RC 12794 (#57573) 5/27/87
Mathematics 9 pages

INFINITE STRUCTURES IN SCRATCHPAD 11

William H. Burge
Stephen M. Watt

IBM Thomas J. Watson Research Center
Box 218, Yorktown Heights, NY 10598 USA

Abstract

An infinite structure is a data structure which cannot be fully constructed in any fixed amount of
space. Several varieties of infinite structures are currently supported in Scratchpad II: infinite se-
quences, radix expansions, power series and continued fractions. Two basic methods are employed
to represent infinite structures: self referential data structures and lazy evaluation. These may be
employed either separately or in conjunction.

This paper presents recently developed facilities in Scratchpad {I for manipulating infinite struc-
tures. General techniques for manipulating infinite structures are covered, as well as the higher level
manipulations on the various types of mathematical objects represented by infinite structures.

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will
probably be copyrighted if accepted for publication. It has been issued
as a Research Report for early dissemination of its contents. In view
of the transfer of copyright to the outside publisher, its distribution
outside of IBM prior to publication should be limited to peer
communications and specific requests. After outside publication,
requests should be filled only by reprints or leqgally obtained copies of
the article (e.g., payment of royalties).

221 Research Division
Almaden ¢ Yorktown e Zurich

INFINITE STRUCTURES IN SCRATCHPAD 11

William H. Burge
Stephen M. Wan

IBM Thomas J. Watson Research Center
Box 218, Yorktown Heights, NY 10598 USA

Abstract

An infinite structure is a data structure which cannot be fully constructed in any fixed amount of
space. Several varieties of infinite structures are currently supported in Scratchpad I: infinite se-
quences, radix expansions, power series and continued fractions. Two basic methods are employed
to represent infinite structures: self referential data structures and lazy evaluation. These may be

employed either separately or in conjunction.

This paper presents recently developed facilities in Scratchpad II for manipulating infinite struc-
tures. General techniques for manipulating infinite structures are covered, as well as the higher level
manipulations on the various types of mathematical objects represented by infinite structures.

1. Introduction

An infinite structure is a data structure which cannot
be fully constructed in any bounded amount of space.
Examples are a list of the digits of = or an explicit
representation of 7% Z — Z as a set of ordered pairs.
On the other hand a finite structure is the opposite:
it is a data structure which can be be fuily constructed
in finite storage.

It is common practice to use different data structures
to represent the same value, according to the oper-
ations which are expected 1o be performed. For ex-
ample, a collection of strings may be stored in any one
of a linked list, 2 bipary search tree or a hash table.
Normally, these data structures will have differing
storage requirements.

A value which has a representation as an infinite
structure might also be represented by other infinite
or finite structures. For example, the Fibonacci num-
bers can be given either as an infinite sequence of in-
tegers or as a finite recurrence with initial values.
Likewise, sin(x) can be represented by infinite struc-
tures (a power series, a continued fraction, an infinite
product) or by finite structures (a differential equation
with initial value, an expression tree).

Scratchpad Il has a number of facilities for creating
and manipulating infinite structures. Two principal
techniques are emploved: (i) folding recursive data
structures to be self-referential, and (ii) lazy evaluation.

This paper describes how these techniques are used to
create and manipulate infinite structures in Scratchpad
IL.

[INFINITE STRUCTURES [N SCRATCHPAD 11

We begin in section 2 by summarizing the gencral
techniques for manipulating infinite structures. In
section 3 the use of these techmiques in creating
streams, a low-level data type for representing infinite
sequences is shown. In sections 4, 5 and 6 we give a
number of examples of mathematical objects in terms
of infinite structures. Section 4 discusses radix expan-
sion of numbers. Section 5 describes the implemen-
tation of power series in terms of streams. Section 6
shows infinite continued fractions in normal form.
Finally, in section 7, future developments are dis-
cussed.

2. Techniques for Infinite Structures

2.1, Self-Referential Data Structures

Structures for composite data are often defined
recursively. Two common examples are linked lists
and binary trees. The tail of a linked list has the same
type as the whole list, and both branches of a binary
tree have the same type as the whole tree.

Programs which traverse recursively defined data
structures often have a logical structure which mirrors
the data structure. Such programs have only a local
view of the data. On recursive calls, they consider their
argument as being the wholie data structure and posi-
tional information relating to the original structure is
lost.

If it is possible 1o assign to parts of the data structure
(e.g. record field assignment), then a self-referring cv-
cled object may be created. This can lead to bugs in
programs which are wrilten to have only a local view

of the structure and which are expected to completely
traverse a finite structure.

On the other hand, self-referential data structures are
ideal for representing infinite structures which have
some form of periodicity. Programs written to traverse
a logically infinite structure can use an equivalent self~
referential finite structure so long as they do not mod-
ify it as they proceed. Such programs are written to
traverse only a finite portion of the logically infinite
structure or are intentionally non-terminating.

As an example, consider power series represented as
an infinite list of coefficients, with the i element being
the coefficient to the term of degree i Then the series
for 1j(x + 1) is a cycle of two elements: [1, — 1] and
the series for a polynomial has a one element cycle of
zeros at the end.

2.2. Lazy Evaluation

It is common practice to use procedural abstraction in
programming languages to represent mappings finitely.
This allows a possibly infinite set of ordered pairs of
the mapping to be represented by an equivalent struc-
ture: the program. Then when points from the map-
ping are necded they are computed on demand by
invoking the program on elements of the mapping’s
domain.

This is the fundamental idea of lazy evaluation: con-
struct a value when it is to be used rather than when
it is defined. For extended or aggregate data structures,
construct the parts when they are required.

To construct an object as it is used, each uncon-
structed portion is represented as a program with some
state information. The program part may be explicit
(e.g. a pointer to a function) or impilicit (a fixed inter-
preter) and the state information, if any, may be stored
in global vanables, in the data structure, or in a closed
environment of the program part.

2.3. Fixed Point Operations

A fixed point x of a map fis a point in the domain of
[such that x = f{x). Given a function which operates
on 2 recursively defined data type, it is often possible
to compute a useful fixed point. A powerful method
for manipulating infinite structures is to compute the
fixed point of structure transforming functions. As
well as providing a functional mechanism for con-
structing self-referential structures, a combination of
lazy evaluation and self-reference may be achieved.

Consider a recursively defined data type 7 and the
class of functions mapping 7 — T. Certain functions

in this class have trivial fixed points: the identity and
constant valued functions. Some functions in the class
may have no fixed point. The fact that negation has
no fixed point leads to the Russell paradox. Other
functions may have a fixed point which it is impossible
to compute effectively.

Let us restrict our attention to functions which do not
perform operations on their argument but rather just
include it in a new structure which is returned as the
value. Then we may always compute a fixed point as
follows:

finedPoine(f) ==
arg e generateUnique(}
rat := f{arg)
if arg = ret then
== { is the idencity
return arh. elenent from the domain of f
else
rec = sybs{arg = rec in rac)
return ret

Here generateUnique is a function which retums a
unique system-wide value. Since f does not perform
any operations on its argument, it is safe 10 pass it this
generated umique value, which strictly speaking does
not lie in its domain.

From the definition of ffxedPoint above we see that,

for functions 1 our restricted class, the set of fixed

points will be one of

* asingle constant (for functions which ignore their
argument),

¢ the entire domain (for the identity function), or

* a single infinite structure

As an example, an infinite repeating list of values can
be obtained as follows:

consl23a(1) == cons{],cons(2.cons(3.cons{d,1}}})

repeatingl234 := fixedPoinc consi2i4

To combine lazy evaluation and self-reference, one
builds a lazily evaluated object in which the state in-
formation for the unconstructed part contains refer-
ences back to the whole object. It is convement to use
a fixed point calculation to build such objects. Ex-
amples of this are given in sections 3.4.

3. Streams

3.1. Language Support

Streams have been in Scratchpad [I for some time.
They have recently been reorganized into a domain'
similar to lists, but with the difference that they might
be infinite.

! Here the word “domain” is Scratchpad Ul terminology for “abstract data type”.

INFINITE STRUCTURES 1IN SCRATCHPAD 11

The language provides special syntax for creating and
iterating over lists and streams. This syntax is merely
a convenience — it is ultimately translated into calis
to operations on a list or stream type, as appropriate.
Some of the stream functions are cons, null, first,
rest take, drop and elt (similar to the list functions),
together with functions for creating finite and infinite
Sireams.

We begin this section on streams by- illustrating with .

some examples of the language support.

a = [1..]

(1) (1,2,3,4,5,6,7.8,9,10,...]
b :» [t+] for 1 in a]

{2} [(2,3.4,5,6,7,8,9,10,11,...]

Select the 20th element (0-based indexing):

b.20
3y 22

At this point, the first 21 elements of b have been
evaluated.

(4) (2,3,4,5,6,7,8,9,10,11,12,13,14,15,
16,17.18,19,20.21.22....1]

The stream of odd integers can be created using a filter.

(i for i in a | addp il
(s} 1,3,5,7,9,11,13,15,17,19,...]

It is possible to combine multiple streams using par-
allel for iterators.

[[4,5] for i in a for j in b]
(6) ({1,21, (2.3], [3,4], (4,5], (5.6, (&,27],
(7,81, (8,91, (9,10], {10,11], ...}

-

append(x,y) 1s the concatenation of streams x and y.

append([i for i in a while i<7),a)
{7) 1,2,3,4,5,6,1,2,3,4,5,6.7,8,9,10,11,12,13,
14,15,16,17,18,19,20,.2t,...}

The sum of a finite streamn of integers:

reduce{0, _+5I, take(a,10))

{8} 55

A stream of partial sums:

INFINITE STRUCTURES IN SCRATCHPAD II

scan{0, +$I, a)

t9) [1,3,6,10,15,21,28,36.45.55....]

3.2. Lazy Evaluation in Streams

A stream is represented by a list whose last element is
a function that contains the wherewithal to create the
rest of the list from that point, should it ever be re-
quired. The function takes no arguments and when
invoked returns a stream of the appropriate type. The
Stream that it returns is used as the remainder of the
original stream, and the value it retuns becomes the
first member of the stream. The function is paired
with an environment which contains whatever state
information is required to extend the stream.

Since functions that extract elements from a stream
must test whether it is null before proceeding, the ne-
cessity of extending the stream can be determined by
the function which tests for a null stream. [t is the
function nul1 which does this. If nul1 determines that
more of the stream need be computed, then the par-
ticular stream-extending function is invoked. The
stream is updated in place to obviate re-evaluation.

Scratchpad I is an abstract data type language so the
representation of streams is invisible outside of the
code which defines the data type. To allow programs
to create infinite streamns using lazy evaluation the
stream data type exports the pnmitive operation
delay.

detay takes a nullary stream-valued function and re-
turns a stream of the same type. le.

delay: ()— Stream.T) — Stream T

This, by itself, is not very exciting. All that has hap-
pened is that the stream valued function has been
saved away somewhere, 10 be evaluated when elements
are required from the stream. The power of delay
comes from its use in the recursive definition of func-
tions.

To illustrate, consider the definition of the scan func-
tion. This function takes as parameters, an initial
value b, a binary function 4, and a stream x. The value
returned is the stream

[b, A (b, xp), A(A(D, %0)s X1)s - -]
scan may be defined in terms of detay as follows:

scan{b, h.x] ==
null x => nii()
delay
¢ :* hi{frst x,b}
cons(c,scanic,h,rse x})

The last two lines form the body of a nuilary function
to which delay is appilied.

)

delay also forms the basis of a style of programming
for the creation of infinite streams. The style is to use
intentionally recursive functions with no base case.
For example, the following function returns the stream
of Fibonnaci numbers when invoked on (1,1).

fib(a0, al) ==
cons{a0, delay fib(al, a0 +-al})

3.3. Self-Referential Streams

A second way to create infinite streams is through the
use of self-reference. The simplest way to do this is
with the function repeating. This function takes a list
of elements and produces a stream which repeats them
indefinitely.
repeacing [1, 2, 3]
1} (5EN

Although this could be implemented using lazy evalu-
ation, it is more efficient to represent this stream as a
list with the third tail pointing back to the beginning.

Other self-referential streams can be created using fixed
point operations. The simplest arc again repeating
streams. A subtler form of self-reference can be
achieved by computing a fixed point in which the state
information paired with the function contains a
pointer back into the stream itself. Examples of both
sorts are given in the following section.

3.4. Fixed Points of Stream Transforming
Functions

A fixed point finding operation is provided which op-
erates on a stream transforming function and finds its
fixed point, a stream.

aintegers 1
(2) [1,2,2.,4,5,6,7,8,9,i0,...]

The function below prefixes a 1 to an integer stream.

fl{x: ST [}): ST I == cons(i.x)
1 e
(4) (1,1,2,3.4.,5.6,7.8.9.10,...]

and the fixed point of f is an infinite stream of 1's

b := fixedPoint
s) (1)

Similarly

f2{x: ST 1): ST I == append([1,2,3,4,5.,6], x)
fixedPoinc 12
(8) 1,7,3,3.3,6,11

INFINITE STRUCTURES IN SCRATCHPAD Il

Here is another way to define the Fibonacci number
stream. The plus operation takes two streams and
adds them pair-wise.

f3(fib: ST I): ST I == coms{l.fibicons(D.fib}}
fab

(x0) (1,1,2,2.,2,2.2.2,2,2,...]
fixedPoint £

(11} [(1,1.2.3,5,8.13.21.34.55....]

The stream of Catalan numbers:

f4{cat: ST 1}: ST I »» cons(l,cat*cat)
fizedPoine f4
(14} [1,1.2,5,14,42,132,429,1430,4852,...]

The function integ integrates a stream viewed as the
coefficients of a power series.

ineeg b
111111111

{15) [Lemimumimimamimymemm e,
23145678910

Here we compute the fixed point of the function g that
integrates a stream, and adds the constant term 1.

gie: ST AW -» ST RN) == cons(l,inteq e)
finedPaing g
1r 1 1 1 1 1

(18) {1,1,=1m,=m oo mmm mmom wmmme oo

2°6°24 120 720 's040 ‘40320 ‘362880

It is also possible to find the fixed point of a function
that transforms a pair of streams to a pair of streams.

k(tr: L ST I} L ST I == [cons(Dd,er.1),1/{1-cr.0}]
k({{consi,b),b]}
(20) (ro,I3,(1,1,2,4,8,16,32,64,128,256,...1}

The fixed point of k is two mutually recursive streams.
Computing this provides ancther way to obtain the
stream of Catalan numbers.

fixedPoint(k, 2}

(21}
{t0,1,1,2,5,14,42,132,429,1430,...1,

£1.1,2,5,14,42,132,429,1420,4852,... 1]

4. Radix Expansions

In Scratchpad Il it is possible to evaluate certain nu-
meric types to decimal expansions or radix expansions
in other bases. The simplest of these is the expansion
of rational numbers. Here we give some examples.

First we define a couple of functions for coercion.

decimal r == r::0ecimalExpansion
radix(n, r) a=a r::RadixExpansion(n)

All rational values have repeating decimal expansions

decimal(22/7)
(a9} 3.142857

The arithmetic of decimal expansions is exact.

% + decimal(6/7}
(50) 4

The periods can be short or long:

{decimal(1/4} for i in 350..35)]
{51)
[0.00Z8571%, 0.0028%9, 0.0028403,
0.00283288 11598016997 167 1368101583)

decinal (1/2049)
{52)
a.
QVERBAR
000488042947779404587503709126401123474865788189
3606637384089799902391410444119082479256174719
3753050268423621278672523162040019521717911176
1835041483650561249389946315275744265495363591
9960956564177647632991703269887750122010736944
851146900927281600760869716447047 1401659346022

4499755978526110297706198145436798438262567105
90531966813079551

Scratchpad Il can do radix expansions in other bases.

(radix(i, 5:24) for i in 2..10]
{53)
[0.00113:RADIX 2, 0.012:RADIX 3, 0.031:RADIX 4,
0.10:RADIX 5, 0.113:RADIX 6, 0.T3:RADIX 7. 0.152:RADIX 8,
0.17:RADIX 9, 0.2083:RADIX 10]

For bases greater than 10, the ragits (radix digits) are
separated by blanks.

[radix{i, 5/24} for i in I1_.15]
(54}
[0 . Z:RADIX 11, 0 . 2 6:RADIX 12, 0 . T 9:RADIX 13,
0. 212 11 3 A:RADIX 14, 0 . 3 T TI:RADIX 15]

These numbers are bona fide algebraic objects.
p = decimal{1/4)*x"*2 + decimal{2/3)"x + decimal (4,9}
2 - -
(55} 0.25x + 0.6x + 0.4

q := pderivip, x}
(56} 0.5x + Q.6

INFINITE STRUCTURES [N SCRATCHPAD I

g = gedip, q)
57) x+ 1.3

The function fracRagits gives the stream of ragits in
the fractional part of its argument.

rr: RADIX{8) := 3/49
(53} 0.0I7ZEIS

fracRagics vr
(59} (0,3.7.2.5.1.,5,0?

3.30
(60} 7

5. Power Series

5.1. Construction via Defining Relation

The functions in the Stream domain and stream
packages are particularly suitable for the implementa-
tion of algorithms on power series. The domain
PowerSeries is provided as a field, and the domain
UnivariatePowerSeries and an elementary function
package adds to it the functions exp, log, sin, cos, tan,
the hypergeometric function, composition, lagrange
inversion, reversion together with the solution of linear
differential equations in power series.

A general method of producing programs which solve
recursion or differential equations in power series by
the method of undetermined coefficients has been de-
veloped in which the program can be written down .
almost immediately from the defining relation. [n the
method of undetermined coefficients a trial series to-
gether with an initial value or two is substituted into
the recursion or differential equation, and then coeffi-
cients of equal powers are equated.

In these programs the trial senies is made up of the
initial values followed by the as yet unevaluated
stream. The tail of the stream is then defined in terms
of the whole stream and when elements are required
the trial series becomes the resuiting stream. The
program, becausc it uses functions that operate on
whole streams, rather than stream elements has the
same structure as the defining rejation.

For example e raised to the power series power 4(x) .
has defining relation

(€ = 4@

The comresponding program for generating the power
series exp A, in Scratchpad II, where A is a power se-
ries is

exp A == invegrate(l,pderiv A%exp A})

in which integrate and deriv, respectively, integrate
and differentiate power series.

5.2. Examples
The command

Jset streans calculate n

will cause the series to be displayed up to a* order.
If 5 is a variable assigned a series as its value, then one
way to view it to higher order is to re-issue the “)set”
command with a higher value of 7 and then re-display
the value of 5. The following declares x to be a
UPS{x,RN), in other words a UnivariatePowerSeries
with variable x and with rational number coefficients.

X s ps X

12} «x

op X
{13}

1 1 4 1
1#x#{=hx + (=l +{=~)x + (===)x
2 [24 120

1 1 7 1 9
[=as=)n + (—ses)x & (owee= I x
720 5040 40320 362860

+
- 1 11
------- o+ 0{x)
3628800
cos x ** cos x
(14)
i 2 7 4 19 6 1597 8
1= (= + [==)x = (===}t + (e=ae= x
2 24 180 40320
+
373 10 11
- (- Ix o+ 0fx)
32400
x/{exp x=1)
15}
1 1 2 1 4 1 [
L= (=hxs (== = (===)x & {=-=--}x
2 12 120 30240
+
1 8 1 10 11
- x o+ { I +0(x)
1209809 47900160

The hypergeometric function:

hyp(1.2,1,3/2,-2*"2})

(18)

1 2 1 4 1 6 1 8 1 10
1= (= #{=)x = {=}x # {=}x = [--}x
k] 5 7 9 11

+
11
Dix '}

Power series provide @ method of solving differential
equations when all else fails. The function 1de solves

the n* order linear differential equation, its argument

INFINITE STRUCTURES [N SCRATCHPAD I

is a list of power series coefficients. The two solutions
of

Y+ (cosx)y’ + (sinxjy =10
are

1de{[sin x.cos x]}
{19}

1 2 1 4 1 s EL
Fm o)y 4 {-)x = (e=dx # {=2e=)x
z] 72 40320
1639 10 1
= fmmmamax x)
907200

*

1 3 1 5 n 9 11
X = (=)t # (==t = {eee=}x 4 (===)x +O0(x)
3 G480

1

Power series are also used as enumerating generating
functions and the power series may be expanded from
its gencrating function. For example the generating
function for the Legendre polynomials is

!
(1= 2xt + (H7?

With suitable declarations for x and t, it may be ex-
panded directly as follows:

{1-2"x"t+e**2)**(-1,2)
(24}

2 2
L+ X%+ ({320 - 1/20c
+

3 3
§(5/2kx - (3.2m}e
+

4 2 4
((35/8Ix - (15/4}x + 3/8lt
+

H 3 5

(t63/8)x - (35/4)x + (15:8)x)¢
3 4 4]
((231/16)x - (315-16)x + (105-16)x - 5,16}t

7 5 k|
(429/16)x - (693/16)x + (315, 16)x
+

- (35/16)x

7
3

8
Qe }

It is also possible to expand certain infinite products
as power series. The function lambert will transform
one series into another in which the coefficient A, of
x is the sum of the coefficients of the original a, for
all i that divide 7, including 1 and 2. in other words.
if f{x) is a power series, then /ambert(f{x)) is the power
senies

Ax) + AxD) + 3 + fxy + ..

The senes for the number of divisors of nis

lamberc(x/{1-x})
(20}
7 8

X+2x +2x +3x +2x +4x +2x 4 dx
+ .

9 10 1

x +4x o+ Oix)

Using this function it is possible to expand certain in-
finite products as power series. For example the enu-
merating generating function for partitions is

T
,1,1(1-4")

parcitions := exp(lamberc(tog{l/(1-x})))
(21)
3 4 5 6
1+#x+2r8 +3x +5¢ +#7x #1lx + 15x
+

8 9 10 131
22x + 30x + 42x ¢+ Oix)

Euler’s theorem is then:

1/parcitions
2 § 7 11
(22) 1 = x=-x +x +x +0(x }

The function h, defined below expands the infinite
product

where g is a power series with constant term 1.

h g == exp lanbere log g

The coefiicient of piz* below is the number of parti-
tions of # into { parts

h{l/{i-y*z}}
7

F 2 k} 2 3
1+y*z2+{y #ylz +iy +y +yk
+*

4 3 2 4
(y +y +2y +y)2

5 4 k| 2z 5
(y ¢y ¢2r +2y +yh

6 S 4 3 2 6
{y +y +2y +3y +3y +yh
+

1 6 5 4 3 2 7
(y +y +2y +3y +4y +3y +yk
*
8 7 6 5 4 3 2 8
{y +y +2y +3y +#5y +65y +4y +yh
+

9 =
0{z)

.

Jacobi’s celebrated resuit:

INFINITE STRUCTURES [N SCRATCHPAD I

h(1-x)**3

3 & 10 11
{31) 1 =-3x +5x =7x +9% +0(x }

The Hermite polynomials:

h(1/(-a*fH)*n(1/(1-f/a})

{15)
4 k| 2
a +] a +a +a +a+l 2
1+¢ g+ (- weeeslg
a

6 5 4 3 2
2 +3 +22 +2a +2a +3+1 1
{ lg
3
a

8 7 6 5 4 3 2
a +a +3a +#3a +4a +3a +3a +arl 4

4
a
+

H
0(g }

The examples above illustrate the present capability
of writing expressions that denote power senes.

6. Continued Fractions
We use the following notations for continued frac-
tions:

n

& _ a
i=1 b[bl+_..........._.._._az l-ln
bh+ ... 5,
a | aa a, |
= — + + ... +
| by |8 | 62

The notation $q]b,- may be used to represent the limit
of an infinite 'S?:'quence of convergents.

The function continuedFraction provides one method
of forming a continued fraction. It takes as arguments
the whole part, the partial numerators and the partial
denominators.

The continued fraction $-’— which has the value
lj(e— 1) is entered as

s := concinuedFraccion{d, (1..3, {1..])

(46}
11 -4 3 4. § !

L R P N SR L TR BT

I 1z 13 14 {5 s
If al the npumerators are one, then
reducedContinuedfraction may be used. Euler dis-
covered the relation <=1 = & ~—-l—_,

e+ 1 =1 4 —2

t 1= reducedContinuedFraction{d, [4*i-2 for { in 1..]} expx: :CFPS(x ,AN)

(47)

51 - -
11 il 11 11 11 11 1 - -—

B R L AL S T L S P ELEE SET T LN

iz s 110 i1 18 12 i
2

14 =~am -

Arithmetic on infinite continued fractions is sup- i
ported. The results are given in reduced form. We il- 6
lustrate by using the values s=1f(e—1) and
t = (e — 1){(e + 1) to recover the expansion for e.

1
e = 1/7(s"t} - 1 (==t

(48) 1 -

1
24 pmmt b et b eeel g eeed b e +
I 12 11 I3 I 4 I

The following command evaluates the 15# convergent 1o mrmmeneiemeees
to a floating point number. (--h

canvergencs(e).15::F

(49} 2.71828182847 R 1 = meeumee

Many univariate power series may be transformed to
continued fractions. Here we show the conversion of
series to continued fractions in normal form, that is a
continued fraction in which the partial denominators
are one and the partial numerators after the first are (qq**(1**2) for i in 0..)

monomials of degree . The guotient-difference algo- 49 16 25 3 &9 64 a1
rithm takes the coefficients of the series and produces (53) (1,.9.8.9 .4 .4 .9 .4 9]
the partial numerators of the continued fraction.

Another example is:

qq v q::QF UP(q, AN);

Th ::UPSg:.OF UP{q,RN))

i i . (28

e first example is the seres for exp x; 42 93 164 255 166
1+q*x+qx +9gx +q x +q x +q x
»

expx 1w exp ps X 497 648 819 100 10 o 11)
XK +q x +q x ¢+ x o+ 0ix
(50) 9 9 q q
4 1 4 1 5 [%::CFPS{x ,QF UP(g,RN)}
1 +x 4+ (=}x +#(=)x ¢ (==)x + (===)x +0(x}
2 6 24 120 1
(55}
q°x
. i-
The domain for these continued fractions is abbrevi- 3
ated CFPS. - (3 3k
5
qx
] = mm==
73
9 - ah
] -
3
qx
1 -
1 s
fq -qlx
I A b
13
q X
l - BN b ————
15 7
(@ -qlx
1 - EmEASdS————
17
q x
l Y ——
1 - et

INFINITE STRUCTURES IN SCRATCHPAD [

7. Concluding Remarks

We have viewed lazy evaluation and self reference of
data as particular techniques for infinite structures and
we have shown how these techniques are particularly
powerful when used together.

Scratchpad Il provides the basic requirements for ma-
nipulating infinite structures: the ability to include
programs as parts of composite data objects and the
ability to create and modify self-referential data ob-
jects. These basic facilities have been used to build a
variety of abstract data types which provide logically
infinite structures.

The additions so far have been to build a number of
domains so that infinite sequences (streams), power
series, decimal expansions and continued fractions
may be treated as first class citizens.

It should be possible in the future to eater differential
or recursion equations that define new power series in
terms of existing ones as suggested in the example for
exp in section 5.1.

INFINITE STRLUCTURES IN SCRATCHPAD (I

Bibliography

1.

H. Rautishauser [1954], Der Quotienten-
Differenzen-Algorithrmus, Z. Angew. Math. Physik
5233-251.

H.B. Curry and R. Feys [1958], Combinatory
Logic North Holland, Amsterdam.

P. Henrici [1977), Applied and Computational
Complex Analysis, Volume 2, John Wiley & Sons.

R.D. Jenks and B.M. Trager [1981], A4 Language
for Computational Algebra, Proc. 1981 ACM
Symposium on Symbolic and Albebraic Compu-
tation.

H. Abelson and G. Sussman (with J. Sussman)

[1985], Structwre and Interpretation of Computer
Programs, The MIT Press, Cambridge Mass.

R.D. Jenks, R.S. Sutor and §.M. Watt [1986],
Scratchpad 11: An Abstract Datatype System for
Mathematica! Computation, RC 12327, IBM Re-
search.

