. After this, examples are given to

compare the expected execution duration of serial versus parallel computations.

Collusive Tasks Executed Serially

We have a set of N collusive tasks that are to be executed one after another until one

of them succeeds or until they all have failed. Let the tasks be labelled T1,T2, ...,TN ,

according to the order in which they would be executed if none were to succeed. Now

for each task Ti let pi(t) and qi(t) denote the probability densities for success and

failure, respectively, as a function of the time consumed by the process for the task.

We will now derive formulas for the probability densities, over time, for success of

any task or failure of all tasks in the group. Let p1..m(t) denote the probability that

one of the first m tasks (i.e. T1, ...,Tm) succeeds when a total time t has been spent

on all the tasks together. Let q1..m(t) denote the probability that the m-th task fails at

time t.

By definition, we have

p1..1(t) = p1(t) (3.3)

q1..1(t) = q1(t) . (3.4)

One of the first m (m ≥ 2) tasks succeeds at time t if either (i) one of the first m−1

of them succeeds at this time or (ii) all of the first m− 1 tasks fail and the m-th task

succeeds after consuming the remaining time to t. Thus,

p1..m(t) = p1..m−1(t) +
∫ t

0
q1..m−1(t

′) pm(t− t′) dt′. (3.5)

If the m-th task fails at time t, the task Tm−1 must have failed at some time prior

to t. Then task Tm will have failed after consuming the time remaining to time t. We

therefore have

q1..m(t) =
∫ t

0
q1..m−1(t

′) qm(t− t′) dt′. (3.6)

Taking Laplace transforms of (3.3) through (3.6), we obtain the expressions

p̃1..1(s) = p̃1(s)

q̃1..1(s) = q̃1(s)

p̃1..m(s) = p̃1..m−1(s) + q̃1..m−1(s) · p̃m(s)

q̃1..m(s) = q̃1..m−1(s) · q̃m(s),

(3.7)

COLLUSION

21

where f̃(s) denotes the Laplace transform of f(t). Solving these recurrences and putting

m = N , we have

p̃1..N(s) = p̃1(s) + q̃1(s) · p̃2(s) + · · ·+ q̃1(s) · · · q̃N−1(s) · p̃N(s) (3.8)

=
N∑

i=1

p̃i(s) ·
i−1∏
j=1

q̃j (s)

q̃1..N (s) =
N∏

i=1

q̃i (s). (3.9)

Taking the inverse transform gives the probability densities for p1..N(t) and q1..N(t).

The performance of the N collusive tasks will be complete under either one of two

mutually exclusive conditions: (i) one of them has succeeded or (ii) they have all failed.

The expected execution time is therefore

〈t〉ser =
∫ ∞

0
t [p1..N (t) + q1..N (t)] dt. (3.10)

Example: Suppose we have two tasks, T1 and T2, with

pi(t) = ai λi e−λi t

qi(t) = (1− ai) λi e−λi t

for 0 ≤ ai ≤ 1, λi > 0. This gives

p̃i(s) =
λi ai

s + λi

q̃i(s) =
λi(1− ai)

s + λi

so that

p̃1..2(s) =
λ1 a1

s + λ1

+
λ1(1− a1)

s + λ1

· λ2 a2

s + λ2

q̃1..2(s) = λ1λ2
(1− a1)(1− a2)

(s + λ1)(s + λ2)

and

p1..2(t) + q1..2(t) = a1λ1e
−λ1t − (1− a1) λ1 λ2

e−λ1t − e−λ2t

λ1 − λ2

.

COLLUSION

22

Then the expected execution time is

〈t〉ser =
∫ ∞

0
t [p1..2(t) + q1..2(t)] dt =

1

λ1

+
1− a1

λ2

Collusive Tasks Executed In Parallel

Here we have N collusive tasks T1,T2, ...,TN , which are to be performed in parallel.

The execution of these colluding processes will continue until one of them succeeds

or until all of them have failed. As for the serial case, let pi(t) and qi(t) denote the

probability densities for success and failure respectively with respect to the amount of

time consumed by the process for task Ti. Let νi(t) denote the time allotment function

for task Ti.

Ignoring the other processes for now, the probability that the process for task Ti

succeeds before a total time t is spent (on all processes) is given by

Pi(t) =
∫ νi(t)

0
pi(t

′) dt′ . (3.11)

Similarly, ignoring the other processes, the probability that the process for task Ti fails

by time t is

Qi(t) =
∫ νi(t)

0
qi(t

′) dt′ . (3.12)

We now derive formulas for the probability densities for the success of any process

or the failure of all processes. Let P∗(t) denote the probability of success in any of the

processes by time t and let Q∗(t) denote the probability of failure of all the processes

by time t.

The probability that a success occurs by a given time is given by

P∗(t) = P1(t) ∪ P2(t) ∪ · · · ∪ PN(t) . (3.13)

Here, the associative operator ∪ is the inclusive or, defined to be a + b − ab. That is,

if a and b are probabilities, then a ∪ b is the probability of a or b or both. It is simple

to prove
n⋃

i=1

ai = 1−
n∏

i=1

(1− ai)

Therefore the probability density for success at time, t, p∗(t), is

p∗(t) =
d

dt
P∗(t) =

d

dt
[1− (1− P1(t)) (1− P2(t)) · · · (1− PN(t))] (3.14)

COLLUSION

23

The probability that all tasks have failed by time t is

Q∗(t) = Q1(t) ·Q2(t) · · ·QN(t). (3.15)

This directly gives us the probability density function for failure at time t, q∗(t):

q∗(t) =
d

dt
Q∗(t) =

d

dt
[Q1(t) ·Q2(t) · · ·QN(t)] . (3.16)

The execution of the N colluding processes will be complete if one of the processes

succeeds or if all of them have failed. These two conditions are mutually exclusive. The

probability density for execution completion is p∗(t) + q∗(t). The expected execution

duration is therefore given by

〈t〉par =
∫ ∞

0
t (p∗(t) + q∗(t)) dt =

∫ ∞

0
t

d

dt
(P∗(t) + Q∗(t)) dt.

Integrating by parts, we obtain the expression

〈t〉par = lim
L→∞

t (P∗(t) + Q∗(t))
∣∣∣∣L
0
−
∫ L

0
(P∗(t) + Q∗(t)) dt. (3.17)

Example: Suppose again that we have two tasks, T1 and T2, with

pi(t) = ai λi e− λi t qi(t) = (1− ai) λi e− λi t

for 0 ≤ ai ≤ 1, λ > 0. For both tasks let the time allotment function be νi(t) = t/2.

Then we have

Pi(t) = ai(1− e−λi t/2) Qi(t) = (1− ai) (1− e−λi t/2)

which implies

P∗(t) + Q∗(t) = 1− (1− a1) e−λ2t/2 − (1− a2) e−λ1t/2

+(1− a1 − a2) et(λ1+λ2)/2

Using (3.17), the above expression yields

〈t〉par = 2

[
1− a2

λ1

+
1− a1

λ2

− 1− (a1 + a2)

λ1 + λ2

]
.

COLLUSION

24

3.6 Example: Satisficing Search

Several types of search problems may be distinguished based on the aim of the search.

In a satisficing search [Simon75] there is a set of items, a subset of which have some

particular property, and the goal of the search is to find any element of the set with

that property. An example is the search for a block of storage in a first-fit storage

allocation algorithm. Several classes of satisficing search are treated in the literature.

In this section we model the type of satisficing search in which the items may be

examined in any order. This is known as unrestricted satisficing search or satisficing

search without order constraints.

We can model satisficing search without order constraints in the following way: for

each element (ei) there is a probability (pi) that the element has the goal property and

there is a fixed time (ti) required to examine the element. If we have N elements, then

we have the tasks T1...TN of examining the elements e1, ..., eN , respectively.

From the above description, we see that the density functions for the probabilities

of success and of failure with the i-th task are

pi(t) = pi δ(t− ti) (3.18)

qi(t) = p̄i δ(t− ti) (3.19)

where δ is the Dirac delta function and p̄ i = 1− pi.

We now find the expected time for serial and parallel execution of the tasks

T1, ...,TN . Because the time dependence is given by delta functions, it is quite possible

to derive the expected times using discrete methods. However, to illustrate the use of

the formulas derived in the previous sections we will use the more general method.

Serial Execution

Taking Laplace transforms of (3.18) and (3.19), we obtain

p̃i(s) = pi e− sti q̃i(s) = p̄i e−sti .

Using (3.8) and (3.9), we therefore have

p̃1..N(s) = p1e
−st1 + p̄1p2e

−s(t1+t2) + · · ·+ p̄1 · · · p̄N−1pNe−s(t1+···+tN)

q̃1..N(s) = p̄1p̄2 · · · p̄Ne−s(t1+···+tN)

Taking the inverse Laplace transforms we find

p1..N(t) = p1δ(t1 − t) + p̄1p2δ(t1 + t2 − t) + · · ·+ p̄1 · · · p̄N−1pNδ(t1 + · · ·+ tN − t)

q1..N(t) = p̄1p̄2 · · · p̄Nδ(t1 + · · ·+ tN).

COLLUSION

25

The expected execution time is therefore

〈t〉ser =
∫ ∞

0
t (p1..N(t) + q1..N(t)) dt

= p1t1 + p̄1p2(t1 + t2) + · · ·+ p̄1 · · · p̄N−1pN(t1 + · · ·+ tN)

+ p̄1 · · · p̄N(t1 + · · ·+ tN)

=
N−1∑
i=1

pi ·
i−1∏
j=1

p̄j ·
i∑

j=1

tj

+
N−1∏
j=1

p̄j ·
N∑

j=1

tj (3.20)

Not surprisingly, the expected execution time depends on the values of the p’s, the

t’s, and the order in which the tasks are executed. If we know the values for the p’s

and t’s it is natural to ask in what order the tasks should be executed to minimize

the expected processing time. This is known as the least cost testing sequence problem

[Price59].
To solve this problem, consider the effect of exchanging the order of two tasks,Tk

and Tk+1. In the original order we have

〈t〉serk,k+1
= A + ρpk(τ + tk) + ρp̄kpk+1(τ + tk + tk+1) + B,

where

A =
k−1∑
i=1

pi ·
i−1∏
j=1

p̄j ·
i∑

j=1

tj

B =

N−1∑
i=k+2

pi ·
i∏

j=1

p̄j ·
i∑

j=1

tj

+
N−1∏
j=1

p̄j ·
N∑

j=1

ti

ρ =
k−1∏
i=1

p̄i τ =
k−1∑
i=1

ti.

With the interchange we have

〈t〉serk+1,k
= A + ρpk+1(τ + tk+1) + ρp̄k+1pk(τ + tk+1 + tk) + B

Therefore

〈t〉serk,k+1
− 〈t〉serk+1,k

= ρ [pk(τ + tk)− pk+1(τ + tk+1)

+ p̄kpk+1(τ + tk + tk+1)− p̄k+1pk(τ + tk+1 + tk)]

= ρ [pk+1tk − pktk+1]

This shows that the task with the smaller value of ti/pi should be executed first. Since

any permutation can be obtained from successive transpositions, the optimal order for

sequentially executing the tasks will be T1,T2, ...,TN when

t1
p1

≤ t2
p2

≤ · · · ≤ tN
pN

. (3.21)

COLLUSION

26

If any of the ratios are in fact equal, then more than one ordering is optimal. This

solution to the least cost testing sequence problem has been given by a number of

authors, the earliest apparently being Mitten [Mitten60].

Parallel Execution

For simplicity, we shall use the time allotment function νi(t) = t/N for all processes.

This is less than optimal, since once some of the tasks have failed there is more processor

time available. However, taking advantage of this available time adds to the complexity

of the analysis without significantly affecting the results.1

We label the tasks in such a way that

t1 ≤ t2 ≤ · · · ≤ tN (3.22)

Now, using (3.18) in (3.11), we find that

Pi(t) =
∫ t/N

0
piδ(u− ti)du = piU(t/N − ti)

where U is the Heavyside unit step function. Similarly, using (3.19) in (3.12), we see

Qi(t) = p̄iU(t/N − ti).

Therefore, we have

P∗(t) = 1− [1− p1U(t/N − t1)] · · · [1− pNU(t/N − tN)]

Q∗(t) = p̄1 · · · p̄NU(t/N − tN),

the latter justified by (3.22). The expected execution time is

〈t〉par = lim
L→∞

t(P∗(t) + Q∗(t))|L0 −
∫ L

0
(P∗(t) + Q∗(t))dt.

When L exceeds NtN , we have

〈t〉par = lim
L →∞

L(1− p̄1 · · · p̄N + p̄1 · · · p̄N)

−
∫ Nt1

0
(1− 1)dt−

∫ Nt2

Nt1
(1− p̄1)dt−

∫ Nt3

Nt2
(1− p̄1p̄2)dt− · · ·

−
∫ NtN

NtN−1

(1− p̄1 · · · p̄N−1)dt−
∫ L

NtN
(1− p̄1 · · · p̄N + p̄1 · · · p̄N)dt

= Nt1p1 + Nt2p̄1p2 + · · ·+ NtN p̄1 · · · p̄N−1pN + NtN p̄1 · · · p̄N

1In particular, we could use a model for time allocation where, after a process fails, the time
formerly allocated to it is split equally amongst the remaining processes. Call this model M. We give
the results for this model in footnotes for comparison.

COLLUSION

27

This may be written as2

〈t〉par =
N−1∑
i=1

pi ·
i−1∏
j=1

p̄j ·Nti

+
N−1∏
j=1

p̄j ·NtN (3.23)

Comparison

We now compare the expected execution duration for serial and parallel execution of a

satisficing search. First, we demonstrate that a non-optimal ordering of serial execution

can have an expected execution time greater than for parallel execution. Then we show

that the optimal order for serial execution gives an expected execution time less than

for parallel execution.3

We show that a non-optimal ordering of serial execution may be expected to require

more time than a parallel execution by giving a simple example. Consider the case

where N = 2 and t1 = t, t2 = 10t, p1 = p2 = 39/40. The expected time required

for parallel execution is less than 5t/2 while the expected time for serial execution is

greater than 10t if task T2 is performed before T1.

To show that optimal serial execution is better than parallel execution, for this

problem we assume that the time required for each task is greater than zero and that

each task has a non-zero probability of success. Let the tasks be labelled T1,T2, ...,TN

so that t1 ≤ t2 ≤ ... ≤ tN . We define the following notation:

Pk = the expected time to execute T1, ...,Tk in parallel;

S̃k = the expected time to execute T1,T2,T3, ...,Tk serially and in that order;

S0
k = the expected time to execute T1, ...,Tk serially in an optimal order.

Since S0
k ≤ S̃k, we have

Pk − S0
k ≥ Pk − S̃k.

Therefore, we can prove PN is greater than S0
N by showing PN − S̃N > 0. This we do

by induction.

For the basis of the induction, consider the case when N = 2:

P2 = 2(t1p1 + t2p̄1)

S̃2 = p1t1 + p̄1(t1 + t2).

Subtracting, we find

P2 − S̃2 = p1t1 + p̄1(t2 − t1) > 0.

2For model M, replace Ntk with
∑k−1

i=1 tj + (N − k + 1)tk in (3.23).
3Both these results still hold if parallel execution is based on model M.

COLLUSION

28

For the inductive step, we note that

PN =
N

N − 1
PN−1 + Np̄1 · · · p̄N−1(tN − tN−1)

S̃N = S̃N−1 + tN p̄1 · · · p̄N−1

Taking the difference and using 3.23, we see that

PN − S̃N = (PN−1 − S̃N−1) +
PN−1

N − 1
+ p̄1 · · · p̄N−1((N − 1)tN −NtN−1)

> (PN−1 − S̃N−1) + p̄1 · · · p̄N−1 tN−1 + p̄1 · · · p̄N−1 ((N − 1) tN −N tN−1)

= (PN−1 − S̃N−1) + (N − 1)p̄1 · · · p̄N−1(tN − tN−1).

So, for all N ≥ 2,

PN − S0
N ≥ PN − S̃N > 0.

This completes the proof.

3.7 The Existence of Extremely Collusive Densities

In the previous sections we have shown how to determine the expected times for serial

and parallel execution of collusive tasks running on a uniprocessor. The expressions

derived in these sections are quite general, allowing for each task to have a distinct

probability density. Quite often, however, we can expect the tasks to share the same

probability density, while maintaining independence. This leads us to consider the

following question:

Given a number of collusive tasks with a common probability density for execu-

tion time, can the expected time for performing the tasks in parallel be less than the

expected time for performing the tasks serially, even on a uniprocessor?

We define an extremely collusive density to be one for which the expected time of

two tasks using parallel execution on a single processor is less than for serial execution.

In this section, we show that densities with this property do indeed exist.

We demonstrate the existence of extremely collusive densities by explicitly exhibit-

ing an example.

Let us begin with a problem for which N identical tasks must be performed in the

worst case. Call these tasks T1...TN . With each task, Ti, we associate a probability

(pi) that it may find the solution to the overall problem and a time (ti) which it would

take to do this. We also associate with each task the time (Ti) that would be required

to compute a partial result if it does not solve the entire problem. For each task, we

COLLUSION

29

assume that Ti > ti. :p. From this description, we see that the probability distribution

functions for success and for “failure” are, respectively given by

pi(t) = piδ(t− ti) (3.24)

qi(t) = p̄iδ(t− Ti). (3.25)

In our analysis we will ignore the time required to determine the appropriate sub-

problems and to combine the results. This is not because the time is necessarily neg-

ligible, but because it is exactly the same regardless of whether the tasks are executed

serially or in parallel.

We now find the expected time for serial and for parallel execution of the tasks.

After this we compare the results for the special case when the tasks share the same

distribution. Doing this we find that for certain ranges of pi and ti/Ti these densities

are extremely collusive.

Serial Execution: The Laplace transforms of (3.24) an (3.25) are

p̃i(s) = pie
−sti q̃i(s) = p̄ie

−sTi .

Using the formulas (3.8) and (3.9), this gives us

p̃1..N(s) = p1e
−st1 + p̄1p2e

−s(T1+t2) + · · ·+ p̄1 · · · p̄N−1pNe−s(T1+···+TN−1+tN)

q̃1..N(s) = p̄1 · · · p̄Ne−s(T1+···+TN).

Taking the inverse Laplace transforms yields

p1..N(t) = p1δ(t1 − t) + p̄1p2δ(T1 + t2 − t) + · · ·
+ p̄1 · · · p̄N−1pNδ(T1 + · · ·+ TN−1 + tN − t)

q1..N(t) = p̄1...p̄Nδ(T1 + · · ·+ TN − t).

This gives an expected execution time of

〈t〉ser = p1t1 + p̄1p2(T1 + t2) + · · ·
+ p̄1 · · · p̄N−1pN(T1 + · · ·+ TN−1 + tN)

+ p̄1...p̄N(T1 + · · ·+ TN)

=
N∑

i=1

pi ·
i−1∏
j=1

p̄j · (tj +
i−1∑
j=1

Tj)

+
N∏

j=1

p̄j ·
N∑

j=1

Tj. (3.26)

COLLUSION

30

As before, it is natural to ask in what order the tasks should be executed to minimize

the expected execution time. Using a method similar to that employed in section 3.6,

we find that the optimal ordering of the tasks is to have

φ(1) ≤ φ(2) ≤ ... ≤ φ(N),

where

φ(i) = (ti − Ti) +
Ti

pi

.

Parallel Execution: Again, for simplicity, we shall use the time allotment function

νi(t) = t/N for all processes. Then, using (3.24) and (3.25) in (3.11) and (3.12),

we have

Pi(t) = piU(
t

N
− ti)

Qi(t) = p̄iU(
t

N
− Ti)

Without loss of generality, let t1 ≤ t2 ≤ · · · ≤ tN . Also let

TMAX = max(T1, ..., TN).

Then we have

P∗(t) = 1− [1− p1U(
t

N
− t1)] · · · [1− pNU(

t

N
− tN)]

Q∗(t) = p̄1 · · · p̄NU(
t

N
− TMAX).

Assuming L > NTMAX , the expected execution time is

〈t〉par = lim
L→∞

t (P∗(t) + Q∗(t)) |L0

−
∫ L

NTMAX

1 · dt−
∫ NTMAX

NtN
[P∗(t) + Q∗(t)]dt

−
∫ Nt1

0
P∗(t)dt−

∫ Nt2

Nt1
P∗(t)dt− · · · −

∫ NtN

NtN−1

P∗(t)dt

= lim
L→∞

L− [1]LNTMAX
− [1− p̄1]

Nt2
Nt1

− · · ·

− [1− p̄1 · · · p̄N−1]NtN
NtN−1

− [1− p̄1 · · · p̄N]NTMAX

NtN

= N t1 p1 + N t2 p̄1 p2 + · · ·+ N tN p̄1 · · · p̄N−1 pN + NTMAX p̄1 · · · p̄N .

This may be expressed as

〈t〉par =
N∑

i=1

pi ·
i−1∏
j=1

p̄j · Nti

+
N∏

j=1

p̄j · NTMAX . (3.27)

COLLUSION

31

Comparison: We now compare the expected serial execution time to the expected par-

allel execution time for the special case of this example where

p1 = p2 = · · · = pN = p

t1 = t2 = · · · = tN = t

T1 = T2 = · · · = TN = T.

(3.28)

We show that even in this special case parallel execution may have a better expected

execution time than serial execution.

Substituting from (3.28), the formulas (3.26) and (3.27) reduce to

〈t〉ser =
1− p̄N

1− p̄
· [(1− p̄) t + p̄ T]

〈t〉par = N ·
[
(1− p̄N) t + p̄NT

]
.

Serial execution of the tasks is expected to take longer than parallel execution when

the ratio
〈t〉ser
〈t〉par

=
1

N
· 1− p̄N

1− p̄
· (1− p̄) t + p̄ T

(1− p̄N) t + p̄N T
(3.29)

is greater than unity.

Examining this expression, we see that when p approaches zero, the value of the

ratio approaches one and when p is one the value of the ratio is 1/N , as would be

expected. For small values of t/T , we find that as p increases from zero the value of

the ratio increases from 1, reaches a maximum, decreases back past 1, and eventually

reaches the minimum value of 1/N when p = 1. The cross-over point, where the value

of the ratio is one, may be given in terms of p̄:

p̄ =
(N − 1) t

(N − 1) t + T
+ O (p̄N).

For example, when T = 10t and N ≥ 5, ignoring the O(p̄N) term gives the value of p

correct to within 1%.

Thus when t is small compared to T , the expected parallel time is less than the

serial time when p̄ is between 0 and ∼ (N − 1)t/[(N − 1)t + T]. When p̄ is between

∼ (N − 1)t/[(N − 1)t + T] and 1, the expected time for serial execution is the smaller.

To be very explicit, let

p(t) =
1

2
δ(t− 1)

q(t) =
1

2
δ(t− 4).

This is an extremely collusive density. We give graphs to show the ratio 〈t〉ser/〈t〉par as

a function of p̄ for various values of N and t/T . (See Figure 3.1.)

INTEGER FACTORIZATION

32

0.6

12

10

8

4

<t>ser/<t>par

0.2

2

0.8
0

0 10.4

pbar

6

1

0.6

pbar

1

<t>ser/<t>par

1.5

0.8

2

0
0

0.5

0.2 0.4

0.6

0.6

<t>ser/<t>par

0.8

1.2

1

0.2
0

0.4

0 10.80.4

0.2

pbar

Figure 3.1: 〈t〉ser/〈t〉par for various values of p̄, N and t/T .

INTEGER FACTORIZATION

4.0 INTEGER FACTORIZATION

4.1 The Role of Integer Factorization

The task of finding the prime factorization of a given integer has a long history. By

the time of Gauss, integer factorization was already a well established problem. In

fact, in his Disquisitiones Arithmeticae, he says that it is one of the most important

and useful procedures in arithmetic. Integer factorization, and the associated task of

primality testing have formed one of the cornerstones of number theory. Recently, there

has been a renewed interest in the topic from the viewpoint of cryptography. The RSA

cryptographic system makes use of the fact that factoring a large integer is a task of

significant computational complexity. [Rivest78]
Integer factorization is a problem that properly belongs to the domain of number

theory. The present state of the art is the factorization of arbitrary numbers of 70 to

75 digits, or of longer integers of special forms. To do this requires the use of a mul-

tiprecision arithmetic package with support for various number theoretic procedures.

In many cases, the work on sophisticated factorization packages has been implemented

in the form of a stand-alone program. On the other hand, a computer algebra system

is a natural environment in which to pursue such work. Typically, in these systems,

considerable effort has already been invested into implementing an efficient large in-

teger package. For example, the decision of the Chudnovskys to use Scratchpad II in

their work on integer factorization [Chudnovsky85a][Chudnovsky85b] was based on

the efficiency and ease of use of big integer arithmetic.

Integer factorization certainly falls within the realm of computer algebra. In ad-

dition, users of a computer algebra system often require the use of a built-in integer

factorization function. Once a reasonable factorization package is available, a com-

puter algebra system can make use of it internally. An example of this is Maple’s use

of integer factorization in a single point evaluation heuristic which is used as an initial

attempt in polynomial factorization.

In this chapter we survey the currently employed methods of integer factorization

and show how certain of them may be used in a parallel setting.

4.2 A Brief Survey

This section provides a brief sketch of integer factorization methods with attention to

those we have considered suitable for use with parallelism.

33

34

Trial Division

Perhaps the most obvious way of discovering factors of integers is by trial division. This

is usually used as the very first step in multi-stage integer factorization codes. With a

little effort it is possible to screen out numbers that are multiples of certain previous

trial divisors so that not every integer is actually used in trial division.

GCDs with Highly Composite Numbers

Another strategy which is used as an early stage is to take the GCD of the number

to be factored together with certain other numbers. These numbers are chosen to

contain many distinct factors so that taking the GCD will yield the factors they have

in common.

Legendre’s Congruence

There are a number of integer factorization methods based on Legendre’s congruence.

If the number to be factored, N , can be written as N = pq with GCD(p, q) = 1, then

the congruence

x2 ≡ a2 (mod N)

has at least four solutions. These arise from the two combinations,

x ≡ ±a (mod p) and x ≡ ±a (mod q) ⇒ x ≡ ±a (mod N)

x ≡ ∓a (mod p) and x ≡ ±a (mod q) ⇒ x ≡ ±b (mod N)

The factorization methods use the fact that (a2 − b2) = (a− b)(a + b) is congruent to

zero (mod N) and so a− b and a + b separately divide N .

Pollard’s Rho Method

Pollard’s rho method finds factors by detecting cycles in a specially constructed se-

quence of integers. The sequence xi is generated as iterates of a polynomial and is

periodic (mod q) for some unknown factor q of the number N . The value of the fac-

tor is obtained as a a non-trivial GCD, q = GCD(xi − xj, N), using a cycle-finding

algorithm. Sometimes a non-trivial GCD cannot be found and the algorithm fails.

[Pollard75] [Brent81]

Shank’s SQUFOF

Shank’s SQUFOF factorization is based on finding a square denominator in the con-

tinued fraction expansion of
√

N . The method is to computer the continued fraction

INTEGER FACTORIZATION

35

llfindfactor(n) ==

if isPrime(n) then return n

m := easyFactor(n)

if m <> FAIL then return m

for i from 1 to branchingFactor repeat

spawn(serialFindFactor(smallPrime[i] * n))

do

m := waitForAnyResult()

if not trivialFactor(m, n) then break

i := i + 1

giveWorkerNewProblem(smallPrime[i] * n)

for i from 1 to branchingFactor - 1 do

terminateWorker()

return m

Figure 4.1: A Collusive Factor Finding Method

expansion until, on an even step, a square denominator is found, the square root of

which has not yet occured as a denominator. [Riesel85a]

Morrison and Brillhart’s Method

This method also searches for squares in the continued fraction expansion of
√

N , but

attempts to construct a quadratic residue out of previously encountered square forms.

[Morrison75]

Lenstra’s Method

Lenstra’s method finds a divisor of N by examining multiples of a point on an elliptic

curve. One chooses a random elliptic curve E over Z/NZ and a random rational point P

on that curve. The multiples n P, n = 2, 3, ... are computed until a suitable coordinate

of n P has a non-trivial GCD with N or until some cut-off is reached. [Lenstra85]
[Chudnovsky85a]

INTEGER FACTORIZATION

36

llifactor(n) ==

if isPrime(n) then return n

compositeFactors := [n]

primeFactors := []

while compositeFactors <> [] do

f := first(compositeFactors)

compositeFactors := rest(compositeFactors))

m := llfindFactor(f)

for k in [m, f/m] do

if isPrime(k) then

primeFactors := [k, op(primeFactors)]

else

compositeFactors := [k, op(compositeFactors)]

return primeFactors

Figure 4.2: A Parallel Factorization Algorithm

4.3 A Parallel Algorithm: llifactor

Having examined the existing algorithms for integer factorization we come to the con-

clusion that the level of parallelism inherent in these algorithms is on a low enough

level that interprocess communication costs would become a dominant factor if the

algorithms were implemented on a general purpose multiprocessor. To side-step this

problem we use collusion.

For a particular integer, the different factorization algorithms can have very different

execution times. One can take advantage of this fact by running the methods in parallel

and taking the first answer. We call such an approach a parallel polyalgorithm. This

method has a limited generality, however. No advantage can be obtained if there are

more processors than algorithms. In this section a collusive integer factorization method

is presented which can utilize any number of processors.

The first observation about integer factorization is that most methods proceed by

discovering one factor at a time. When a factor is discovered it is divided out and, if

INTEGER FACTORIZATION

37

the result is not prime, the factorization process is begun anew on the result. Rather

than waiting for a complete factorization by one of the colluding processes, as soon as

one process discovers any factor all processes can be restarted on the deflated integer.

Whether or not this is advantageous depends on how close to discovering a factor the

other processes are expected to be. It is not necessarily wasteful to let them continue

running because they may discover a different factor. In principal this decision could

be made based on the size of the number to be factored and the size of the factor that

has been discovered. However it is simplest to restart all processes right away.

The second observation to be made is that the factorization methods do not neces-

sarily discover factors in any particular order by size. The same algorithm may discover

a different factor or discover the same factor more quickly if presented with a multiple of

the original number. This fact allows effective use to be made of additional processors,

by attempting to factor several small multiples in parallel.

Combining the idea of taking one factor at a time with the idea of factoring multiples

of the input yields the algorithm shown in Figure 4.1.1 Here, serialfindfactor is a

sequential program which returns a factor of its second argument. It uses its first

argument to select a small prime multiplier which is good for the method. If desired,

serialfindfactor can be used to select the method as well.

When a factor is found, it and its cofactor are tested for primality. If both are

prime, the complete factorization has been obtained. If one of them is composite, then

llfindfactor is reapplied. See Figure 4.2. If both were composite, one could imagine

applying a divide and conquer strategy to factorize the composite factors in parallel.

4.4 Some Empirical Results

When examining various factorization methods for use in the framework we have de-

scribed, it is necessary to consider the degree of collusion that can be expected. If a

factorization method uniformly requires a certain execution time depending only on the

length of the number to be factored, and if the factors are discovered in a particular

order, then the method is not very useful in this context. That is if all workers are

guaranteed to find the same factor, in the same time, then one might as well use a

uniprocessor. The parallel algorithm exploits the variance in the time to find a factor

and in the order in which the factors are discovered. If the distribution of execution

times is extremely collusive, then we can expect a speedup greater than T/N when N

processors are used. Even when the distribution of execution times is not extremely col-

lusive, we can expect a significant speedup, say 3T/2N . That we can get any speedup

1We use the “ll” prefix to indicate a parallel algorithm.

INTEGER FACTORIZATION

38

Parallel Squfof

Probability of Success

3002001000

t

900

p

800

0.0035

700

0.003

0.0025

600

0.002

0.0015

500

0.001

0.0005

400
0

Time in iterations

Figure 4.3: Empirical Probability for Success

at all is remarkable because we are not parallelizing the method used, but rather we

are running several different versions of the serial method.

The methods which we selected for closer investigation were Pollard’s ρ method and

Shank’s SQUFOF. Although the order of discovery of the factors in the ρ method is

not very random, the running time has a wide variance. Since there is a correlation

in the order of the discovery of the factors, it is better to vary the factorization by

selecting different iteration polynomials and starting values for the iteration. However,

it appears that the longer the ρ method runs, the more likely it is to discover a factor.

This is the exact opposite of what we desire for use with collusion.

The second method we investigated was SQUFOF. This method has quite a wide

variance in running time and the order of discovery of the factors is quite random. How-

ever, whereas certain statistics are known for the running time of the ρ method (e.g.

the mean and variance have been derived [Pollard75] [Brent80]), analytically deriving

INTEGER FACTORIZATION

39

Parallel Squfof

Probability of Failure

3002001000

q

t

0.018

900

0.016

0.014

800

0.012

0.01

700

0.008

0.006

600

0.004

0.002

500
0

400

Time in iterations

Figure 4.4: Empirical Probability for Failure

the statistics for SQUFOF’s has not been accomplished. To investigate SQUFOF’s

suitability for collusion, we compiled an empirical distribution. To arrive at this distri-

bution we measured the time required to find the first factor of four thousand random

eight digit integers. As well as the first-factor time for the number itself, we recorded

the first-factor time for the random number multiplied by each of the first fifty primes.

The discovery of a proper factor of the random number was counted as a success,

while a failure of the SQUFOF algorithm or the rediscovery of the prime multiplier was

counted as a failure.

Analysis of the resulting data provided the empirical distributions for p(t) and q(t)

shown in Figure 4.3 and Figure 4.4. Some numerical values for the distributions are

given in Figure 4.5.

We can measure how good an algorithm is for collusion by the ratio of the expected

serial time to the expected parallel time. It is this ratio that determines how close to a

INTEGER FACTORIZATION

40

T/N speedup can be obtained. For our sample data, the ratio of expected serial time

to expected parallel time is
〈t〉ser
〈t〉par

= 0.76

Incidentally, we note that parallel SQUFOF is expected to be better than serial

SQUFOF roughly one third of the time on a uniprocessor.

POLYNOMIAL GREATEST COMMON DIVISORS

41

t t

t lnt p -lnp - --- q -lnq - ---

lnp lnq

=== ==== ======= ===== ===== ======= ===== =====

1 0.00 .001508 6.49 .15 .011712 4.44 0.22

10 2.30 .003105 5.77 1.73 .016224 4.12 2.42

20 2.99 .001787 6.32 3.16 .010596 4.54 4.39

30 3.40 .001584 6.44 4.65 .007478 4.89 6.12

40 3.68 .001584 6.44 6.20 .004931 5.31 7.52

50 3.91 .001280 6.66 7.50 .003929 5.53 9.02

60 4.09 .001090 6.82 8.79 .003232 5.73 10.46

70 4.24 .000786 7.14 9.79 .002510 5.98 11.69

80 4.38 .000684 7.28 10.97 .001813 6.31 12.67

90 4.49 .000900 7.01 12.83 .001711 6.37 14.12

100 4.60 .000748 7.19 13.89 .001559 6.46 15.47

150 5.01 .000342 7.98 18.79 .000482 7.63 19.63

200 5.29 .000330 8.01 24.94 .000253 8.28 24.15

250 5.52 .000304 8.09 30.87 .000228 8.38 29.81

300 5.70 .000114 9.07 33.04 .000152 8.79 34.12

350 5.85 .000076 9.48 36.90 .000051 9.88 35.39

400 5.99 .000127 8.97 44.57 .000038 10.17 39.30

450 6.10 .000025 10.58 42.52 .000025 10.58 42.52

500 6.21 .000101 9.19 54.36 .000025 10.58 47.24

550 6.30 .000063 9.66 56.89 .000013 11.27 48.77

600 6.39 .000038 10.17 58.95 .000013 11.27 53.21

650 6.47 .000076 9.48 68.53 .000013 11.27 57.64

700 6.55 .000025 10.58 66.14 .000013 11.27 62.07

750 6.62 .000025 10.58 70.87 .000013 11.27 66.51

800 6.68 .000063 9.66 82.76 .000013 11.27 70.94

850 6.74 .000038 10.17 83.51 .000013 11.27 75.38

900 6.80 .000051 9.88 91.00 .000013 11.27 79.81

p = probability of success

q = probability of failure

t = time (iterations)

Figure 4.5: Tabulation of Probabilities at Certain Values

POLYNOMIAL GREATEST COMMON DIVISORS

5.0 POLYNOMIAL GREATEST COMMON DIVISORS

5.1 The Role of Greatest Common Divisors

According to Knuth, the computation of the greatest common divisor (GCD) of two

natural numbers is the oldest recorded non-trivial algorithm [Knuth81]. It is found in

Book 7 of Euclid’s Elements which dates to approximately 300 B.C.

GCD calculations can be related to a number of important mathematical problems.

For example, quantities produced as by-products of Euclid’s algorithm play a role in

the mathematics of Sturm sequences, cylindrical algebraic decomposition and continued

fractions.

In addition to its theoretic importance, the computation of GCDs is central to

the operation of a computer algebra system One of the basic types of objects which

a computer algebra system must manipulate is the rational functions of multivariate

polynomials and rational function arithmetic requires the heavy use of GCDs. A com-

puter algebra system which uses a canonical form for rational functions must perform

GCD calculations in all rational function arithmetic operations. If a/b and c/d are two

rational functions in canonical form, then computing their product requires gcd(a, d)

and gcd(c, b). Their sum may be computed by extracting the single gcd(ad + bc, bd)

but it is usually more advantageous to compute two related GCDs for polynomials of

smaller degree. This is shown in Figure 5.1.

Besides their use in rational function arithmetic, GCDs are used in other algorithms

in computer algebra systems. For example, they are used in square free decomposition

which is a key step in factorization and integration. Davenport reports an application

where up to 95% of the total time was being spent in GCD calculation [Davenport81].

5.2 A Survey of GCD Algorithms

The first algorithms for polynomial GCDs were generalizations of Euclid’s algorithm

to polynomial domains. These algorithms are called polynomial remainder sequence

(PRS) methods, describing the sequence of intermediate results. In order to apply these

methods to multivariate polynomials, the isomorphism R[x1, ..., xn] ∼= R[x2, ..., xn][x1]

is used to view polynomials recursively as univariate with coefficients in a smaller mul-

tivariate domain. Euclid’s algorithm cannot be applied directly to this domain because

the polynomial remainder operation is not defined if the coefficient domain is not a field.

Rather than extending the coefficient domain to the rational functions R (x2, ..., xn),

the algorithm is modified to use a pseudo-remainder operation. However, in its sim-

plest form the resulting method (the Euclidean PRS algorithm) is totally impractical

because of explosive coefficient growth. A potential solution would be to divide out the

42

43

a

b
· c

d
=

(a÷ u) · (c÷ v)

(b÷ v) · (d÷ u)

where u = gcd(a, d), v = gcd(b, c).

a

b
+

c

d
=

(ad̃ + b̃c)÷ v

(b̃d)÷ v

where u = gcd(b, d), b̃ = b÷ u, d̃ = d÷ u, v = gcd(ad̃ + b̃c, b̃d).

Figure 5.1: GCDs in Rational Function Arithmetic

content of the pseudo-remainder at each step (the primitive PRS algorithm), however

the recursive GCD calculations are very expensive. Rather then performing content

calculations, it is more practical to divide out a smaller quantity which can be com-

puted with less cost. The reduced PRS algorithm and the subresultant PRS algorithm

are two such methods which were incorporated into several computer algebra systems.

The main body of work on PRS algorithms is due to Collins. (See [Collins67].) Ad-

ditional contributions were made by Brown and Traub [Brown71b]. Hearn considered

the use of trial divisions to further improve PRS algorithms [Hearn79].
Independently, Brown and Collins developed a totally different approach to the

computation of GCD’s. In this method, known as the modular GCD algorithm, the

GCDs of several homomorphic images are combined to construct the GCD of the input

polynomials [Brown71a]. Shortly afterwords, Moses and Yun introduced the EZGCD

algorithm which uses Hensel’s lemma to compute the GCD using only a single homo-

morphic image [Moses73]. One negative feature of these algorithms is that they take

no advantage of the sparseness of the input polynomials. Since multivariate polynomi-

als tend in practice to be sparse, this can be a severe problem. Wang has introduced

several improvements for Hensel lifting [Wang78]. Zippel has given probabilistic ver-

sions of the modular and EZGCD algorithms which can take advantage of sparse inputs

[Zippel79], [Zippel81].
Recently two new methods for GCD calculation have been introduced. Char, Ged-

des and Gonnet have presented a fast heuristic GCD [Char84]. This method uses an

evaluation homomorphism (which is usually invertible) to compute polynomial GCDs

by applying an integer GCD operation to single point evaluation. An improvement

to this algorithm is suggested by Davenport and Padget [Davenport85]. Gianni and

Trager show how GCDs can be computed as the least degree member of a Gröbner

basis for an ideal defined in terms of the input polynomials [Gianni85].

POLYNOMIAL GREATEST COMMON DIVISORS

44

All of the above methods are sequential. The history of parallel methods is much

briefer. Brown’s Modular GCD algorithm was the first to exhibit a high degree of

inherent parallelism. Davenport and Robert argue that this parallel structure makes

this algorithm suitable for VLSI implementation [Davenport84].
The main results to date on parallel GCD computation are upper bounds for the

complexity. Borodin, von zur Gathen and Hopcroft reduce univariate GCD calculation

to the solution of linear systems [Borodin82]. They then show that an asymptotically

fast parallel solution exists, using the construction of Valiant et al [Valiant83]. Kaltofen

presents a straight-line GCD and a sparse conversion algorithm which can be used

to formulate Zippel’s sparse modular GCD as a random polynomial time algorithm

[Kaltofen85a]. Valiant’s construction can be used to parallelize this as well.

5.3 A Parallel Algorithm: llgcd

In designing a parallel GCD algorithm we wish to identify a method which can take

advantage of the problem structure at a high level. It has been suggested by others that

the modular GCD algorithm would be suitable as a starting point. In the modular GCD

there is a very obvious way to take advantage of the problem structure. This algorithm

decomposes the computation of multivariate GCDs over the integers into several GCD

calculations in homomorphic image domains. The image GCDs are then combined to

yield the final answer. Although this construction is ripe with parallelism it performs

a lot of extra work in not taking advantage of sparsity. In VLSI, a number of simple

processing elements is usually preferred over a larger, more complex processor, so a

direct implementation of the modular GCD is more feasible than the implementation

of a more sophisticated method which takes advantage of sparsity. Our goal, however,

is to take advantage of a general multiprocessor.

Zippel’s sparse modular GCD algorithm does take advantage of the sparse structure

in constructing its result. At first glance it does not explicitly exhibit the same degree

of inherent parallelism. Upon closer examination, however, we see that there is a rather

simple way to express this method in a parallel form. We shall now describe the sparse

modular algorithm in enough detail to see how it may be transformed.

The Sparse Modular GCD

The sparse modular methods introduced by Zippel are based on the observation that

evaluating a polynomial at a random point will almost never yield zero if the point is

chosen from a large enough set. The construction of the GCD in the sparse modular

algorithm is an alternating sequence of dense and sparse interpolations. Here, the

word “dense” is used to describe the usual notion of interpolation which is applied to

d + 1 point-value pairs to uniquely construct a polynomial of degree d. A “sparse”
POLYNOMIAL GREATEST COMMON DIVISORS

45

SparseModularGCD(p, q, goodTuple) ==

d := boundGCDdegree(p, q)

b := boundRandomPointSelection(p, q)

vars := variablesOf(p, q)

g := imageGCD(p, q, goodTuple)

for i in 1..nops(vars) repeat

Introduce vars[i] by collecting d+1 points, r, and values, p.

r [0] := op(i, goodTuple)

p [0] := g

for j in 1..d do

Obtain another polynomial by sparse interpolation.

r [j] := random(b)

L := {}

while nops(L) 6= nops(monomials(g)) repeat

tuple := randomTuple(b, i-1), r [j], goodTuple [i+1..]

L := L ∪ {g(tuple) = imageGCD(p, q, tuple)}

coeffs := solve(L, monomials(g))

p [j] := construct(coeffs, monomials(g))

new := 0

for x in monomials(g) repeat

vals := map(coef, p, x)

new := new + x * interpolate(vals, r, vars [i])

g := new

return g

Figure 5.2: The Sparse Modular GCD

interpolation takes a description of which coefficients are a non-zero and a number of

point-value pairs equal to the number of non-zero coefficients. The coefficients are then

determined by solving a linear system.

Example: Given that the only non-zero coefficients of p(x) are those of x4 and x0,

the two evaluations p(2) = 7 and p(5) = −196 imply

a4(2)4 + a0(2)0 = 7

a4(5)4 + a0(5)0 = −196

Solving the system yields p(x) = −1
3

x4 + 37
3

POLYNOMIAL GREATEST COMMON DIVISORS

46

The sparse modular GCD determines the goal GCD, say g(x, y, z), by recovering one

variable at a time. Given bound d for the degree in each variable, the algorithm recov-

ers x by interpolating the d + 1 images g(x0, y0, z0), ..., g(xd, y0, z0) to give g(x, y0, z0).

This polynomial will have some number of terms, say t. Those terms which are zero for

x, y0, ...z0 are assumed to be identically zero. The algorithm then performs d sparse in-

terpolations to produce the images g(x, y1, z0), ..., g(x, yd, z0). Dense interpolation yields

g(x, y, z0). Again, d sparse interpolations provide the values for the dense interpolation

to give g(x, y, z). The algorithm is shown in Figure 5.2.

This algorithm is probabilistic. Each sparse interpolation is based on the highly

probable assumption that coefficients which are zero in the one dense interpolation are

identically zero. The probability that the computed GCD is incorrect can be made

arbitrarily small by using a large enough range for the evaluation points. For details of

the probabilistic argument see [Zippel79].

The Sparse Parallel Modular GCD

At each stage of the sparse modular algorithm, sparse interpolations must be performed.

These sparse interpolations are independent and may be performed in parallel. Fur-

thermore, each of these sparse interpolations requires the computation of a number of

image GCDs equal to the number of terms in the last dense interpolation. The image

GCD calculations are not very expensive on an individual basis, however. Each con-

sists of (1) the generation of a random number, (2) two polynomial evaluations, and (3)

an application of Euclid’s algorithm to integers. If there are enough terms the image

calculations can be grouped together to keep the overhead ratio down. Between one

dense interpolation and the next, td image GCDs must be evaluated, and systems of t

equations over the rationals must be solved. In the parallel algorithm these are solved

as an inhomogeneous problem heap.

Next let us look at the problem of dense interpolation. Rather than performing the

interpolation with the polynomials p(x, y0, z0), p(x, y1, z0)...p(x, yn, z0) as coefficients it

is better to apply the interpolation algorithm to each integer coefficient and to add the

results. These coefficient interpolations are independent and can be performed as a

problem heap. Alternating the parallel pairs of dense and sparse interpolations yields

the algorithm shown in Figure 5.3.

5.4 Analysis

We now investigate how effectively the parallel algorithm can make use of multiple

processors. Although the algorithm takes direct advantage of the multiplicity of sub-

problems in both the sparse and dense interpolation stages, there are some inherent

losses with this method that keep it from obtaining an ideal linear speedup. The first is
POLYNOMIAL GREATEST COMMON DIVISORS

47

llGCD(p, q) ==

d := boundGCDdegree(p, q)

b := boundRandomPointSelection(p, q)

goodTuple := findGoodTuple(p, q)

vars := variablesOf(p, q)

g := imageGCD(p, q, goodTuple)

for i in 1..nops(vars) repeat

Introduce vars[i]

r [0] := op(i, goodTuple)

p [0] := g

This would be done with AllOf -- see section 8.2

for i in 1..d lldo

r [j] := random(b)

p [i] := sparseInterpolation(p, q, g, i, r[j], goodTuple)

new := 0

for x in monomials(g) lldo

vals := map (coeff, p, x)

term := x * interpolate(vals, T, vars [i])

new := new + term # could return set

g := new

return g

Figure 5.3: A Parallel GCD Algorithm

that there can be an initial starvation phase in which there are not enough subproblems

to keep all processors busy. The second loss comes from the discreteness of the division

of the problem into subtasks. At each stage there are several interpolations which must

be completed before the algorithm proceeds to the next step. Since the number of

interpolations will not generally be divisible by the number of processors, at each stage

some processors will be idle while the remainder of the interpolations are completed.

In addition, there is the overhead of initiating the processes for the subtasks and the

communication of the intermediate results. In this section we quantify these losses and

see how closely a linear speedup may be approached.

We begin by noting that the amount of work to be performed at each stage of the

algorithm is not constant. First of all, the number of terms increases as more variables

POLYNOMIAL GREATEST COMMON DIVISORS

48

are introduced. This means that the size of the linear system increases and that more

image GCDs are needed. Secondly, the degree bound for each of the variables will be

different, so the number of sparse interpolations required is different at each stage.

Cost of One Stage

Let us examine a typical stage of the algorithm. Suppose that we are computing the

GCD, g, of two polynomials p and q in Z [x1, x2, ..., xn] and that we are about to

introduce the variable, xk+1. This means that we have already constructed the image

of g with the variables xk+1, ..., xn evaluated at some values, say ak+1, ..., an. Let this

image polynomial be denoted by gk, where

gk ∈ Z [x1, ..., xk] ∼= Z[x1, ..., xn] / (xk+1 − ak+1, ..., xn − an)

Let tk be the number of terms in gk and let d1, ..., dk denote the degrees of the variables
x1, ..., xk in gk, and hence in g. In addition, let Dk+1 be the degree bound for the

variable xk+1 in g.

In order to introduce the variable xi+1, we must perform Dk+1 sparse interpolations.

Each sparse interpolation consists of solving a system of tk linear equations Ax = b.

Setting up the system involves generating tk random k-tuples, Λ
(k)
i, i=1,...,tk

and evaluating

each of the tk monomials of gk at each of these tk points. This gives the matrix A. To

obtain the right hand side, b, requires the computation of the integer GCD of p and q

evaluated at (Λ
(k)
i , ak+1, ..., an) for i = 1, ..., tk. If a linear congruential random number

generator is used, then each random number requires 3 arithmetic operations for a total

of 3ktk operations. Each monomial may be evaluated with k powerings and (k − 1)

multiplications. The number of arithmetic operations to set up the matrix is at most

(k − 1)t2k(log d1 + ... + log dk) = (k − 1)t2k log
k∏

i=1

dk

Let T be the time to compute an image of g in Z. Then to determine b requires
time tkT . Solving the system requires 2/3 t3k + O(t2k) operations. Thus the number of

arithmetic operations for one sparse interpolation is

(T + 3k) tk + (k − 1) t2k log
k∏

i=1

dk +
t3k
3

+ O(t2k)

Next we perform a series of tk dense interpolations. Each dense interpolation re-

quires
7D2

k+1 + 9Dk+1 − 16

2
operations.

Thus the total number of arithmetic operations to introduce xi+1 is

Dk+1

(
tk(T + 3k) + (k − 1)t2k log

k∏
i=1

dk + t3k

)
+

7

2
D2

k+1tk

POLYNOMIAL GREATEST COMMON DIVISORS

49

plus lower order terms in tk. If we have p processors, the time required is⌈
Dk+1

p

⌉(
tk(T + 3k) + (k − 1)t2k log

∏
i=1

kdk + t3k

)
+

⌈
tk
p

⌉
7

2
D2

k+1

plus the communication costs.

Communication Costs

The communication costs associated with each sparse interpolation consist of the ad-

ministrating process sending out a skeleton polynomial description of length tk and the

subordinate process returning a list of coefficients of the same length. If the communi-

cation of a numeric coefficient requires C times the time for an arithmetic operation,

then the total is 2Ctk for each sparse interpolation.

A dense interpolation requires the Administrator process to deliver Dk+1 point/value

pairs. In return, Dk+1 coefficients are returned. The communication costs associated

with the dense interpolation is 3CDk+1. Combining these, the total communication per-

formed by the Administrator process requires time 5CtkDk+1. This cost is dominated

by the cost of the arithmetic.

Worst and Best Case

Before we examine the expected degree of parallelism let us consider the best-case and

worst-case behavior.

With extreme luck, tk and Dk+1 will be exactly divisible by p at each stage or be

slightly less than an exact multiple. This would yield a nearly linear speedup.

On the other hand, if the GCD consists of a single constant term, then the algorithm

degenerates to a serial one. This can be avoided by removing the integer content of p

and q and performing an initial test for co-primality.

The Initial Starvation Phase

The algorithm computes the GCD by introducing one variable at a time. It starts with

a single term with no variables and terminates with the full set of terms involving all

of the variables. As each variable is introduced, the coefficients of the existing terms

become polynomials in the new variable. This can split an existing term into several

new terms, with the number of terms increasing throughout the course of the algorithm

until the full number is reached. At stage k of the algorithm, tk dense interpolations

are performed. The value of tk determines the number of processors that can be used.

POLYNOMIAL GREATEST COMMON DIVISORS

50

Since the number of terms starts off small, there is less opportunity for parallelism in

the initial stages.

In order to assess this initial starvation phase, it is necessary to determine the

number of terms expected at each stage.

Expected Number of Terms

Before introducing the variable xk+1, the image gk of the goal polynomial has tk out of

a possible
∏k

i=1(di +1) terms. The expected value of tk depends on the degrees d1, ..., dn

and the total number of terms tn in the final result. Let us assume that the tn terms of

g are distributed randomly amongst the
∏k

i=1(di + 1) possible terms in gk. Then some

terms of gk will get exactly one term of g, other terms of gk will get two or more terms

of g, while the terms which do not appear in gk (i.e. those which have zero coefficients)

are those which did not get any. Each term of gk can contain at most
∏n

i=k+1 (di + 1)

of the tn terms of g. Determining the expected number of non-zero terms in gk is an

occupancy problem.

The problem of finding the expected value of tk can be expressed in the following

way: Given b balls distributed randomly in N boxes, each of which can hold at most

m balls, what is the expected number of empty boxes? (Given tn terms of the goal

polynomial distributed randomly in the
∏k

i=1 (di+1) terms of the polynomial lifted to k

variables, each term representing at most
∏n

i=k+1 (di +1) terms of the goal polynomial,

what is the expected number of zero terms of the polynomial lifted to k variables.)

This is Romanovsky’s box restraint problem. It is fairly straightforward to show that

the probability that exactly s boxes are empty (that exactly s terms are zero) is

p(s) =

(
N

s

)
(

Nm

b

) N−s−b/m∑
j=0

(−1)j

(
N − s

j

)(
m(N − s− j)

b

)

The expected number of empty boxes is

N
(Nm− b)m

(Nm)m
' N

(
1− b

Nm

)m

for small
b

N
.

Here, xm denotes the descending factorial x(x − 1) · · · (x − m + 1). Details of the

derivation of the expectation may be found, for example, in [David62].

POLYNOMIAL GREATEST COMMON DIVISORS

51

Example: Suppose the goal polynomial has 1000 terms and four variables of degrees

4, 29, 16 and 4. Then the expected number of non-zero terms at each stage is

〈t1〉 ' 5 ·
[
1− (1− 1000

5·30·17·5)
30·17·5] ' 5

〈t2〉 ' 5 · 30 ·
[
1− (1− 1000

5·30·17·5)
17·5] ' 150

〈t3〉 ' 5 · 30 · 17 ·
[
1− (1− 1000

5·30·17·5)
5
]

' 855

〈t4〉 ' 5 · 30 · 17 · 5 ·
[
1− (1− 1000

5·30·17·5)
]
' 1000

Using the exact expression for the expected value shows 〈t3〉 is actually closer to 856.

GRÖBNER BASES

6.0 GRÖBNER BASES

6.1 The Role of Gröbner Bases

This chapter examines the computation of a particular kind of polynomial basis which

is of interest in computer algebra. In his Ph.D. dissertation and subsequent work (see

bibliography), Buchberger developed an algorithm to generate a particular type of basis

for a multivariate polynomial ideal. He named these “Gröbner bases”, after his thesis

advisor Professor W. Gröbner.

Before giving a formal definition we shall briefly outline some of the uses of Gröbner

bases in computer algebra. The reason that they are important in this field is that

polynomial algorithms lie at the core of computer algebra systems and Buchberger’s

Gröbner basis algorithm is one of the few constructive tools in polynomial ideal theory.

One problem that can be solved using Gröbner bases is that of polynomial sim-

plification. Simplifying a polynomial with respect to several side relations consists of

determining the equivalence class of the polynomial modulo the ideal generated by the

side relations. Given a Gröbner basis for this ideal, the simplification can be performed

by a simple term rewriting procedure [Buchberger82].
Gröbner bases may be used to answer questions about the solvability of systems

of polynomial equations [Buchberger85b]. They can be used to determine whether

or not a system is consistent and, if so, whether the number of solutions is finite or

infinite. If a system of equations has a finite number of solutions, then all solutions can

be obtained by using Gröbner bases to “triangularize” the system.

Using Gröbner bases, certain of the classic problems in computer algebra can be

solved in an elegant way. It has recently been shown how to do polynomial GCD’s,

factorization and Hensel lifting using Gröbner bases [Gianni85]. Although these con-

structions may not provide the most time-efficient solutions for these problems, they

are compact and extremely interesting from a theoretical point of view.

6.2 Buchberger’s Algorithm

Terminology

Let R = K[x1, ..., xn] denote the ring of polynomials in n variables over the field K. A

polynomial in R is a sum of terms where each term is the product of a coefficient in K

and a power product xi1
1 · · ·xin

n .

Given a total order on the set of power products, the head term of a polynomial

is defined to be the term with the power product which is greatest with respect to

the order. Two commonly used orderings are lexicographic order, <L, and total degree

order, <T , defined by

52

53

xi1
1 · · ·xin

n <L xj1
1 · · ·xjn

n ⇔ ∃l 3 il < jl and ik = jk for k > l

xi1
1 · · ·xin

n <T xj1
1 · · ·xjn

n ⇔
n∑

k=1

ik <
n∑

k=1

jk or

n∑
k=1

ik =
n∑

k=1

jk and xi1
1 · · ·xin

n <L xj1
1 · · ·xjn

n

Example: In K [x1, x2] the power products of degree two and less are ordered as

follows:

1 <L x1 <L x2
1 <L x2 <L x1x2 <L x2

2

1 <T x1 <T x2 <T x2
1 <T x1x2 <T x2

2

Let f and g be two polynomials in R. We say that g is reducible to h using f ,

written g •>f h, if some term t in g is a non-zero multiple of the headterm of f and

h = g − t

headterm(f)
· f

Given a finite set of polynomials F , we say g reduces to h with respect to F , written

g •>F h, if there exists f ∈ F such that g •>f h. If there is no h such that g •>F h

then we say that g is reduced with respect to F .

If there is a sequence of reductions

g •>F k1 •>F · · · •>F kn •>F h

where h is reduced with respect to F , then we say that h is a normal form of g and

write g •>∗
F h.

Gröbner Basis Definition

Gröbner bases may be defined in several ways. One intuitive definition is

Definition: The finite set F of polynomials in R is a Gröbner basis if and only if for

all f, g, h ∈ R,

f •>∗
F g and f •>∗

F h ⇒ g = h

That is, F is a Gröbner basis if and only if its normal forms are canonical.

GRÖBNER BASES

54

Given F , we require some way of determining whether it is a Gröbner basis. This

may be done using the notion of an S-polynomial. The S-polynomial of f and g, is

defined to be
headterm(g)

u
f − headterm(f)

u
g

where u is the GCD of the head terms of f and g. (Sometimes the S-polynomial is

defined to be a multiple of this.) The following result characterizes Gröbner bases.

Theorem [Buchberger79]:

F is a Gröbner basis if and only if for all pairs (f, g) ∈ F × F ,

S-polynomial(f, g) •>∗
F 0

Buchberger’s Basic Algorithm

Buchberger’s algorithm is a completion procedure which takes a finite set F and adds

elements until all pairs of elements have S-polynomials which reduce to zero. The

elements added are exactly those S-polynomials which do not reduce to zero, taking

advantage of the fact

g •>∗
F h ⇒ g •>∗

F∪{h} 0

The basic form of Buchberger’s algorithm is shown in Figure 6.1. In the simplest

form, Criterion(f1, f2, G, B) is identically true so all pairs of polynomials are

examined. This is correct but inefficient because after a certain point most of the

reductions yield zero. One aspect of the work on Gröbner bases is centered on giving

criteria which screen out these useless reductions. Buchberger gives an inexpensive but

useful criterion[Buchberger85b]:

Criterion(f1, f2, G, B) ==

not Criterion1(f1, f2, G, B) and not Criterion2(f1, f2)

Criterion1(f1, f2, G, B) ==

there exists p in G - {f1, f2} such that

{p, f1} not in B and {p, f2} not in B and

lcm(headterm(f1), headterm(f2)) is a multiple of headterm(p)

Criterion2(f1, f2) ==

lcm(pp1, pp2) = pp1 * pp2 where

pp1 := headterm(f1)/lcoef(f1); pp2 := headterm(f2)/lcoef(f2)

GRÖBNER BASES

55

Gröbner(F) ==

G := F

B := {{f1, f2} | f1, f2 ∈ G, f1 6= f2}
while B 6= { } repeat

{f1, f2} := choseElement B

B := B - {f1, f2}
if Criterion(f1, f2, G, B) then

h := S-polynomial(f1, f2)

h := normalForm(h, G)

if h 6= 0 then

G := G ∪ {h}

B := B ∪ {{g, h} | g∈G, g6=h}

return G

Figure 6.1: Buchberger’s Algorithm

Efficiency Considerations

There are several ways in which the basic algorithm has been improved. The first,

as explained previously, is the application of a screening criterion to determine which

pairs will reduce to zero without actually computing the S-polynomial or performing

the reduction.

A second efficiency consideration concerns the selection of the pair to be used.

Buchberger recommends selecting f1 and f2 in such a way that the least common

multiple of the headterms is minimal with respect to the power-product ordering.

Whenever a polynomial is added to the basis, it may make possible the further

reduction of some of those previously introduced. After adding a new polynomial it is

usually desirable to reduce each element of the basis with respect to the others. This

can cause several polynomials to be dropped and the resulting basis to be simpler. If

G is a Gröbner basis and each element g ∈ G is reduced with respect to G− {g}, then

G is defined to be a reduced Gröbner basis. For any ideal, there is a unique reduced

Gröbner basis. [Buchberger85b]

A Parallel Algorithm: llGröbner

In Buchberger’s algorithm, the ideal basis is extended one element at a time. This

construction has considerable flexibility in the order of selecting the pairs, in deciding

GRÖBNER BASES

56

llGröbner(F) ==

G’ := { }

G := F

while G 6= G’ do

G’ := G

B := {{f1, f2} | f1, f2 ∈ G, f1 6= f2}
H := G

forall {f1, f2} ∈ B lldo

if Criterion(f1, f2, G, B) then

h := S-polynomial(f1, f2)
h := normalForm(h, G)

if h 6= 0 then H := H ∪ {h}

G := {}

forall h ∈ H do |

h := normalForm(h, H - {h})

if h 6= 0 then G := G ∪ {h}

return G

Figure 6.2: A Parallel Gröbner Basis Algorithm

whether or not to reduce the basis, and if so when. In computing a reduced Gröbner

basis several new basis elements can be computed at a time, before being added to the

basis used to compute normal forms. This follows immediately from the uniqueness of

reduced bases.

This observation allows us to formulate a parallel algorithm for computing Gröbner

bases; rather than examining pairs of polynomials one at a time, several pairs can be

examined simultaneously. Given O(N2) processors it would be possible to examine all

pairs in one iteration. The resulting non-zero polynomials would then be adjoined to

the basis. The resulting set would then be reduced before proceeding with the next

iteration.1 Such a parallel algorithm would terminate on the iteration when no new

elements were generated.

1ERRATUM [1986]: Redundant elements may occur when treating S-polynomials in parallel.
If these elements are simultaneously added to the basis, auto-reduction may drop them all. We did not
originally take this into account. Figures 6.2 and 6.3 have been modifed to correct this, as indicated
by the change bars.

GRÖBNER BASES

57

llGröbner(F) ==

G := F; H := F

workers := SpawnWorkers()

repeat

Broadcast(WorkerMessage, [NewBasis, G], workers)

reduce all pairs

B := {{f1, f2}|f1 ∈ G, f2 ∈ H, f1 6= f2}
L := AllOf(WorkerMessage, [ReducePair, ’B[i]’], i=1..nops(B))

add new polynomials to basis; return if there are none

H := convert(L, set) - {0}

H’:= { } |

forall h in H do |

h := normalForm(h, H’ - {h}) |

if h 6= 0 then H’ := H’ ∪ {h} |

H := H’ |

G := G ∪ H

if H = { } then return G

auto-reduce the basis

Broadcast(WorkerMessage, [NewBasis, G], workers)

L := AllOf(WorkerMessage, [ReduceWithout, ’G[i]’], i=1..nops(G))

G := convert(L, set) - {0}

Figure 6.3: A Parallel Gröbner Basis Using Administration

The basis reduction that is performed in each iteration is itself inherently parallel.

Here, each of the basis elements is reduced to its normal form with respect to all the

others, and the leading coefficient is divided through to make the result monic: Given

a set F , the reduced forms

f •>∗
F−{f} g

are computed for each f ∈ F . Since each of these reductions is completely independent

of the others, the basis reduction is an ideal algorithm for parallel implementation.

These two components are combined to give the parallel Gröbner basis algorithm

shown in Figure 6.2. In practice we do not have an arbitrarily large number of pro-

GRÖBNER BASES

58

cessors and in many cases we will not be able to share directly the basis as it is being

constructed.

In the implementation of the algorithm we use an Administrator to pass out the

pairs and to coordinate the auto-reduction of the basis. The worker processes are

capable of accepting three sorts of messages:

[NewBasis, G]

Install G as the basis for normal

[ReducePair, f1, f2]

Return the reduced S-polynomial of f1 and f2

[ReduceWithout, f]

Reduce f modulo the current basis without f.

In our implementation it is the worker process’ responsibility to decide whether it will

actually perform a critical pair reduction or immediately return 0 on the basis of some

criterion.

A worker can also accept a sequence of these at once. Using these task descriptions

as messages the implementation using the Administrator and message passing is shown

in Figure 6.3. The precise meaning of AllOf and Broadcast are given in Chapter 8.

The desirability of broadcasting an entire basis twice per iteration depends on how

tightly coupled the processors are. When the communication cost is high, an alternative

is for the administrating process to maintain a record of which polynomials each worker

has in its basis and to send updates. The update message tells the worker which

polynomials to drop from its basis and contains new polynomials to include.

DEVELOPING A PARALLEL COMPUTER ALGEBRA SYSTEM

7.0 DEVELOPING A PARALLEL COMPUTER ALGEBRA SYSTEM

7.1 Chapter Overview

This chapter describes certain design considerations and the software prototypes that

led to the development of a parallel computer algebra system. To begin, we discuss the

issues in the choice of parallel processing primitives. We have an idea of certain high-

level paradigms that are suitable for use in computer algebra, namely the Administrator

construct and the Don construct. However, it is most unlikely that these will be

sufficient for all needs. It is necessary to decide on a set of low-level primitives with

which the high-level constructs can be implemented, and which can be used on the

occasions when an escape hatch is necessary. This is the topic of section 7.2. In section

7.3 we show how these primitives are sufficient to implement the Administrator and

Don constructs.

Section 7.4 discusses considerations for the use of multiple processes with shared

memory and describes an experimental version of Maple in which data structures were

shared between processes.

Section 7.5 describes an experimental system for running processes on multiple

hosts. This system served as a prototype and provided early experience in running

distributed computer algebra programs. The main consideration in the construction

of the prototype was flexibility, with efficiency being a secondary consideration. The

system consisted of two loosely connected components: a “message passing filter” and

a collection of Maple functions.

Although the initial approach provided maximum flexibility, certain information

on resource usage could only be obtained by modifying the Maple kernel. At this

stage the opportunity was taken to directly incorporate multiprocessing facilities in a

special version of Maple, creating a true multiprocessing computer algebra system. The

external characteristics of this system are discussed in section 7.6. The discussion of

the implementation details is left until Chapter 8.

7.2 Parallel Processing Primitives

There are many decisions that must be made in the selection of a set of primitives for

writing parallel programs. Some of these are:

1. Are the processes fixed or dynamically created and destroyed?

2. Is it possible to share memory between processes on the same processor? On

different processors?

59

60

3. Is process synchronization done with semaphores, monitors, message passing or

some other method?

4. Is interprocess communication by message passing or shared data structures?

5. If message passing is used, are messages buffered by the system?

6. Do communicating processes block, and if so, what are the blocking semantics?

7. With which processes may a given process communicate?

8. If there is more than one processor, how is load balancing done?

For our purposes, the best combination was one that allows the widest range of ex-

perimentation. We chose a set of primitives to allow dynamic process creation and

termination and to allow any process to communicate with any other.1 Furthermore,

we desired a set of primitives that could readily be implemented on a multiprocessor

without requiring that the component processors be tightly coupled. Message passing

generalizes most readily to multiprocessing, whereas schemes such as monitors, that

require the use of shared memory (or its simulation), are more difficult to implement

in a distributed environment. For this reason we chose a message passing scheme for

interprocess communication.

The blocking behaviour of message passing primitives is one of the most significant

design decisions in choosing a set of parallel processing primitives. First of all, the

blocking behaviour must not inhibit the parallelism of programs. Secondly, how the

message passing primitives block determines whether a hidden layer of message buffer-

ing is required. Finally, the choice of blocking behaviour directly determines the clarity

of the conceptual model and understandability of programs.

The primitives we selected are described in the following paragraphs. In the ex-

position we talk about each primitive’s “arguments” and “return value”. The exact

method of passing arguments and accepting the return value vary according to the

parallel processing implementation. Also, exactly what constitutes a process id or a

message varies depending on the context of the implementation.

1Unix pipes, for example, do not provide such a facility. In order for two processes to communicate,
they must have a common ancestor, the pipe must have existed in that ancestor, and the ends of the
pipe must have been passed down from the ancestor process to the processes that wish to communicate.
That is, which processes a given process can communicate with are at least partially determined at
the time it is created.

DEVELOPING A PARALLEL COMPUTER ALGEBRA SYSTEM

61

Process allocation and identification

Each process is identified by its process id. A process id is guaranteed to be unique

within the set of processes ever used by the currently running parallel programs. A

process id is used to refer to a process when using the parallel processing primitives.

The primitive for process allocation is spawn. It accepts one argument which de-

termines what the new process is to execute. For example, depending on the context,

this might be the name of a load module or of a Maple function. The value returned

by spawn is the process id of the newly created process. In subsequent discussions we

shall often call the process which does the spawn the “parent” and the spawned process

the “child”.

There is not a separate primitive for the parent process to ready the child for

execution. The child process is started without any further intervention by the parent.

If it is desired to create several child processes before letting any of them commence

working, then the process synchronization primitives should be used. An example

where this situation occurs is when each child must be set up to communicate with all

the others.

The primitive for process termination and de-allocation is kill. It takes as an ar-

gument, the process id of the process to be terminated. To terminate itself, a process

would pass its own process id as the argument.

Two primitives allow a process to find its own process id and the process id of its

parent. The primitive idself takes no argument and returns the calling process’ process

id. The primitive idparent likewise takes no argument and returns the process id of the

calling process’ parent.

Interprocess communication

Interprocess communication is achieved by a message passing scheme. Depending on

the implementation, processes may also be able to interact via shared memory.

The message passing primitives are send, receive, and reply. The semantics of these

are taken from the Thoth operating system [Cheriton79a].
A process may communicate with any process for which it knows the process id.

Since process ids may be sent as messages, this means that, in principle, any process

can be made to talk to any other.

The send primitive takes as arguments (1) a process id, and (2) a message to be

sent to the indicated process. The process doing the send blocks until the destination

process accepts the message with receive and responds with reply. The returned value

is normally a pair consisting of the process id of the replying process and the message

sent as the reply.

DEVELOPING A PARALLEL COMPUTER ALGEBRA SYSTEM

62

The receive primitive takes as its single argument the process id from which to

accept a message. This is called a receive-specific. If a null process id is given as the

argument, then the first available message from any process will be accepted. This is

called a receive-any. The value returned by the receive primitive is normally a pair

consisting of the process id of the sending process and the message sent. If necessary,

the receiving process blocks until a message is available from the indicated process.

The reply primitive takes as arguments (1) a process id, and (2) a message to be

given as a response to the (blocked) sending process indicated by the first argument.

The value returned by reply is normally the process id of the process which was un-

blocked. The reply primitive does not block since it is known that the sender is waiting.

The blocking send, blocking receive and non-blocking reply form the complete set of

communication primitives. There are several possible variants on the blocking scheme

described above. The most often used are various types of non-blocking sends and

receives. The proper use of the primitives we have chosen eliminates the need for

other non-blocking primitives or any other process synchronization mechanisms [Gen-
tleman81].

Note that the blocking semantics imply that messages need not be buffered when

communication is between processes on processors sharing the same memory. For a

send-receive rendezvous to transpire, one process will already be blocked and the other

will have just issued the complementing request. At that time, the message can be

copied directly from the sender to the recipient. Similarly, for a reply the sender is

already blocked so the reply can be copied directly to the sender. In a loosely coupled

multiprocessor, however, the sender and the receiver may be on different processors, in

which case direct copying cannot be done.

Since processes may be terminated dynamically, it is possible that the process spec-

ified to a communication primitive might not exist any more. If the indicated process

for a send, receive or reply does not (or ceases to) exist, then the primitive returns and

the process id in the return value is null.

Process synchronization

The blocking semantics of the message passing scheme provide a mechanism for process

synchronization. No other primitives are necessary.

For example, to provide mutually exclusive access to a resource a process would be

set up to own the resource and perform all the operations upon it. (Notice the similarity

to the intent of monitors.) Such a process is called a “proprietor”. Any process that

desired the use of that resource would send a message to the proprietor.

There are many possible implementations for the proprietor process. The simplest

scheme would be to make the proprietor consist of a loop which accepts and services

DEVELOPING A PARALLEL COMPUTER ALGEBRA SYSTEM

63

Proprietor() ==

Initialize()

repeat

(clientpid, request) := receive(ANY)

result := PerformService(request)

reply(clientpid, result);

Figure 7.1: Message Passing for the Proprietor

requests (see Figure 7.1). This form of proprietor implements mutual exclusion among

processes wishing to access the resource. Of all the requests for operations upon a

resource, only one request is acted upon at a time.

It is important to note that the receiving process determines when the sending

process is unblocked. It would be possible to have a much more complicated proprietor

by having it store up requests (received messages) and replying to them on a priority

basis.

Load balancing

On a multiprocessor it is desirable to keep the load of the processors roughly evenly

balanced. One way to achieve load balancing is to somehow make available information

about the processor loads and to spawn processes on the least loaded processors. The

spawn primitive would have an extra argument to indicate which processor should host

the new process.

A simpler method of load balancing also spawns processes on particular hosts but

does so without requiring information on processor loads. The idea is to specifically

spawn worker processes on each processor and the processes on the least loaded hosts

will complete their tasks first and request more work. (This idea is exploited by the

Administrator construct.) For this reason, the process creation primitive we have cho-

sen accepts an optional argument to specify the host. Information about host loads,

however, is not provided. If spawn is used without the optional argument it should

create the process on the least loaded processor (perhaps allowing a slight preference

for local process creation because of reduced overhead).

DEVELOPING A PARALLEL COMPUTER ALGEBRA SYSTEM

64

Administrator() ==

Initialize ()

repeat

(workerpid, result) := receive (ANY)

request := use(result)

reply (workerpid, request)

Figure 7.2: Message Passing for the Administrator

7.3 Message Passing in the Administrator and the Don

We now show how the low-level primitives can be used to implement the high level

constructs we desire.

The Administrator

Gentleman describes the idea of an Administrator process and shows how to dispatch

tasks to worker processes using the send, receive and reply primitives [Gentleman81].
The central idea behind the Administrator concept is that it avoids blocking by invert-

ing the usual send/receive/reply cycle. The Administrator must not send work to its

workers because that could cause it to become send-blocked, awaiting a reply from the

worker. Instead, it receives requests for work from its workers and issues work to them

by reply ing.

The Administrator starts by spawning its worker processes. Each worker begins by

send ing a request for work to its parent, the Administrator. The worker then remains

send-blocked on its parent, the Administrator, waiting for work. The Administrator

always uses the receive-any primitive. Each receive-any will yield either a request from

the outside for the Administrator’s services or it will be a request for work from one of

its worker processes. See Figure 7.2.

The paramount consideration of the Administrator is that it never performs an

action itself that would cause it to block when there is a work request. If the Admin-

istrator’s job involved sending a message to another process, for example, it would not

send the message itself because that could cause it to block. Instead it would delegate

the task of sending the message to a worker. In our context, we use the Administra-

tor for load balancing and it is this non-blocking property that guarantees that it will

DEVELOPING A PARALLEL COMPUTER ALGEBRA SYSTEM

65

Don() ==

Initialize ()

repeat

(workerpid, msg) := receive (ANY)

if (isNonFailureResult(msg)) then

killRemainingWorkers()

return msg

else

reply(workerpid, getNextTask())

Figure 7.3: Message Passing for the Don

always be able to receive work requests as they arrive from the more lightly loaded

processors.

The Don

The message passing for the Don construct is similar to that of the Administrator. It

also starts with one worker process per processor. Initially, the worker processes are

reply-blocked awaiting tasks. The Don receives the requests and replies with tasks.

The difference between the Don and the Administrator is that when the Don process

receives the results of the completed tasks, it checks for a non-FAIL result. As soon as

a non-FAIL result is obtained, the remaining active workers are killed and fresh worker

processes are initiated in their place. See Figure 7.3 on page 65.

7.4 Shared Memory in Maple

One issue in parallel processing is whether the processes will be able to access common

data in shared memory. For problems in many domains, this question is not of very

great performance significance. The programs tend to operate on a small number of

basic objects, which may be passed as messages or accessed as shared data structures.

Typically the amount of data is small and whether or not the data is shared is not a

performance issue. Alternatively, if the amount of data is large but not heavily used,

an application consisting of multiple processes may share the data through a file.

DEVELOPING A PARALLEL COMPUTER ALGEBRA SYSTEM

66

In a computer algebra system, however, there will potentially be megabytes of

heavily used data in main storage. There is clearly a potential performance gain possible

in sharing common data. A chief area of gain is in saving the communication overhead

of passing the data between processes. Although no shared memory multiprocessor

capable of supporting a computer algebra system was available, experimenting with

shared memory seemed worthwhile, if only to examine the semantics.

We call a group of processes that share the same address space a team, following the

Thoth terminology [Cheriton79].hile it is not necessary that the entire address space

be common to share data, this is the simplest case. On some systems it is possible to

share only desired segments, allowing some degree of protection.

If a number of processes update common data then extreme care must be taken

that the data is always left in a safe state. Critical sections must enclose updates to

commonly operated upon data and the updates must make sense to all of the processes

that use the data.

Maple’s implementation allows these conditions to be guaranteed fairly easily. The

implementation of Maple’s basic simplification guarantees that any simplified expres-

sion has a unique instance in memory. Common sub-expressions are always shared.

Since no reference counts are kept, all simplified expressions must be treated as read-

only. If a modification to a data structure is required, it is a copy that is modified,

not the original. (Table objects are the sole exception to these copy semantics.) From

this point of view, Maple is an ideal computer algebra system to adapt for parallel

processing with shared data.

None of the operating systems within Maple’s domain of portability allows for pro-

cesses with shared memory. In order to implement teams, it was necessary to add a

layer of software on top of the operating system. This consisted of first implementing

a coroutine package in C. (A detailed discussion of coroutines may be found elsewhere,

e.g. [Knuth73].) Then, using coroutines, we implemented the ability to run a team

of sub-processes that share the address space of a single (operating system) process.

This functionality was then used to produce a special version of the Maple kernel that

provided multiple processes to user-level Maple programs.

In practice, the read-only property of Maple’s data structures worked out well and

there were no major obstacles in getting the shared data version running. However, to

create a shared data version of Maple for a multiprocessor with common memory, care

would be needed in garbage collection.

DEVELOPING A PARALLEL COMPUTER ALGEBRA SYSTEM

67

7.5 A Multiprocessing Prototype

The next stage in the experimentation leading to the development of a parallel system

was a prototype for running multiprocessing computer algebra programs. The multi-

processor on which the prototype runs is a local area network of Vax 11/780’s running

Berkeley Unix version 4.2 [Leffler83]. This program uses the Internet socket support

for datagrams provided by this version of Unix. The fact that the multiprocessor is a

local area network is transparent to user programs.

This prototype allows multiple processes to communicate with each other in a man-

ner independent of the processor upon which they reside. In fact, a user program has

to go to some effort to determine that its processes are in fact being run on separate

processors.

The most obvious design for a multiprocessing computer algebra system at Waterloo

is to produce a special version of the Maple kernel incorporating parallel processing

primitives. However, for prototyping, it was desired that the system be as loosely

coupled as possible to give maximum flexibility. If the multiprocessing facilities could

be provided completely externally to the kernel, then experiments could be performed

more rapidly.

Having the multiprocessing facilities packaged in a separate program gives an ad-

ditional bonus. It means that the facilities can be made to be language independent.

The individual processes would be programs written in C, Maple, Macsyma, Fortran,

Prolog, or any other language. A parallel program would be able to have the processes

written in whatever language was best suited. The same multiprocessing tool could be

used to write distributed Macsyma programs as to write distributed Maple programs.

In fact, the processes need not be programs written in the same language. For ex-

ample, if one was to write a program that used both asymptotic analysis and Laplace

transforms, then one could use Maple for the asymptotic analysis and Macsyma for

the Laplace transforms. If a distributed Maple program had the need of an “inference

server” then that portion of the code could be written in Prolog. To do this by installing

corresponding multiprocessing facilities in each interpreter would be impossible.

These considerations led to the implementation of such a program. The program

was called mpf for “message passing filter”. [Watt85]

The Message Passing Filter as an Agent

The message passing filter is a program which allows another program to participate

as a member of a distributed system. To each user process, there corresponds a process

which is an instance of the mpf program. This mpf process acts as an agent for the

user process and performs all of that processes’ interprocess communication. It also

DEVELOPING A PARALLEL COMPUTER ALGEBRA SYSTEM

68

allows the user process to spawn new processes, kill other processes and perform several

miscellaneous functions. In the remainder of this section we describe the facilities

provided by the message passing filter.

A parallel program using the mpf consists of several user processes, each with an

mpf process acting as an agent. When the user process is created its standard output is

redirected to go to the mpf process. Likewise, its standard input unit is received from

the mpf process. The user process sends messages to other user processes and issues

various commands by writing on its standard output.

The output from the user process is interpreted on a line-by-line basis by the agent

process. Lines beginning with a user-definable prefix (usually “#] ”) are taken to be

commands. Other lines are taken to be normal output. Messages that are deliverable

to the user process are given to it via its standard input. They cannot be confused

with normal input because the user process must make a special request to obtain a

message.

Commands

Lines beginning with the specified prefix are taken to be mpf commands. The default

prefix is "#] ". The delivery of messages uses printf(format, id, message). The default

format is "%s: %s\n". An erroneous call is indicated by a return of idnull.

The available mpf commands are:

Command form Id and message returned

-------------------------------------- ----------------------------------

<prefix> debug idself "Debug on." | "Debug off."

<prefix> spawn <host | any> <command> idchild "Spawned."

<prefix> kill <mpfid> idvictim "Killed."

<prefix> send <mpfid> <message> fromid <message>

<prefix> receive <mpfid | any> fromid <message>

<prefix> reply <mpfid> <message> recipid "Replied."

<prefix> idself idself "Identification."

<prefix> idparent idparent "Identification."

<prefix> idnull idnull "Identification."

<prefix> quit N/A

<prefix> <other> idnull "Invalid command."

Here <message> must be one token. In particular, a quoted string can be used. The

<command> may be many tokens.

The meaning of these commands is described below.

DEVELOPING A PARALLEL COMPUTER ALGEBRA SYSTEM

69

Each user process is assigned a process id which is guaranteed to be unique within all

currently executing mpf programs. Three process ids are available via mpf commands.

A process may find out its own process id, that of its parent, and the null process id.

Two formats that are useful in Maple are:

"#%s: \n%s\n"

and

"[‘%s‘, %s];\n"

To create a new process, the following is used:

<prefix> spawn <command>

All text after the keyword spawn is taken to be a Unix shell command. The command

is executed on the available host with the lowest load. A new user process with its own

agent is created on the selected host. The process id of the spawned process is placed

as a message on the standard input of the process issuing the spawn command. The

message delivery format is used, and the process id in it is that of the spawned process.

The body of the message is the text “Spawned”.

The available hosts are those which are currently “up”. They are listed in the .rhosts

file in the user’s home directory. The login name to use on the different hosts is also

determined from the .rhosts file.

<prefix> kill <process id>

This command kills the specified process.

A process’ own id, its parent’s id and the null id may be obtained via the following

commands:

<prefix> idself

<prefix> idparent

<prefix> idnull

DEVELOPING A PARALLEL COMPUTER ALGEBRA SYSTEM

70

In all three cases the return value is placed as a line on the standard input according

to the specified format, with the process id being that requested and the body of the

message being the text “Identification”.

The following are used for interprocess communication and synchronization:

<prefix> send <process id> <message>

<prefix> receive <process id>

<prefix> reply <process id> <message>

The values are returned as the next input line to the invoking process.

Writing Maple Programs

A set of Maple procedures was written to provide an interface with the message passing

filter. The separation of the multiprocessing facilities from the Maple kernel allowed a

number of different ideas to be tried before converging on the following. To pass Maple

expressions between processes a two-level message passing scheme was developed. At

the first level, the messages exchanged were file names. At the second level, written

in Maple, the message expression would be saved in a “.m” file and a Unix command

would be used to transfer the file to the host of the destination process where it could be

read. A similar two-level scheme was used to provide the spawning of Maple processes

running selected Maple functions. The first action of a newly spawned Maple process

was to receive a file from its parent containing the expression to be evaluated.

Although the initial approach provided flexibility, information on resource usage

could not easily be obtained, especially the statistics on the time and space used by

a process killed by a Don. This information could only be obtained by modifying the

Maple kernel to trap an interrupt.

7.6 A Multiprocessing Version of Maple

At this stage the opportunity was taken to directly incorporate multiprocessing facilities

in a special version of Maple, creating a true multiprocessing computer algebra system.

Although quite inefficient in the form used in the prototype, the two-level methods

developed there suggested the ideas used in this multiprocessing version of the Maple

kernel. In this section we describe the external features of the system. A discussion of

the implementation is left until Chapter 8.

DEVELOPING A PARALLEL COMPUTER ALGEBRA SYSTEM

71

The Maple functions which allow the writing of multiprocessing programs are spawn,

kill, send, receive, reply, idself, idparent, idnull, hosts and stats. The calling sequences

of these functions are described below.

processid := spawn(’expr’);

processid := spawn(’expr’, hostname);

The spawn function takes as its first argument an unevaluated expression. This ex-

pression is evaluated in a new Maple process. (The new Maple process will be passed

copies of all objects pointed to by the expression.) The id of the spawned process is

returned. If a second argument is given, it is taken to be a host name and the new

process is created on that host. Otherwise the process is created on the least loaded

host listed in the file .rhosts in the home directory.

statlist := kill(processid);

This function terminates the process with the given process id. A number of statistics

are returned, including the words used, CPU time, real time, real time blocked, real

time spawning and killing, and the total number of messages sent and received.

statlist := stats();

The stats function returns the statistics (listed above) at the time of calling for the

current process.

hostlist := hosts();

This function returns a list of host names upon which processes may be spawned.

response := send(processid, msg);

This function takes a process id as its first parameter and any Maple object as its

second parameter. The Maple object is delivered as a message to the indicated process

when it does a corresponding receive call. The call to the send function returns when

a reply to the message arrives. The reply is returned as the value of the function call.

DEVELOPING A PARALLEL COMPUTER ALGEBRA SYSTEM

72

pair := receive(processid);

pair := receive();

This function receives a message from a process. If a parameter is given, then the call

will wait if necessary for a message from the process with the indicated process id. If

no parameter is given, or if the process id is idnull, then the first message to become

available from any sender is accepted. This function returns a two element expression

sequence, the first element of which is the process id of the sending process and the

second element of which is the Maple object constituting the message.

reply(processid, response);

This function is used to reply to a received message. The first parameter is the process

id to which the reply is delivered. The second parameter is the Maple object which is

delivered as the reply.

id := idself();

id := idparent();

id := idnull();

These functions return the indicated process ids. If idparent is called from the top level

process, then idnull is returned. The function idnull is provided to allow programs to

be written which do not depend on the representation of process ids.

IMPLEMENTATION ASPECTS

8.0 IMPLEMENTATION ASPECTS

8.1 Chapter Overview

In this chapter we describe the more interesting aspects of the implementation of the

high-level parallel processing facilities and of the computer algebra programs.

8.2 The Architecture of the Multiprocessing Maple System

We begin by describing the architecture of the parallel computer algebra system. The

multiprocessing facilities have been designed in a number of layers. We begin with an

overview of the entire structure and then provide details about each layer.

In all, there are seven levels in the implementation of the multiprocessing Maple

system (see Figure 8.1).

7. High-Level Multiprocessing Constructs

6. External Maple Support

5. Internal Maple Support

4. Process Allocation

3. Very Large Messages

2. Blocking Interprocess Communication

1. Reliably Delivered Messages

0. Operating System

Figure 8.1: Layers in the Implementation of the Multiprocessing Maple System

The operating system is viewed as the lowest level because the multiprocessing soft-

ware relies critically on certain facilities it provides. The next level provides reliably

delivered short messages between processes on any host. On top of this there is a set

of functions which provides message buffering and implements the send/receive/reply

blocking semantics for the short messages. The next layer provides the ability to trans-

mit arbitrarily large messages. This is crucial for computer algebra where the messages

could have sizes in the megabytes. The next level provides the functions to create and

destroy processes dynamically and functions for monitoring their resource usage. The

functions at this level and below are packaged as a library which may be used by any

program.

73

74

The remaining layers incorporate this library in Maple and use it to provide high

level multiprocessing constructs.

The Operating System

The multiprocessor upon which the multiprocessing Maple system runs is a local area

network of Vaxes.1 The system relies upon certain functions in the 4.2 BSD release

of Vax Unix.2 It makes use of the ability to have multiple processes and the Ethernet

support for Internet sockets. Both of these facilities are provided by the Unix kernel.

In addition it makes use of the rsh program which allows the execution of commands

on remote processors (and is itself implemented using the Internet socket support in a

privileged mode).

There are certain restrictions in this version of Unix that have an impact on the

design of a system such as ours. In particular, it is necessary to work around the

restriction of having a relatively small number of open files (or more accurately I/O

descriptors) in any given process. There is also a relatively low limit to the number of

processes that may be simultaneously running under any particular user id.

The Reliably Delivered Message Layer

The Internet socket support provided by 4.2 BSD Unix allows two different communi-

cation methods although it is planned that more shall eventually be provided. The two

which are currently available are datagram sockets and stream sockets.

After a socket is created it is necessary to bind a name to it. This name is called

the Internet socket address and there is a Unix system call for this purpose. The name

is itself a data structure and can be transmitted as part of a message if desired. Using

datagram sockets a process can send messages to any socket for which it has the Internet

address. Exactly this functionality is needed at the base level of our multiprocessing

software. We could use datagrams to transmit short messages, however, it is part

of their definition that they are not guaranteed to be delivered. What we require is a

reliably delivered message (RDM) scheme upon which we can build software for sending

large expressions.

The second variety of socket is the stream socket. Stream sockets provide the ability

for two processes to set up a two way communication channel. The advantage of this is

that large amounts of data can be passed reliably through this channel and be delivered

in order of sending. The disadvantage is that the connection takes time to establish

and uses up one of the limited supply of I/O descriptors in a permanent connection.

1Vax is a trademark of Digital Equipment Corporation.
2Unix is a trademark of AT&T Bell Laboratories.

IMPLEMENTATION ASPECTS

75

Because of this a process cannot maintain a large number of connected stream sockets.

It is possible however, to use stream sockets effectively by having all processes connect

with a message server. This method is used in the multiprocessing Maple System.

When the multiprocessing Maple system is started up the first thing that it does

is create a message server. All processes which are to communicate using RDMs must

connect to this server. Upon connection, the first message that is sent is used to identify

the process to the server. Subsequent messages contain three fields of fixed length. The

first field identifies the sending process by giving an Internet address, the name of

the host upon which it is running and its Unix process id on that host. The second

field identifies the process to which the message is being sent in the same way. The

third field may contain arbitrary data. Because all of the RDMs must go through the

message server, the messages are limited to a fixed size (150 bytes) to prevent potential

bottlenecks.3

The Blocking Internet Process Communication Layer

RDMs satisfy the basic communication needs but are hard to use for synchronization.

As discussed before in order to provide for process synchronization we wish to have

blocking interprocess communication semantics based on a send/receive/reply cycle.

This functionality is provided by the blocking interprocess communication (IPC) layer,

which endows the fixed sized messages with these semantics.

When a process wishes to send a message to another it writes it to the RDM server

and fills in a data structure indicating that it is send-blocked on the destination process.

It then reads messages from the RDM server until a reply is obtained. Usually the

process will remain blocked for some time while awaiting messages from the server. Any

messages that are obtained before the reply must be sends from other processes. These

messages are maintained in a list until such time as they are needed for a corresponding

receive.

A process may wish to receive a message from a specific other process or it may

wish to receive the first message from any process that is available. In either case, the

list of sent messages is first checked and if a suitable message is not found the process

marks itself as receive blocked, awaiting a send from the named process. It then awaits

messages from the RDM server until such a time as it obtains a message from the desired

sender. Any messages obtained before this are sends from other processes. When the

desired message is obtained it is returned as the value of the receive function.

3The message server initially consists of one process. If very many processes wish to communicate
using RDMs, the message server must be prepared to spawn subordinate processes to get around the
limitation on the number of active I/O descriptors.

IMPLEMENTATION ASPECTS

76

To reply, a message is passed via the RDM server back to the sender which is

awaiting it. Spurious replys are ignored by the server.

In summary the only messages which a process may unexpectedly obtain from the

RDM server are sends from other processes. Each process maintains its own queue of

unreceived messages and its own blocking status.4 Although this functionality could be

provided by the RDM server, maintaining this distinction allows the low level messages

to be passed in other ways. For example, the message passing filter used this same

collection of functions with datagram sockets to pass the messages.

The Very Large Message Layer

This is the first layer in which considerations for computer algebra play a dominant

role. In computer algebra it is quite common to be dealing with data structures that

can be extremely large. Passing such objects as messages is handled at a level above

the basic blocking IPC for two reasons. The first reason is that if a central switch

is used for the basic IPC then very large messages would cause the switch to become

a bottleneck with even moderate use. Secondly it would be a serious problem for a

process to buffer very many unreceived messages. We have previously mentioned that

the send/receive/reply semantics do not require message buffering on a uniprocessor.

Although in our distributed implementation short messages are buffered, it is not nec-

essary to buffer very large messages. With a two level message passing scheme it is

possible to guarantee that the recipient is ready to receive a message before it is sent.

In the multiprocessing Maple system, the second level of the two level message

passing scheme uses stream sockets directly for the transfer of messages.5 The syn-

chonization for the send/receive/reply of the very large message layer is achieved by

passing messages in the blocking IPC layer.

In the very large message layer the initialization function creates a stream socket

upon which to accept connections. The Internet address of this socket is the address

which is used in the identification fields for the lower level message passing.

When a process wishes to send a very large message it first sends a short message

(via the blocking IPC layer) which is a request to create a stream connection. When

the reply is obtained the sender first initiates a stream connection and then calls a user

specified function with a pointer to the message and the I/O descriptor as parameters.

This user function is expected to write the message out on the unit specified by the

I/O descriptor. When the user specified function returns, the sender closes the stream

4An additional list of messages that have been received but not replied to is maintained in order
to check for and avoid simple deadlocks.

5In the prototype described in section 7.5 this second level was implemented using network file
transfers.

IMPLEMENTATION ASPECTS

77

connection. This may at first seem curious because a stream connection is needed for the

reply. However, since the receiving end may have a large number of processes awaiting

replies, it cannot maintain a stream socket open to each one of them. After closing the

stream connection the first process sends a second request to connect (again via the

lower level blocking IPC layer). When the receiver is ready to reply with a very large

message it replies to the connect request and a second connection is established. This

time a second user supplied function is called with the I/O descriptor as a parameter

to read the reply. It is the responsibility of the user supplied functions to have some

mutually intelligible message format which allows the matching of message lengths.

The Process Allocation Layer

This layer provides the ability to allocate processes on other processors and to de-

allocate them. The basic tool is the rsh command provided by Unix. The only subtlety

in process creation is in obtaining the child’s process identification in such a way that

it can be passed back to the parent process. This can be achieved as follows.

The rsh command takes as arguments a host name, the name of an executable file

and parameters to be passed. When this file is executed, rsh maintains a communica-

tion stream between the remote command and the caller. In its usual use the remote

command terminates and rsh returns. When the spawn function is creating the argu-

ment list for the remote command, it includes as arguments its own process id, the id of

the RDM server and the name of the executable file for the user process. The command

that is invoked on the remote host adds the two process ids to the environment6 and

overlays itself with the user specified command.

The initialization function which must be called by the spawned program checks

the process environment. If it finds these ids then it knows it is a spawned process

and performs certain functions. It first creates the stream socket to be used for very

large messages and using this then determines its own process id. After this it then

writes this id on the standard output which it then closes. (Further initializations are

performed such as connection to the RDM server.) The parent process is expecting to

read a single line from the child which it interprets as the child’s id. This procedure

enables both the parent and child, knowing each others ids, to proceed independently.

The exact mechanism for killing remote processes is straightforward. In order to

collect statistics on resource usage special care is taken to trap the “quit” interrupt.

Before dying a process passes a message containing resource use to its parent. If this

information is desired at intermediate intervals it is available to be incorporated in any

or all messages.

6Each process in Unix has an “environment” which is passed on to all of its descendant processes.
The environment itself is nothing more than a vector of character strings.

IMPLEMENTATION ASPECTS

78

The functions provided at this level (see Figure 8.2) form a complete multiprocessing

library. This library is used in the multiprocessing Maple system and can be used by

other programs as well.

id = mpfidSelf;

id = mpfidParent;

id = mpfidNull;

mpffinalize();

mpfinitialize(getfn, putfn, puserstat1, pu2, pu3, failValue);

id = mpfspawn(idArea, hostnameOrAny, progFile, infile, outfile);

stats = mpfkill(id);

msg = mpfsend(id, msg);

msg = mpfreceive(idorAny, msg);

mpfreply(id, msg);

stats = mpfstats(statsArea);

l = mpfhostsAndLoads();

Figure 8.2: Library Used by Kernel of Multiprocessing Maple System

Internal Maple Support

The functions in the multiprocessing library are, not surprisingly, exactly those primi-

tives we wish to provide in the multiprocessing Maple system. In order to minimize the

modifications to the Maple kernel, these functions are all accessed via a single, built-in

function multiprocess. The first argument to multiprocess selects the desired action and

the remaining arguments are passed on to the corresponding internal function.

The data structures upon which these functions operate are process ids and mes-

sages. Process ids are converted to Maple names and the messages can be arbitrary

expression trees.

The functions that read and write the expression trees as very large messages are

simply those that read and write internal format data and which are normally used for

the creation of “.m” files.

IMPLEMENTATION ASPECTS

79

External Maple Support

There is a library of Maple functions that provide the interface to the multiprocess

function. In order to use the multiprocessing Maple system, the user must have in his

home directory a .mapleinit file containing commands to load this small library and

invoke the dmapleBegin function.

Except for spawn and dmapleBegin the functions in this library are all simple func-

tions providing a more palatable calling sequence than multiprocess provides.

The process spawning function provided by the multiprocessing library can only

execute a single command. It cannot pass data to the command except in the form

of arguments. Somehow the Maple expression which is to be evaluated by the newly

created Maple process must be passed. To do this the dmapleBegin function is used.

When called by a top level Maple process or by a version of Maple that does not support

multiprocessing, this function simply returns without doing anything. When dmaple-

Begin is called by a child process it attempts to receive a message from the parent.

The communication functions are very careful not to cause extra evaluations. When

the child receives a message from the parent it immediately replies and then evaluates

the message it has received. It is the evaluation of this message that constitutes the

execution of the spawned process. The spawn function must send the expression to

be evaluated to the child. Usually the expression is an unevaluated function call and

its evaluation will involve calculations and perhaps interprocess communication. After

evaluating the message, dmapleBegin executes a quit statement.

High-Level Multiprocessing Constructs

The process allocation and communication primitives provided by the interface of the

multiprocessing Maple system are very flexible and can be used to create arbitrary

multiprocessing configurations. Quite often though, higher level constructs are more

suitable.

In Chapter 2 we described two high level constructs for dynamic scheduling, namely

the Administrator and the Don. These constructs are implemented as two functions

in the library for use with the multiprocessing Maple system. These functions, called

AllOf and OneOf, are described in the next sections.

8.3 AND Parallelism

In Chapter 7 we described the parallel processing primitives provided in the testbed

software. While they provide a great deal of flexibility, the use of these primitives

requires an attention to detail which need not be of direct concern in the writing of

IMPLEMENTATION ASPECTS

80

AllOf(f, args, indexEquation) ==

breakupEquation(indexEquation, ’index’, ’lo’, ’hi’)

InitializeIfNecessary()

outstandingWorkerIDs := {}

for i in lo... while i < hi or outstandingWorkerIDs <>{} repeat

pair := receiveAny()

id := pair[1]; result := pair[2]

outstandingWorkerIDs := outstandingWorkerIDs - {id}

if result <> Not_A_Result_Just_A_Request then

result is [i, f(i)]

resultTable[result[1]] := result[2]

if i < hi then

reply(id, makeTask(f, args, index, i))

outstandingWorkerIDs := outstandingWorkerIDs + {id}

else

reply(id, Refresh_Worker)

[seq(resultTable[’i’], ’i’ = lo .. hi)]

Figure 8.3: Implementation of AllOf using the Administrator Construct

computer algebra code. In most cases, the high level view of the problem appeals to

AND or OR parallelism. For these cases it is appropriate to have procedures providing

functionality at this high level of abstraction.

In order to make use of AND-parallelism, the multiprocessing Maple system provides

the AllOf function.

l := AllOf (f, args, i = lo .. hi);

Here f is a function to be applied to the argument list args. For each value of i, f is

applied to the argument list and with i replaced by its value. The results obtained are

returned together as a list.

The AllOf function uses the Administrator paradigm to allocate the computations

to the available processors.

The first step is the initialization of one worker process on each processor. Each

worker process sends a message to the Administrator (its parent) requesting work.

Because of the semantics of the send primitive, the workers remain blocked until they

are presented with tasks to perform. This initialization step is not always necessary,

IMPLEMENTATION ASPECTS

81

OneOf(f, args, indexEquation) ==

breakupEquation(indexEquation, ’index’, ’lo’, ’hi’)

InitializeIfNecessary()

outstandingWorkerIDs := {}

result := FAIL

for i in lo... while i < hi or outstandingWorkerIDs <>{} do

pair := receiveAny()

id := pair[1]; result := pair[2]

outstandingWorkerIDs := outstandingWorkerIDs - {id}

if result <> Not_A_Result_Just_A_Request and

result <> FAIL then exitloop

if i < hi then

reply(id, makeTask(f, args, index, i))

outstandingWorkerIDs := outstandingWorkerIDs + {id}

else

reply(id, Refresh_Worker)

for i to nops outstandingWorkerIDs do

kill(outstandingWorkerIDs[i])

InitializeIfNecessary()

result

Figure 8.4: Implementation of OneOf using the Don Construct

because a worker process may already exist from a previous use. The details of this are

discussed later.

After initialization, the Administrator process receives work requests from the

worker process using receive any and replies with descriptions of the tasks. Since

receive any returns immediately if there is any worker available, this strategy keeps

all processors busy. The use of reply to present a task to a worker ensures that the

Administrator does not block.

If there are fewer tasks than workers, then some of the processors are not utilized.

If there are more tasks than workers, then as workers return they are presented with

new tasks until there are no tasks left. The first message received from each worker is

a simple work request. Subsequent messages, as well as being work requests, contain

the results of completed tasks. This is illustrated in Figure 8.3.

IMPLEMENTATION ASPECTS

82

Broadcast(f, args, workerIDs) ==

outstandingWorkers := convert(workerIDs, set)

waitingBroadcastees := {}

innocentBystanders := {}

while outstandingWorkers 6= {} do

pair := receiveAny()

id := pair[1]

if id ∈ outstandingWorkers then

outstandingWorkers := outstandingWorkers - {id}

waitingBroadcastees := waitingBroadcastees ∪ {id}

else

innocentBystanders := innocentBystanders ∪ {id}

for id in waitingBroadcastees do

reply(id, args)

for id in innocentBystanders do

reply(id, Refresh_Worker)

Figure 8.5: Implementation of Broadcast

Although the AllOf construct treats the tasks to be performed homogeneously, it

is quite possible for the tasks themselves to be quite different. This can be done by

having the function f dispatch to other functions based on the value of i.

As a final note, we point out that the arguments to which f is applied are often

selector forms, for example

AllOf(f, [’op(i, giantPolynomial)’], i = 1 .. nops(giantPolynomial))

:pc. This is the reason that the function and the argument list are passed separately

to AllOf. Doing this allows the arguments to be evaluated before passing the task to

the worker process, cutting down considerably on the communication costs.

We mentioned earlier that there may be workers around from previous multiproc-

cessing activity, and that it may not be necessary to initialize the workers for each

AllOf operation. Whether it is desirable to keep workers around between calls to AllOf

depends on the relative costs of process spawning, message passing, and the size of the

tasks given to the workers. In the environment in which the multiprocessing Maple

system was developed, process creation was much more expensive than message pass-

IMPLEMENTATION ASPECTS

83

ing (the dominating cost was initiating the remote shell across the network). In this

situation it was desirable for an administrating AllOf to leave its workers alive for the

next AllOf to utilize. Before exiting, an AllOf sends a Refresh Worker message to

its blocked workers and leaves the set of worker process ids in a global variable. The

workers recognize this message as a null task and simply turn around and immediately

send another work request. They remain blocked awaiting a receive. In particular, the

next AllOf, OneOf or Broadcast will be able to use them.

8.4 OR Parallelism

The multiprocessing Maple system provides the OneOf function to allow the use of OR

parallelism:

result := OneOf(f, args, i = lo .. hi)

The calling sequence is the same as for AllOf but only a single value is returned. Each

call to f can produce either a result or the value FAIL. If any of the calls to f produces

a non-FAIL result, then Oneof returns one of these values, otherwise OneOf returns

FAIL. This is illustrated in Figure 8.4.

The OneOf function uses the Don construct to distribute the tasks over the available

processors. The value returned is the first non-FAIL result.

The two functions AllOf and OneOf implement pure AND parallelism and OR

parallelism respectively. Sometimes it is the case that a certain number of results from

a set of computations are desired but it does not matter which ones. For such cases

the multiprocessing Maple system provides the SomeOf function.

results := SomeOf(f, args, i = lo .. hi, howmany)

Here f is evaluated with i taking values from lo to hi until howmany non-FAIL results

are obtained. This function generalizes both OneOf and AllOf in the case where

howmany is 1 and hi− lo + 1 respectively.

8.5 Broadcasting

It is often necessary to broadcast a message to all workers. An example would be in

letting all workers know the new value of some variable. To do this the multiprocessing

Maple system provides the Broadcast function. Its calling sequence is simillar to that

of the functions disussed so far, except a list of worker process ids is used in place of

an index equation.

results := Broadcast(f, args, workerids)

CONCLUDING REMARKS

84

The Broadcast function collects work requests until a request has been received from

each worker on the broadcast list. These workers are sent the specified message. The

requests from workers not on the list are given Refresh Worker response, which simply

tells them to ask for work again. This is illustrated in Figure 8.5.

CONCLUDING REMARKS

9.0 CONCLUDING REMARKS

9.1 Summary

Foremost,we have seen that parallel computing methods form a useful set of tools for

applications in computer algebra. We have seen that some forms of inherent parallelism

in computer algorithms are more useful than other forms. The ideal situation from the

point of view of an algorithm with bounded parallelism is when there is a large number

of high-level tasks that can be performed independently. It is usual in computer algebra

that these high-level tasks require differing execution times. We have seen that the

Administrator concept is very useful in this situation. This was the situation with the

parallel GCD algorithm that we developed.

Sometimes there is a large number of tasks that could be performed in parallel but

which are not independent. For example, in the calculation of Gröbner bases using

Buchberger’s algorithm, the results at one stage affect the results at later stages by

modifying a global variable. In this case we were able to convert the algorithm to

one which does not use a global variable but instead performs some small number of

redundant calculations.

Sometimes the level of parallelism available is on a low enough level that directly

exploiting it on a general purpose multiprocessor is impractical because of the ratio

of the overhead to the useful work. In this situation, depending on distribution of

execution times, a collusive algorithm can yield speedups. Furthermore, we have seen

that the implementation of these algorithms can be quite simple in the parallel setting.

This situation is exemplified by the parallel integer factorization algorithm presented

in Chapter 4.

It seems that each problem in computer algebra has some inherent parallelism. In

each of the problems we examined, we found clear sources of parallelism. Although in

each problem it took a slightly different form, we saw that it was possible to code the

algorithms using two primitives for high-level parallelism: AllOf and OneOf. These

express AND-parallelism and OR-parallelism, respectively.

Our implementation of AllOf and OneOf uses a fixed set of processes working

together on a problem heap or in collusion. Internally, blocking message passing is

used and synchronization and load sharing are based on the blocking semantics. The

communication scheme used for the problem heap is the Administrator concept of

Gentleman. We call the corresponding communication scheme for collusion the Don

concept. We found that it was not necessary for the algebraic algorithms to use general

facilities for interprocess communication. The Administrator and Don communication

paradigms embodied in the parallel processing primitives were capable of handling the

desired interactions.

85

86

A general purpose computer algebra system requires many man years to construct.

The time to develop the programming language and to implement an interpreter or

compiler, although substantial, is dwarfed by the amount of effort that is expended in

developing the library of mathematical software. With such a body of code, it is a very

real concern not to become locked in to a particular processor or architecture. If the

language provides operators to express parallelism at a high level, then the dependencies

are minimized.

If a system is to be able to take advantage of parallelism, it is better able to do so

when explicitly shown where parallelism exists. Even if the computing system upon

which the computer algebra system rests does not support multiprocessing, there is

no harm in explicitly expressing the high-level parallelism inherent in the algebraic

algorithms.

We argue that it is desirable to explicitly indicate high-level parallelism in the source

both for algorithmic clarity and for portability of any newly developed computer algebra

systems.

9.2 Contributions

The original material presented in this thesis includes:

1. A mathematical formulation of collusion and a demonstration that identical col-

luding processes can yield a speedup even on a single processor.

2. A high-level construct for OR-parallelism which is analogous to the use of the

Administrator construct used with AND-parallelism.

3. Parallel algorithms for specific computer algebra problems. Specifically a col-

lusive algorithm for integer factorization and problem heap algorithms for the

calculation of multivariate polynomial GCDs and the computation of Gröbner

bases.

4. A distributed programming environment for the implementation of parallel com-

puter algebra programs.

9.3 Directions for Further Work

A very exciting direction for work in integer factorization would be to invesitgate various

methods using collusion on a SIMD processor. It should be possible to get good results

exploiting a vector architecture with Lenstra’s method.

CONCLUDING REMARKS

87

For some time much research activity has been devoted to the complexity of Gröbner

basis calculation [Mayr82]. It would be useful to determine how many reductions are

required by the parallel algorithm that are not required by the serial algorithm.

Our investigation of Gröbner bases calculation was in a message passing context.

It would also be interesting to see what would be possible given a shared memory

multiprocessor.

Our multiprocessing system was obtained by modifying an existing serial system.

It would be useful to build a parallel computer system from the ground up.

There are a host of problems in computer algebra of which we have examined only

a small number. In each we saw opportunities to take advantage of parallelism. Given

this, the whole body of computer algebra literature is open for review.

CONCLUDING REMARKS

BIBLIOGRAPHY

General References

[Aczel66] J. Aczel, Lectures on Functional Equations and their Applica-

tions, Academic Press, New York (1966).

[Ben-Or83] M. Ben-Or, “Lower Bounds for Algebraic Computation Trees”,

pp. 80-86 in Proc. 15th Annual ACM Symposium on the The-

ory of Computing, (April 1983).

[Bentley80] J.L. Bentley, “Multidimensional Divide and Conquer”, Comm.

ACM 23 (4) pp. 214-229 (1980).

[Caferra85] R. Caferra and P. Jorrand, “Unification in Parallel with Re-

fined Linearity Test”, pp. 539-540 in Proc. Eurocal’85, Vol. 2

ed. B.F. Caviness, European Computer Algebra Conference,

Linz, Austria (April 1985), Springer-Verlag Lecture Notes in

Computer Science No. 204.

[Char85] B.W. Char, K.O. Geddes, G.H. Gonnet and S.M. Watt, Maple

User’s Guide, Watcom Publications, Waterloo (1985).

[Cheriton79a] D.R. Cheriton, M.A. Malcolm, L.S. Melen, and G.R. Sager,

“Thoth, a Portable Real-Time Operating System”,

Comm. ACM 22 (2) pp. 105-115 (1979).

[Cheriton79b] D.R. Cheriton, “Multi-process Structuring and the Thoth Op-

erating System”, University of Waterloo, Ph.D. Thesis (1979).

[Coffman80] E.G. Coffman and K. So, “On the Comparison Between Single

and Multiple Processor Systems”, Proc. 7th Annual Sympo-

sium on Computer Architecture pp. 72-79, IEEE (1980).

[David62] F.N. David and D.E. Barton, Combinatorial Chance, Hafner

Publishing Company, New York (1962).

[Fich85a] F.E. Fich, F.M. auf der Heide, P. Ragde and A. Wigderson,

“One, Two, Three ... Infinity: Lower Bounds for Parallel Com-

putation”, pp. 48-58 in Proc. 17th Annual ACM Symposium

on the Theory of Computing, Providence, R.I. (May 1985).

88

89

[Flynn66] M.J. Flynn, “Very High-Speed Computing Systems”,

Proc. IEEE 54 pp. 1901-1909 (1966).

[Friebiblist85] K. Friebiblist and L. Ronyai, “Polynomial Time Solutions of

Some Problems in Computational Algebra”, pp. 153-162 in

Proc. 17th Annual ACM Symposium on the Theory of Com-

puting, Providence, R.I. (May 1985).

[Gentleman81] W.M. Gentleman, “Message Passing Between Sequential Pro-

cesses: the Reply Primitive and the Administrator Concept”,

Software—Practice and Experience, 11 pp. 435-466 (1981).

[Gentleman83] W.M. Gentleman, “Using the Harmony Operating System”,

Report NRCC No. 23030, National Research Council, Canada

(December 1983).

[Gottlieb82] A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe,

L. Rudolph and M. Shir, “The NYU Ultracomputer—

Designing a MIMD, Shared-Memory Parallel Machine”, Proc.

9th Annual Symposium on Computer Architecture, ACM

SIGARCH Newsletter 10 (3) pp. 27-42 (April 1982).

[Hibino80] Y. Hibino, “A Practical Parallel Garbage Collection Algorithm

and It’s Implementation”, Proc. 7th Annual Symposium on

Computer Architecture, IEEE (1980).

[Hoare76] C.A.R. Hoare, “Parallel Programming: An Axiomatic Ap-

proach”, pp.11-42 in Language Hierarchies and Interfaces,

ed. F. L. Bauer and K. Samelson, Springer-Verlag Lecture

Notes in Computer Science No. 46, Berlin (1976).

[Hoare78] C.A.R. Hoare, “Communicating Sequential Processes”,

Comm. ACM 21 (8) pp. 666-677 (1978).

[Knuth73] Donald E. Knuth, The Art of Computer Programming, Vol-

ume 1: Fundamental Algorithms, 2nd Edition, Addison-

Wesley, Reading, Massachusetts (1973).

BIBLIOGRAPHY

90

[Knuth81] Donald E. Knuth, The Art of Computer Programming, Vol-

ume 2: Seminumerical Algorithms, 2nd Edition, Addison-

Wesley, Reading, Massachusetts (1981).

[Leffler83] S.J. Leffler, W.N. Joy and M.K. McKusick, Unix Program-

mer’s Manual, 4.2 Berkeley Software Distribution, Virtual

VAX-11 Version, University of California, Berkeley (August

1983).

[Legendi85] T. Legendi, “Cellular Algorithms and Machines: An

Overview”, no manuscript, Eurocal’85, European Computer

Algebra Conference, Linz, Austria (April 1985).

[Moller-Nielsen83] P. Moller-Nielsen and J. Staunstrup, “Saturation in a Mul-

tiprocessor”, pp. 383-388 in Information Processing 83,

ed. R.E.A. Mason, Elsevier Science Publishers, North-Holland

(1983).

[Moller-Nielsen84] P. Moller-Nielsen and J. Staunstrup, “Experiments with a

Multiprocessor”, Report DAIMI PB-185, Computer Science

Department, Aarhus University, Aarhus, Denmark, Nov. 1984.

[Rivest78] R. Rivest, A. Shamir and L. Adleman, “A Method for Ob-

taining Digital Signatures and Public Key Cryptosystems”,

Comm. ACM, 21 (2), (1978).

[Salvador78] M.S. Salvador, “Scheduling and Sequencing”, in Handbook of

Operations Research: Models and Applications, ed. J. J. Moder

and S. E. Elmaghraby, Van Nostrand Reinhold, New York

(1978).

[Smith78] R. G. Smith, A Framework for Problem Solving in a Dis-

tributed Processing Environment, Report STAN-CS-78-700,

Stanford University (1978).

[Wallach82] Y. Wallach, “Alternating Sequential/Parallel Processing”,

Springer-Verlag Lecture Notes in Computer Science No. 127,

Berlin, (1982).

BIBLIOGRAPHY

91

[Wang78] P. S. Wang, “An Improved Multivariate Polynomial Factoring

Algorithm”, Math. Comp. 32 (144) pp. 1215-1231 (1978).

[Wise84] D.S. Wise, “Representing Matrices as Quad Trees for Parallel

Processes”, ACM SIGSAM Bulletin 18 (3) pp. 24-25 (1984).

[Yao83] A.C. Yao, “Lower Bounds by Probabilistic Arguments”, pp.

420-428 in Proc. 24th Annual IEEE Symposium on Founda-

tions of Computer Science (1983).

Parallelism in Computer Algebra

[Arnon84] Dennis Arnon, Editor, “Report Of Workshop on Supercom-

puters and Symbolic Computation”, Purdue University, West

Lafayette, Indiana, May 1984.

[Beardsworth81] R. Beardsworth, “On the Application of Array Processes to

Symbol Manipulation”, pp. 126-130 in Proc. SYMSAC ’81,

ed. Paul S. Wang, 1981 ACM Symposium on Symbolic and

Algebraic Computation, Snowbird, Utah (August 1981).

[Bibel84] W. Bibel and B. Buchberger, “Towards a Connection Machine

for Logical Inference”, Technical Report of Computer Aided

Mathematical Problem Solving Group, CAMP-Publ.-Nr. 84-

19.0, Johannes Kepler University, Linz, (October 1984).

[Berman84] Robert Berman, “Measuring the Performance of a Computa-

tional Physics Environment”, pp. 244-290 in Proc. 1984 Mac-

syma User’s Conference, Schenectedy, New York (July 1984).

[Borodin82] A. Borodin, J. von zur Gathen and J. Hopcroft , “Fast Parallel

Matrix and GCD Computations”, Information and Control

52 pp. 241-256 (1982) also available as pp. 65-71 in Proc.

23th Annual IEEE Symposium on Foundations of Computer

Science, (November 1982).

[Buchberger85a] B. Buchberger, “The Parallel L-Machine for Symbolic Compu-

tation”, pp. 541-542 in Proc. Eurocal’85, Vol. 2 ed. B.F. Cavi-

ness, European Computer Algebra Conference, Linz, Austria

BIBLIOGRAPHY

92

(April 1985), Springer-Verlag Lecture Notes in Computer Sci-

ence No. 204.

[Davenport81] James H. Davenport, On the Integration of Algebraic Func-

tions, Springer-Verlag Lecture Notes in Computer Science No.

102, Springer-Verlag, Berlin (1981).

[Davenport84] J.H. Davenport and Yves Robert, “VLSI et Calcul Formel:

l’example du PGCD” in Comportement des automates et ap-

plications (Proceedings), Springer-Verlag (to appear).

[Eberly84] W. Eberly, “Very Fast Parallel Matrix and Polynomial Arith-

metic”, pp. 21-30 in Proc. 25th Annual IEEE Symposium

on Foundations of Computer Science, Sugar Island, Florida,

(1984).

[Fateman84] R.J. Fateman, “My View of the Future of Symbolic and Al-

gebraic Computation”, ACM SIGSAM Bulletin 70 pp.10-11

(1984).

[Fich85b] F.E. Fich and M. Tompa, “The Parallel Complexity of Expo-

nentiating Polynomials over Finite Fields”, pp. 38-47 in Proc.

17th Annual ACM Symposium on the Theory of Computing,

Providence, R.I. (May 1985).

[Gathen83a] J. von zur Gathen, “Representations of Rational Functions”,

pp. 133-137 in Proc. 24th Annual IEEE Symposium on Foun-

dations of Computer Science (November 1983).

[Gathen83b] J. von zur Gathen, “Parallel Algorithms for Algebraic Prob-

lems”, pp. 17-23 in Proc. 15th Annual ACM Symposium on

the Theory of Computing, (April 1983) also available as SIAM

J. Comp. 13 (4) pp. 802-824 (1984).

[Gathen84] J. von zur Gathen, “Parallel Powering”, pp. 31-36 in Proc.

25th Annual IEEE Symposium on Foundations of Computer

Science, Singer Island, FA. (1984).

[Kaltofen85a] Erich Kaltofen, “Computing with Polynomials Given by

Straight-Line Programs I: Greatest Common Divisors”, pp.

BIBLIOGRAPHY

93

131-142 in Proc. 17th Annual ACM Symposium on the The-

ory of Computing, Providence, R.I. (May 1985).

[Kaltofen85b] Erich Kaltofen, “Computing with Polynomials Given by

Straight-Line Programs II: Sparse Factorization”, Rensselaer

Polytechnic Institute, Department of Computer Science, Troy,

NY, Preprint (1985).

[Kaltofen85c] Erich Kaltofen, “Parallelizing Computations of Rational Func-

tions”, Rensselaer Polytechnic Institute, Department of Com-

puter Science, Troy, NY, Preprint (1985).

[Kaltofen85d] Erich Kaltofen, M. Krishnamoorthy and B. David Saunders,

“Fast Parallel Computation of Hermite and Smith Forms of

Polynomial Matrices”, Rensselaer Polytechnic Institute, De-

partment of Computer Science, Troy, NY, Preprint (1985).

[Kung81] H.T. Kung “Use of VLSI in Algebraic Computation: Some

Suggestions”, pp. 218-222 in Proc. SYMSAC ’81, ed. Paul

S. Wang, 1981 ACM Symposium on Symbolic and Algebraic

Computation, Snowbird, Utah (August 1981).

[Marti83] J. Marti and J. Fitch, “The Bath Concurrent LISP Machine”,

pp. 78-90 in Proc. Eurocal’83, ed. J.A. van Hulzen, Euro-

pean Computer Algebra Conference, London, England (March

1983).

[Pan85] V. Pan and J. Reif, “Efficient Parallel Solution of Linear Sys-

tems”, pp. 153-162 in Proc. 17th Annual ACM Symposium on

the Theory of Computing, Providence, R.I. (May 1985).

[Reif83] John Reif, “Logarithmic Depth Circuits for Algebraic Func-

tions”, pp. 138-145 in Proc. 24th Annual IEEE Symposium

on Foundations of Computer Science (1983).

[Sasaki81] T. Sasaki and Y. Kanada “Parallelism in Algebraic Compu-

tation and Parallel Algorithms for Symbolic Linear Systems”,

pp. 155-159 in Proc. SYMSAC ’81, ed. Paul S. Wang, 1981

ACM Symposium on Symbolic and Algebraic Computation,

Snowbird, Utah (August 1981).

BIBLIOGRAPHY

94

[Smit83] J. Smit “Computer Algebra and VLSI, Prospects for Cross

Fertilization”, pp. 275-285 in Proc. Eurocal’83, ed. J.A. van

Hulzen, European Computer Algebra Conference, London,

England (March 1983).

[Valiant81] L.G. Valiant and S. Skyum, “Fast Parallel Computation of

Polynomials Using Few Processors”, pp. 132-139 in Springer

Verlag Lecture Notes in Computer Science No. 118, New York

(1981).

[Valiant83] L.G. Valiant, S. Skyum, S. Berkowitz and C. Rackoff, “Fast

Parallel Computation of Polynomials Using Few Processors”,

SIAM J. Comp. 12 (4) pp. 641-644 (1983).

[Watt85] S.M. Watt, “A System for Parallel Computer Algebra Pro-

grams”, pp. 537-538 in Proc. Eurocal’85, Vol. 2 ed. B.F. Cavi-

ness, European Computer Algebra Conference, Linz, Austria

(April 1985), Springer-Verlag Lecture Notes in Computer Sci-

ence No. 204.

[Yun85] Y.Y. Yun and C.N. Zhang “Binary Paradigm and Systolic Ar-

ray Implementation for Residue Arithmetic”, no manuscript,

Eurocal’85 Euoropean Computer Algebra Conference, Linz,

Austria (April 1985).

Scheduling

[Coffman78] E.G. Coffman, Jr., M.R. Garey and D.S. Johnson, “An Appli-

cation of Bin-Packing to Multiprocessor Scheduling”, SIAM

J. Comp. 7 (1) pp. 1-17 (1978).

[Ecker78] Klaus Ecker, “Analysis of a Simple Strategy for Resource Con-

strained Task Scheduling”, pp.181-183 in Proc. 1978 Interna-

tional Conference on Parallel Processing , (August 1978).

[Garey73] M.R. Garey, “Optimal Task Sequencing with Precedence Con-

straints”, Discrete Math. 4 pp. 37-56 (1973).

BIBLIOGRAPHY

95

[Garey75a] M.R. Garey and R.L. Graham, “Bounds for Multiprocessing

Scheduling with Resource Constraints”, SIAM J. Comp. 4 (2)

pp. 187-190 (1975).

[Garey75b] M.R. Garey and D.S. Johnson, “Complexity Results for Mul-

tiprocessor Scheduling Under Resource Constraints”, SIAM

J. Comp. 4 (4) pp.397-400 (1975).

[Graham66] R.L. Graham, “Bounds for Certain Multiprocessing Anoma-

lies”, Bell System Technical Journal pp.1563-1581 (November

1966).

[Graham69] R.L. Graham, “Bounds on Multiprocessing Timing Anoma-

lies”, SIAM J. Appl. Math. 17 (2) pp.416-429 (1969).

[Gottlieb83] A. Gottlieb, B.D. Lubachevsky and L. Rudolph, “Basic Tech-

niques for the Efficient Coordination of Very Large Num-

bers of Cooperating Sequential Processors”, ACM Transac-

tions on Programming Languages and Systems 6 (2) pp. 165-

189 (1983).

[Lai84] Ten-Hwang and Sartaj Sahni, “Anomalies in Parallel Branch-

and-Bound Algorithms”, Comm. ACM 27 (6) pp.594-602

(1984).

[Lawler66] E.L. Lawler and D.E. Wood, “Branch-and-Bound Methods: A

Survey”, Operations Research 14 pp.699-719 (1966).

[Mehrotra84] R. Mehrotra and S.N. Talukdar, “Scheduling of Tasks for Dis-

tributed Processors”, ACM SIGARCH Newsletter 12 (3) pp.

263-270 (1984).

[Simons80] B. Simons, “A Fast Algorithm for Multiprocessor Scheduling”,

pp. 50-53 in Proc. of the 21st Annual Symposium on Founda-

tions of Computer Science, Syracuse, N.Y. (October 1980).

Collusion

[Baudet78] G.M. Baudet, “The Design and Analysis of Algorithms for

Asynchronous Multiprocessors”, Carnegie-Mellon University,

BIBLIOGRAPHY

96

Ph.D. Thesis (1978).

[Floyd67] R.W. Floyd, “Nondeterministic Algorithms”, JACM 14 (4)

pp. 636-644 (1967).

[Kadane69] J.B. Kadane, “Quiz Show Problems”, J. Math. Anal. Appl. 26

pp. 609-623 (1969).

[Kornfeld81] W.A. Kornfeld, “The Use of Parallelism to Implement a

Heuristic Search”, pp. 575-580 in The Proceedings of the Sev-

enth International Joint Conference on Artificial Intelligence

(IJCAI-81), (August 1981).

[Kornfeld82] W.A. Kornfeld, “Combinatorially Implosive Algorithms”,

Comm. ACM 25 (10) pp. 734-738 (1982).

[Mitten60] L.G. Mitten, “An Analytic Solution to the Least Cost Testing

Sequence Problem”, J. Indust. Engineering p. 17 (January-

February 1960).

[Nau82] D.S. Nau, V. Kumar and L. Kanal, “A General Paradigm for

A.I. Search Procedures”, pp. 120-123 in Proc. Nat’l Conf. on

AI, (AAAI-82) CMU (1982).

[Price59] H.W. Price, “Least-Cost Testing Sequence”, J. Indust. Engi-

neering (July-August 1959).

[Reif84] J.H. Reif, “On Synchronous Parallel Computations with In-

dependent Probabilistic Choice”, SIAM J. Comp. 11 (1) pp.

46-56 (1984).

[Simon75] H.A. Simon and J.B. Kadane, “Optimal Problem-Solving

Search: All-or-None Solutions”, AI 6 pp. 235-247 (1975).

[Vishkin84] U. Vishkin, “Randomized Speed-ups in Parallel Computa-

tion”, pp. 230-239 in Proc. 16th Annual ACM Symposium

on the Theory of Computing, Washington, D.C. (May 1984).

BIBLIOGRAPHY

97

Integer Factorization

[Brent80] R.P. Brent , “An Improved Monte Carlo Factorization Algo-

rithm”, BIT 20, pp. 176-184 (1980).

[Brent81] R.P. Brent and J.M. Pollard, “Factorization of the Eighth Fer-

mat Number”, Math. Comp. 36 (4) pp. 627-630 (1981).

[Buell84] D.A. Buell, “The Expectation of Success Using a Monte Carlo

Factoring Method - Some Statistics on Quadratic Class Num-

bers”, Math. Comp. 43 (167) pp. 313-327 (1984).

[Chudnovsky85a] D.V. Chudnovsky and G.V. Chudnovsky, “Sequences of Num-

bers Generated by Addition in Formal Groups and New Pri-

mality and Factorization Tests”, Report RC 11262, IBM Re-

search Division, San Jose/Yorktown/Zurich, (1985).

[Chudnovsky85b] D.V. Chudnovsky and G.V. Chudnovsky, “Elliptic Curve Cal-

culations in Scratchpad II”, in Scratchpad II Newsletter 1 (1)

(1985).

[Davis84] J.A. Davis and D.B. Holdridge, “Most Wanted Factorizations

Using the Quadratic Sieve”, Report SAND84-1658, SANDIA

National Laboratories, Livermore (1984).

[Dixon81] John D. Dixon, “Asymptotically Fast Factorization of Inte-

gers”, Math. Comp. 36 (153) pp.255-260 (1981).

[Galambos76] J. Galambos “The Sequence of Prime Divisors of Integers”,

Acta Arithmetica 31 pp. 213-218 (1976).

[Knuth76] Donald E. Knuth and Luis Trabb Pardo, “Analysis of a Simple

Factorization Algorithm”, Theor. Comp. Sci. 3 pp. 321-348

(1976).

[Lenstra85] H.W. Lenstra, Letter to A.M. Odlyzko, (February 14, 1985).

[Morrison75] M.A. Morrison and J. Brillhart, “A Method of Factoring and

the Factorization of F7”, Math. Comp. 29 (129) pp.183-205

(1975).

BIBLIOGRAPHY

98

[Pollard75] J.M. Pollard, “A Monte Carlo Method for Factorization”, BIT

15 pp. 331-334 (1975).

[Pollard78] J.M. Pollard, “Monte Carlo Methods for Index Computation

(mod p)” Math. Comp. 32, (143) pp. 918-924 (1978).

[Pomerance84] Carl Pomerance, Lecture Notes on Primality Testing and Fac-

toring: A Short Course at Kent State University, The Math-

ematical Association of America Notes No. 4 (1984).

[Riesel85a] Hans Riesel, Prime Numbers and Computer Methods for Fac-

torization, Birkhauser, Boston (1985).

[Riesel85b] Hans Riesel, “Modern Factorization Methods”, Bit 25 pp.

205-222 (1985).

[Schnorr84] C.P. Schnorr and H.W. Lenstra, Jr., “A Monte Carlo Factoring

Algorithm with Linear Storage”, Math. Comp. 43 (167) pp.

289-311 (1984).

[Williams81] H.C. Williams, “A Numerical Investigation into the Length

of the Period of the Continued Fraction Expansion of
√

D”,

Math. Comp. 36 (154) pp.593-601 (1981).

Greatest Common Divisors

[Brown71a] W.S. Brown, “On Euclid’s Algorithm and the Computation

of Polynomial Greatest Common Divisors”, J. ACM 18 (4)

pp.478-504 (1971).

[Brown71b] W.S. Brown and J.F. Traub, “On Euclid’s Algorithm and the

Theory of Subresultants”, J. ACM 18 (4) pp.505-514 (1971).

[Bryant83] M. Bryant, “The Sparse Modular GCD in Maple”, University

of Waterloo, December 1983, M.Math. Thesis.

[Char84] B.W. Char, K.O. Geddes and G.H. Gonnet, “GCDHEU:

Heuristic Polynomial GCD Algorithm Based on Integer GCD

Computation”, pp. 285-296 in Eurosam ’84, ed. John Fitch,

Springer Verlag Lecture Notes in Computer Science No. 174

(1984).

BIBLIOGRAPHY

99

[Collins67] G.E. Collins, “Subresultants and Reduced Polynomial Re-

mainder Sequences”, J. ACM, 14 (1), pp. 128-142, (1967).

[Collins71] G.E. Collins, “The Calculation of Multivariate Polynomial Re-

sultants”, J. ACM 18 (4) pp.515-532 (1971).

[Davenport84] J.H. Davenport and Yves Robert, “VLSI et Calcul Formel:

l’example du PGCD” in Comportement des automates et ap-

plications (Proceedings), Springer-Verlag (to appear).

[Davenport85] J.H. Davenport and J.A. Padget, “HEUGCD: How Elemen-

tary Upperbounds Generate Cheaper Data”, in pp. 18-28

in Proc. Eurocal’85, Vol. 2 ed. B.F. Caviness, European

Computer Algebra Conference, Linz, Austria (April 1985),

Springer-Verlag Lecture Notes in Computer Science No. 204.

[Hearn79] A.C. Hearn, “Non-Modular Computation of Polynomial GCDs

Using Trial Division”, pp. 227-239 in Symbolic and Algebraic

Computation, ed. E.W. Ng, Proc. EUROSAM ’79, An Interna-

tional Symposium on Symbolic and Algebraic Manipulation,

Marseille, France (June 1979), Springer Verlag Lecture Notes

in Computer Science No. 72.

[Kaltofen85a] Erich Kaltofen, “Computing with Polynomials Given by

Straight-Line Programs I: Greatest Common Divisors”, pp.

131-142 in Proc. 17th Annual ACM Symposium on the The-

ory of Computing, Providence, R.I. (May 1985).

[Knuth81] Donald E. Knuth, The Art of Computer Programming, Vol-

ume 2: Seminumerical Algorithms, 2nd Edition, Addison-

Wesley, Reading, Massachusetts (1981).

[Moses73] J. Moses and D.Y.Y. Yun, “The EZ-GCD Algorithm”, pp.

159-166 in Proceedings of the A.C.M. Annual Conference, At-

lanta (1973).

[Zippel79] Richard Zippel, Probabilistic Algorithms for Sparse Polyno-

mials, Massachusetts Institute of Technology, PhD. Thesis,

(1979).

BIBLIOGRAPHY

100

[Zippel81] Richard Zippel, “Newton’s Iteration and the Sparse Hensel Al-

gorithm”, pp. 68-72 in Proc. SYMSAC ’81, ed. Paul S. Wang,

1981 ACM Symposium on Symbolic and Algebraic Computa-

tion, Snowbird, Utah (August 1981).

Gröbner Bases

[Buchberger76] B. Buchberger, “Some Properties of Gröbner Bases for Polyno-

mial Ideals”, ACM SIGSAM Bulletin 10 (4) pp. 19-36 (1976).

[Buchberger79] B. Buchberger, “A Criterion for Detecting Unnecessary Re-

ductions in the Construction of Gröbner Bases”, pp. 3-

21 in Symbolic and Algebraic Computation, ed. E.W. Ng,

Proc. EUROSAM ’79, An International Symposium on Sym-

bolic and Algebraic Manipulation, Marseille, France (June

1979), Springer Verlag Lecture Notes in Computer Science No.

72.

[Buchberger82] B. Buchberger and R. Loos, “Algebraic Simplification”, in

Computer Algebra: Symbolic and Algebraic Computation

ed. B. Buchberger, G.E. Collins and R. Loos, Springer-Verlag,

New York (1982).

[Buchberger83] B. Buchberger, “A Critical-Pair/Completion Algorithm for

Finitely Generated Ideals in Rings”, in Logic and Matrices:

Decision Problems and Complexity, Proc. Symposium Kam-

sive Kombinatork, (May 1983).

[Buchberger85b] B. Buchberger, “Gröbner Basis: An Algorithmic Method in

Polynomial Ideal Theory”, in Recent Trends in Multidimen-

sional Systems Theory, ed. N.K. Bose, D. Reidel Publishing

Co. (1985).

[Gianni85] P. Gianni and B. Trager, “GCD’s and Factoring Multivariate

Polynomials using Gröbner Bases”, pp. 409-410 in Proc. Euro-

cal’85, ed. B.F. Caviness, European Computer Algebra Con-

ference, Linz, Austria (April 1985), Springer-Verlag Lecture

Notes in Computer Science No 204.

BIBLIOGRAPHY

101

[Kandri-Rody84] A. Kandri-Rody and D. Kapur, “Algorithms for Computing

Gröbner Bases of Polynomial Ideals Over various Euclidean

Rings”, pp.195-206 in Proc. Eurosam’84, ed. John Fitch, In-

ternational Symposium on Symbolic and Algebraic Computa-

tion, Cambridge, England (July 1984), Springer Verlag Lec-

ture Notes in Computer Science No. 174.

[Kandri-Rody85] A. Kandri-Rody and D. Kapur and P. Narendran, “An Ideal

Theoretic Approach to Word Problems and Unification Prob-

lems over Finitely Presented Commutative Algebras”, pp.

243-262 in Rewriting Techniques and Applications, ed. J.-

P. Jouannaud, Proc. 1st International Conference, Universite

de Dijon, France (May 1985), Springer Verlag Lecture Notes

in Computer Science No. 202.

[Mayr82] E.W. Mayr and A.R. Meyer, “The Complexity of the Word

Problems for Commutative Semigoups and Polynomial Ide-

als”, Advances in Mathematics, 46 pp. 305-329 (1982).

[Winkler83] Franz Winkler, “On the Complexity of the Gröbner-Basis Al-

gorithm over K[x,y,z]”, pp. 184-194 in Proc. Eurosam’84,

ed. John Fitch, International Symposium on Symbolic and

Algebraic Computation, Cambridge, England (July 1984),

Springer Verlag Lecture Notes in Computer Science No. 174.

