RC 12327 (#55257) 11/17/86
Computer Science 23 pages

Scratchpad II: An Abstract Datatype System for Mathematical Computation

Richard D. Jenks
Robert S. Sutor
Stephen M. Watt

IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598

Abstract:

Scratchpad II is an abstract datatype language and system that is under development in the Com-
puter Algebra Group, Mathematical Sciences Department, at the IBM Thomas J. Watson Research
Center. Some features of APL that made computation particularly elegant have been borrowed.
Many different kinds of computational objects and data structures are provided. Facilities for
computation include symbolic integration, differentiation, factorization, solution of equations and
lincar algebra. Code economy and modularity is achieved by having polymorphic packages of
functions that may create datatypes. The use of categories makes these facilities as general as pos-
sible.

1. Introduction

Scratchpad 11 is

¢ an interactive language and system for mathematical computation

s astrongly-typed programming language for the formal description of algorithms, and
¢ a sophisticated tool kit for building libraries of interrelated abstract datatypes.

As an interactive system, Scratchpad 11 is designed to be used both by a naive user as a sophisticated
desk-calculator and by an expert to perform sophisticated mathematical computations. Scratchpad
11 has very general capabilities for integration, differentiation, and solution of equations. In addi-
tion, it has an interactive programming capability which allows users to easily create new facilities
or access those resident in the Scratchpad II library.

Scratchpad 1 is also a gencral-purpose programming language with a compiler used to add facilities
to the system or user’s library. Library programs are read by the system compiler, converted into
object code, then loaded and executed through use of the system interpreter. The programming
language and interactive language are identical except that library programs must be strongly typed.
The unique abstract datatype design of Scratchpad I1 is based on the notion of categories and allows
polymorphic algorithms to be expressed in their most natural setting and independently of the
choice of data representation.

The Scratchpad I} library consists of a set of parameterized modules (abstract datatypes) which
collectively serve as a tool kit to build new facilities. Among these modules are those which create
computational “types” (such as integers, polynomials, matrices and partial fractions) or data struc-
tures (such as lists, sets, strings, symbol tables, and balanced binary trees). These modules can be
used to dynamically “mix and match” types to create any computational domain of choice, e.g.
matrices of matrices, or matrices of polynomials with matrix coefficients.

In contrast with Scratchpad I, other existing computer algebra systems, such as MACSYMA,
MAPLE, REDUCE and SMP use but a few internal representations to represent computational
objects. To handle complicated objects, some of these systems overload the data structure for a
canonical form (such as rational functions) and use flags to govern which coefficient and/or expo-
nent domain is to be used. As more and more overloading is done to a single internal represen-
tation, programs become increasingly error prone and unmanageable. The complexity of systems
designed in this way tend to grow exponentially with the number of extensions. The design ap-
proach of Scratchpad II has considerable advantages relative to these other systems with respect to
modularity, extensibility, generality, and maintainability.

This paper introduces the reader to the language and concepts of Scratchpad 1l in a “bottom-up”
manner, illustrating some interesting and varied interactive computations. Sections 1-8 of the paper
systematically introduce the reader to some of the more interesting types in the Scratchpad II world.
Sections 9-11 highlight the facilities of the computer algebra library. Sections 12-15 then discuss
the underlying high-level concepts of the language and system.

2. Some Comparisons with APL

An interactive session with Scratchpad II resembles that of one with APL. The Scratchpad II in-
terpreter reads input expressions from the user, evaluates the expression, then display a result back
to the user. Input and output lines are numbered and saved in a history file. System commands
to perform utilities such as reading files, editing, etc. are preceded by “)". Everything after “--" is
a comment.

The Scratchpad 11 language, however, is very different from APL: it uses a more standard character
set, has operator precedence rules, and offers control structures for structured programming.
Whereas a dominant theme of APL is arrays, that of Scratchpad 11 is types.

The following produces the same result as (5**2)+4.

§**2 + 4
(1) 29

2

The previously computed expression is always available as the variable named %.

§+1
{2) 30

Unlike APL, large integer computations remain exact,

2**1000

(3)
10715086071 8626732094842504906000181056140481170553360744376038837035105
112493612249319837881569586812759467291755314682518714528569231404359845
775746985748039345677748242309854210746050623711418779541821530464749835
81941267398767550165543946077062914571196477686542167660429831652624 3868
37205668069376

Floating point numbers can be allowed to have many digits. Here is n to 200 places.

precision 200
{4} 200

numeric %pi

(5)
3.141 59265 35897 93238 46264 33832 79502 88419 71693 99375 10582 09749
44592 30781 64062 86208 99862 80348 25342 11706 79821 48086 51328 23066
47093 84460 95505 82231 72535 94081 28481 11745 02841 02701 93852 11055
59644 62294 89549 30382

Symbols may be referenced before they are given values. It is easy to substitute something for the
symbol at a later time.

(x + 11/111)**5

5 55 4 1210 3 13310 2 73205 161051
(6) X # {==)x 4 (=====)x 4 (=zeve=n X 4 (memmmmmes X + =xmmmermnas
11 12321 1367631 151807041 16850581551

evai(%, x, 10)
1770223341829601
168505815561

In contrast to APL where arrays are used to contain collections of values, most Scratchpad II users
employ lists as the “standard” aggregate datatype and other aggregate types are available. Many
of the operations on APL arrays are supported by Scratchpad II lists, which are described in section
5.

3. Numbers

Scratchpad II provides many different kinds of numbers. Where appropriate, these can be com-
bined in the same computation because the system knows how to convert between them auto-
matically.

Integers can be as large as desired with the only limitation being the total storage available. They
remain exact, no matter how large they get. Rational numbers are quotients of integers. Cancel-
lation between numerators and denominators will occur automatically.
11%*13 * 13*711 * 17447 - 19%%5 * 23%*3 * 2g%%2
(1) 25387751112538018594640918059149578

1/2 + 176 + 1/24 + 1/720 + 1/5040
178%

(2) =---
2520

For approximations, floating point calculations can be performed with any desired number of digits.
The function precision sets the number of digits to use.
precision 19

(3) 19

A smaller precision might have given the impression that the following expression evaluated to 12.
(Ramanujan wondered if it was actually an integer.)

numeric ¥pi * sqrt 310. / -~ continued on next line
Tog({2+sqrt 2.) * {3+sqrt 5.} * (5+2*sqrt 10.+sqre{61+20*sqrt 10.))/4)

(4) 12.00 00000 00000 00000 Q0000 04945 80712 26995

Gaussian integers are complex numbers where both the real and imaginary parts are integers.

{5+ %i)**3
(5) 110 + 74%§

Of course, not all complex numbers have integer real and imaginary parts. The following number
has floating point components.
(2.001 - D.001 * %i)**2
(6) 4.004 - 0.004 002%i

Sometimes the form of a number is as important as the type of number. Here are a few ways of
looking at integers and rationals in different forms.

factor 643238070748569023720594412551704344145570763243

13 11 7 & 3 2
(7) 11 13 17 19 23 29

continuedfraction(6543/210)

partialFraction(1,factorial(10))

189 23 12 1
(9) === === - -4 -

8 4 2 7
2 3 5

~- now we expand the numerators into p-adic sums of the primes in the denominators
padicFraction %

1 1 1 1 1 i 2 1 2 2 2 1
{10} =+ == 4 == % == 4 == 4 == = == & .o . wm = = - —s o~
2 4 5 6 7 8 2 3 4 5 2 7

2 2 2 2 2 3 3 K} 5

4

We can also view rational numbers as radix expansions using various bases. Repeating sequences
of digits are indicated by a horizontal line.

decimal(1/352)
(11} 0.0028409
base(4/7, 8}
(12} 0.3
Rational numbers raised to fractional powers can easily be created and manipulated.
(5 + sqrt 63 + sqrt 847)**(1/3)

1/2 1/3
{13) (14*7 + 5}

Integers modulo a given integer may be conveniently created and used.

123 mod 11 ~-- create an integer mod 11
(14} 2

§+79 -~ operations involving this value are now done mod 11
(15) 4

The following asserts that a is a number satisfying the equation a**5+a**3+a**2+3 = 0.

a | a**5+a**+a%*243 = 0

Among other things, this relationship implies that any expression involvin:g a will never have it
appear raised t0 a power greater than 4. We will define b so that it satisfies an equation involving
a.

b | b**44a = 0
2/{b-1)} -= compute 2 times the inverse of (b-1)
(18)
4 3 2 3 4 3 2 2

-{fa -a +2 -a+l} +(a -a +22 -a+1)b
+
4 3 2 4 3 2
(a2 ~a +218 -~a+l}b+a ~a +2a -a+1l
2/%+1 == check result

(19) b

There are many other varieties of numbers available, including cardinal numbers, which need not
be finite, and quaternions, which are non-commutative.

Aleph 1 + Aleph O
(20) Aleph(l)

quatern{1,2,3,4)*quatern{5,6,7,8) - guatern(5,6,7,8)*quatern(1,2,3,4)
(21} - 8% + 16j - 8

Abbreviation Full Name

A Any

B Boolean

BF BigFloat
COMBINAT CombinatoricFunctions
E Expression

G Gaussian

GF GaloisField

| Integer

L List

P Polynomial
QUEUE Queue

RF RationalFunction
RN RationalNumber
S String

SM SquareMatrix
STK Stack

ST Stream

SY Symbol

TBL Table

upPs UnivariatePowerSeries

Figure 1. Some Scratchpad II Type Names and their Abbreviations

4. Types

Every Scratchpad II object has an associated datatype, which can be thought of as a property of
the object. The datatype determines the operations that are applicable to the object and cleanly
separates the various kinds of objects in the system. If the user has issued

)set message type on

or, at least, has not turned it off,' the datatype of an object is printed on a line following the object
itself. For example, if you enter 3.14159, the system will respond with a display similar to
(1) 3.14159
Type: BF

In the Scratchpad Il interpreter, BF is the abbreviation for BigFloat, which is the datatype of the
number you entered. If you had not known anything about BF, issuing the command

Yshow BF

would have told you the unabbreviated name, the name of the file containing the Scratchpad I1
source code for BigFloat and the functions provided in the BigFloat domain.?

In the interpreter, each type has an abbreviation and it may be used almost anywhere the full name
is used. Some of the abbreviations that are used in this paper are listed in Figure 1.

In the previous section, each of the numbers really had a type, even though we chose not to display
it. Some were simple, like Integer and BigFloat, and some were parametrized, like Gaussian In-

1
2

By default, it is on.

You can think of a domain as a collection of objects with a set of functions defined on the objects, plus a set of at-
tributes that assert facts about the objects or the functions. For example, the domain Integer provides the integers,
the usual functions on integers, and attributes asserting that multiplication is commulative, 1 is a multiplicative
identity element, etc..

teger and ContinuedFraction Integer. Some of the types were fairly complicated, like
SimpleAlgebraicExtension(RationalNumber, UnivariatePoly{x,RN), a"*5+a™3 +a*2+3). At
no point did we actually have to tell Scratchpad 11 the types of the objects we were manipulating.
Although it is true that usually the Scratchpad II interpreter can determine a suitable type for an
object without any type declarations whatsoever, you may sometimes want to supply additional
information. You might provide this to help guide the interpreter to a particular type choice among
several or to view an object in a particular way.

It is useful to know about types because:

1. Scratchpad II really does use datatypes and they are present no matter how simple a model
of the interpreter is discussed.

2. Types are Scratchpad II objects in their own right and information is associated with them.
A knowledge of types allows you to access and use this information.

3. The use of explicit coercions with types provide a powerful way to transform an expression,
be it to simplify the expression, change the output form, or to apply a particular function.

When you enter an expression in the Scratchpad II interpreter, the type inference facility attempts
to determine the datatypes of the objects in the expression and to find the functions you have used.
The following dialog demonstrates the types assigned by the interpreter to some simple objects.

23 -~ this is [nteger
(1) 23

Type: I

3.45 -- this is BigFloat
(2} 3.4%

Type: BF

"this is a string" -- this is String

(3) "“this is a string"

Type: §

faise -- this is Beolean
(4) false

Type: B

X == this is Symbol
(5) x

Type: 5Y

The above expressions are atomic: they involve no function calls, When functions are present,
things can get a bit trickier. For example, consider 2 / 3. By the basic analysis above, the inter-
preter determines that 2 and 3 belong to integer. There is no function “/” in Integer so the inter-
preter has to look elsewhere for an applicable function. Among the possibilities are 2 “/” in
RationalNumber that takes two elements of Integer and returns an element of RationalNumber.
Since this involves no work in converting the arguments to anything else, this function is called and
the rational number 2/3 i3 returned. This all happens automatically and is relatively transparent to
the user.?

Associated with each type is a representation, a specific form for storing objects of the type. This
representation is private and cannot be determined without examining the program which imple-
ments the type.

3 Some loading messages may appear frorii time to time as the system tries to coerce objects from one type to another
or starts applying functions.

Some types, like Integer, are considered basic and have their rcpresentations provided internally
by the system. Others, like RationalNumber, are built from other types (Record and Integer,
here). Once a type is defined it may be used to represent other types. For example, QuotientField
is represented by using Record and the type of the numerator and denominator. RationalFunction
is represented by QuotientField Polynomial, along with the type of the coefficients of the
polynomials. However, we re-emphasize that these details cannot be seen by users or other pro-
grams that manipulate values of these types.

Scratchpad IT now provides over 160 different datatypes. Some of these clearly pertain to algebraic
computational objects while others, like List and SymboiTable are data structures. Although
Scratchpad IT was originally designed as an abstract datatype language for computer algebra, no
distinction is made to treat mathematical structures differently than data structures. In fact, data
structures usuaily satisfy certain axioms and have mathematical properties of their own.

Scratchpad I is actually a general purpose language and environment: the new compiler for the
language is being written in the language itself!

5. Lists
Lists are the simplest aggregate objects in Scratchpad II.

u:=[1,4,3,5,3,6]
(1) [1,4,3,5,3,6]

rotate(u,2)
(2) I[3,5,3,6,1,4]
Lists do not have to be homogeneous
u := [~43,"hi, there", 3.14}
(3) - 43,"hi, there",3.14]
and they may be ragéed.
v := [[1], [1,2,3], [1,2]1]
(4y I[13,01,2,3],01,21]
A monadic colon is used to append lists.
w := [:u, :[1..5),:ul == {1..5] is the 1ist [1,2,3,4,5]
(5) [- 43,"hi, there",3.14,1,2,3,4,5,- 43,"hi, there",3.14]
Lists have origin 0. A “dot” is usually used to indicate indexing.
w.0
(6) - 43
Reduction over a list by a binary operator is supported.

*/11..100] -- this is 100 factorial

(7)
933262154439441526816992388562667004907159682643816214685929638952175999
932299156089414639761565182862536979208272237582511852109168640000000000
00000000000000

H’!!

A function may be applicd to cach element of a list by using

oddp | [1..5] -- oddp returns true for an odd integer agrument

(8) [true, false, true, false, truel

I{1..5] + 1[10..14]
{9) [11, 13, 15, 17, 19]

A list may be viewed as a mapping which takes integers and returns the elements. The following
list is then seen as the mapping

0-1,1-1,2=2..,7— 21
u:=[1,1..3,5,8,13,21]1
(10) (,1,2,3,5,8,13,21]

Juxtaposition with an intervening blank is equivalent to dyadic “.” and means application. Paren-
theses are used for grouping. For lists, all three notations mean to apply the list as a mapping,
[u(0},u 1,u.2]
(11} 0,1,2]

A ! can be used to apply any mapping to each element of a list.

u ! {0,1,3,5,7]
{12) 11,1,3,8,21]

Lists may created in many different ways. The following creates a list of the squares of the odd
elements in u.

[v**2 for n in u | oddp n]
(13) [L,1,9,25,169,441)

A variety of very general iterator controls are available. Besides the “such that” form above,
Scratchpad II also provides while and until forms. Iterations may also be nested or performed in
parallel.

We now define a function fib to compute the Fibonacci numbers. The definition will be incre-
mentally built from several separate pieces.

fib 0 == 1 =-~ the first initial value

fib 1 == 1 == the second initial value

fib == Jooks at fib's value now as a mapping: 0 -> I, 1 -> 1
{16) 11,1]

The general term will give a recursive definition for the remaining arguments of interest.

fib n=2=fib (n-1) + fib (n-2) when n > 1
fib ==1ook at its entire definition as a mapping

(18} [(n 1 1 < n) -> fib{n - 1) + fidb{n - 2),0 -> 1,1 -> 1]

The first term in the above mapping means if fib is given an argument n which is greater than 1,
then fib(n) is computed using the recursive form. Now we will actually apply our function.

fib | [0,1,3,5,7] --apply fib to each integer in our 1ist of values
compiling fib as a recurrence relation

(19) L,1,3,8,21]

Note that we were able to determine that a recurrence relation was involved and specially compile
the function.

6. Infinite Objects

Scratchpad I provides several kinds of infinite objects. We have already seen the example of a re-
peated decimal expansion of a rational number above. Other examples of infinite objects are
streams and power series.

Streams are generalizations of lists which allow an infinite number of elements. Operationally,
streams are much like lists. You can extract elements from them, use 1", and iterate over them in
same way you do with lists.

There is one main difference between a list and stream: whereas all elements of a list are computed
immediately, those of a stream are generally only computed on demand. Initially a user-determined
number of elements of a stream are automatically calculated. This number is controlled by a)set
user command and is 10 by default. Except for these initial values, an element of a stream will not
be calculated until you ask for it.

The expression [n..J denotes the (primitive) stream of successive integers beginning with n. To see
the infinite sequence of Fibonacci numbers, we apply fib to each member of [0..], the primitive
streamn of nonnegative integers.

fibs==fib!10..]
fibs --by default, 10 values of a stream are computed

(21) [1,1,2,3,5.8,13,21,34,55,...]
Streams, like lists, are applicable as mappings and can be iterated over.

fibs ! [0,1,3,5,73

(22) 1,1,3,8,21]

{n for n in fibs | oddp n)

(23) 0,1,3,5,13,21,55,89,233,377,...]

oddOnes s== [n for n in s | oddp n] --define a function to do the filtering
oddFibs == oddOnes fibs --define a new stream from the old

3*1{oddFibs -1 -=produce [3*n-1 for n in oddFibs]

(26) [2,3,9,15,39,63,165,267,699,1131,...]

glee*i for 1 in 1..1 --can apply streams to streams

(27) 9,39,165,699,2961,12543,53133,225075,953433,4038807,...]

A power series can be obtained from a stream by coercing it to type UPS.

fibs::UPS(x,I) +~tohvert a stream to a power series
(28)
2 3) 5 6 7 8 9 10
14+ x4 2x +3x #5x +8x +13x + 21x + 3x + 55x + 8%«
+
11
O(x)

Another way to generate this power series is as follows:

10
1/ps(l-x-x**2)

(29)
2 3 4 5 6 7 8 9 10
T+ x+2x +3x +5¢ +8x +13x + 2lx + 34x + 55x + 83x
+
11
0(x }

sin % --the composition of one power series with another

{30)
4 17 3 4 541 5 13 6 15331 7 73 8
X+ Bx 4 (==dx o+ x4 (===dx 4 (==)x = (oomee Jx = (====)x
6 120 q 5040 180

22536359 9 3046931 10 11
L Ix = {=mme——- x o +0(x)
362880 20160

Power series can have coefficients from any ring, e.g. rational functions, gaussians, even other
power series. Assuming m denotes a2 2 X 2 square matrix with values 1,1,1,0, the following illus-
trates a power series with matrix coefficients.

1/ps(i-m*x)

(31)
it ol I 1 12 112 13 213 15 314 |18 5156
|] + | Ix + | Ix + 1 Ix +1 ix + |]
0 14 11 0o 11 1l 12 14 3 21 15 31

+
113 81 6 121 1317 134 2118 |55 341 9 |89 55/ 10 11
| Ix +1 Ix + | Ix +1 Ix +1 Ix +0(x)
18 51 113 81 l21 131 134 21l 155 341

%::8T SM(2,1) --gbtain the coefficients of the power series as a stream

{32)
1T ol 11 11 12 11 13 21 15 31 18 5 N3 8l l21 13}
cl 1, 1 l, | I, i, ! I, 1 | I, ! Iy
0 1l 12 ¢ o1 12 1 13 20 15 31 I8 51 113 81

34 211 155 341 =89 551
| I, | iy by one
21 131 134 211 155 34)

.
el

tracel¥ --obtain a Fibonacci sequence, but with different initial conditions

(33) [2,1,3,4,7,11,18,29,47,76,...]

7. Functions

Functions can be as important as the values on which they act. In Scratchpad II functions are
treated as first class objects; function-valued variables can be used in any way that variables of other
types may be used.

Functions may be defined at top level, as were the maps from the previous section, or they may
be obtained from a library of compiled code, as are the operations provided by types.

The simplest thing that can be done with a function object is to apply it to arguments to obtain a
value.
§+6
{1) 1
Type: 1

If there are several functions with the same name, the interpreter will choose one of them, An at-
tempt is made to choose the function according to certain generality criteria.

11

When a particular function is wanted, the plus on GF(7) for example, it can be specified by a
package call using “$".

5 +4GF(7) 6
(2) 4
Type: GF 7

Probably the next simplest thing is to assign a function value to a variable.

plusMod? := +$GF{7); plusMod7(5, 6) -- assigning + from GF(7) to a variable
(3 4
Type: GF 7

To access the value of the function object for a top level map it must be declared first.

double: [=> I
double n == 2*n

f := double; f 13
(6) 26
Type: 1

Functions can be accepted as parameters or returned as values. Here we have an example of a
function as a parameter

apply: (1 => 1, I} =-> 1 -- apply takes a function as lst parameter
apply(f, n) == f n -~ and invokes it on the 2nd parameter

apply(double, 232}
(9) 64
Type: RN
and as a return value

trig: I -> (BF -> BF) -- trig returns a function as its value
trig n == if oddp n themn sin$BF else ¢os$BF

t:=trigl; tO0.1
(12} 0.099 83341 66468 28152 20681 4198
Type: BF

Several operations are provided to construct new functions from old. The most common method
of combining functions is to compose them.

“*” is used for functional composition.

quadruple := double * double; quadruple 3
(13} 12

Type: |

“*2 is used to iterate composition.

12

octuple := double* 3; octuple 3
(14 24

Type: [
diag gives the diagonal of a function. That is, if g is dag f then g(a) is equal to f(a,a)l.
square := diag *$1; square 3
(15} 9
Type; {

twist transposes the arguments of a function. If g is defined as twist f then g{a,b) has the value
f(b,a).

power := **§RN;
rewop := twist power; rewop(3, 2)

(17} 8
Type: RN
Functions of lower arity can be defined by restricting argumnents to constant values. The operations

cur and eud fix a constant argument on the right and on the left, respectively. For unary functions,
cu is used.

square := cur{power, 2); square 4 -~ squara{a) = power{a,2)
(18) 16
Type: RN

It is also possible to increase the arity of a function by providing additional arguments. For ex-
ample, vur makes a unary function trivially binary; the second argument is ignored.

binarySquare := vur{square); birarySquare(1/2, 1/3}

1
{19} -
|
Type: RN

The primitive combinator for recursion is recur. If g is recur(f) then g(n,x) is given by
fin,fin-1,..f(1,x)..)).
frimes := recur *$NNI; factorial := cur(fTimes, L::NNI); factorial 4
(20} 24
Type: NNI

Functions can be members of aggregate data objects. Here we collect some in a list. The unary
function fncfn.i takes the i-th successor of its argument.

incfn := [(succ$SUCCPKGI**i for 1 in 0..5]; incfn.4 9
(21) 13

Type: |

In practice, a function consists of two parts: a piece of program and an environment in which that
program is executed. The display of function values appear as theMap(s, n), where s is a hideous
internal symbol by which the program part of the function is known, and n is a numeric code to
succinctly distinguish the environmental part of the function.

13

recipModd := recip$GF(5)
{22) theMap(MGF;recip;$U;17,642)
Type: GF 5 -> Union(GF 5,failed)

plusMod5 = +$GF(5)
(23) theMap(MGF3;+;3%;12,642)
Type: (GF 5,6F 5) => GF 5

plusMod? := +$GF(7)
(24) theMap(MGF;+;3$;12,997)
Type: (GF 7,GF 7) -> GF 7
Notice above that the program part of plusMods is the same as for plusMod7 but that the environ-

ment parts are different. In this case the environment contains, among other things, the value of
the modulus. The environment parts of recipMod5 and plusModS are the same.

When a given function is restricted to a constant argument, the value of the constant becomes part
of the environment. In particular when the argument is a mutable object, closing over it yields a
function with an own variable. For example, define shiftfib as a unary function which modifies
its argument.

Fibvals := Record(a0: I, al: I)
(25) PRecord(ad: I,al: I)
Type: DCMAIN

shiftfib: Fibvals -> |
shiftfib r == (t := r.a0; r.30 := r.al; r.al := r.al + t; t)

Now fibs will be a nullary function with state. Since the parameter [0,17 has not been assigned
to a variable it is only accessible by fibs.

fibs := cu(shiftfib, [0,1]1$Fibvals)
(29) theMap(%G12274,721)
Type: () -> [

[fibs{) for i in 0..30]
(30)
o,1,1,2,3,5, 8,13, 21, 34, 55, 89, 144, 233, 377, 610, 987,
1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393,
196418, 317811, 514229, 832040]

Type: L 1

8. Other Data Structures
We have seen that lists and streams can be used to hold values in a particular order.

(1980..1987, 1982, 1985]
{1) [1980,198]1,1982,1983,1984,1985,1986,1987,1982,1986]

Scratchpad II provides many other structures that may better suit your applications. We will point
out a few of them here.

Finite sets are collections of objects that contain no duplicates.

(1980..1987, 1982, 1986}
(2) {1980,1981,1982,1983,1984,1985,1986,1987}

14

A stack is a data structure where the last value added to it becomes the first one to be removed.

s : STK T := stack()
(3} stack{Bottom)

for i in 1980..1987 repeat push(i,s)

{5) stack(1987,1986,1985,1984,1983,1982,1981,1980,Bottom}

The value farthest from the bottom is the last one added.

pop s
(6} 1987

(7) stack{1986,1985,1984,1983,1982,1981,1980,Bottom)

A queue is similar except that it is “first in, first out”.

q : QUEVE I := queue()
(8) queue(Entry,Exit})
for i in 1980..1987 repeat enqueue(i,q)

q
(10) queue{Entry,1987,1986,1985,1984,1983,1982,1981,1980,Exit)

dequeue q

(11} 1980

(12) queue(Entry,1987,1986,1985,1984,1983,1982,1981 ,Exit)

Scratchpad 11 provides several different types of tables to hold collections of values that can be
looked up by some index set. The function keps gives a list of valid selectors to use to retrieve table

entries.
Values of type Table(Key,Entry) are kept in memory in the workspace. Here Key and Entry may
be replaced by any type.

colors : TBL{I, 5) := table()

(13) table()

colors.1981 := "blue"; colors.1982 := “red"; colors.1983 := “green";

colors

(15) table(1981= "biue",1982= "red",1983= "green")

colors.1982
(16) "red"

KeyedAccessFile gives tables that are stored as random access files on disk. AssoclationList is
used for tables that may also be viewed as lists and have additional functions for looking up entries.

Record types are used to create objects with named components. The components of a record
may be any type and do not all have to be the same type. An example declaration of a record is

15
bd : Record(name : S, birthdayMonth : I}

Here bd has two components: a String which is accessed via name and an Integer which has selector
birthdayMonth. N

You must set the value of the entire record at once if it does not already have a value. At this point
is therefore illegal to enter bd.name := "Dick" because the birthdayMonth component has no value.
However, bd := ["Dick", 111 is a legal assignment because it gives vatues to all components of the
record. Issuing bd.name := "Chard" would now be legal.

A declaration such as

x : Union{I, S, BF)}

states that x will have values that can be integers, strings or big floats. If, for example, the union
object is an integer, the object is said to belong to Integer branch of the union.* The case infix
operator returns a Boolean and can be use to determine the branch in which an object lies. The
following function will display a message stating in which branch of the union the object x, defined
above, lies.

sayBranch x ==
if x case Integer then output “Integer branch”
else if x case String then output "String branch”
else if x case BigFloat then output "BigFloat branch"
else output "don't know"

Now if we assign x := 8 and then issue

sayBranch x

(3) "Integer branch"

9. Algebraic Facilities

Scratchpad II provides a richs set of facilities for doing symbolic mathematical calculations. This
section gives exampiles of integration, differentiation, solution of equations, and eigenvectors.

Integration

integrate(x**5/(x**4+x**2+1)**2,x)
2 : 2

-=x +1] --- 2 X
L I + > a*log({x + 2)x + --)
3

Differentiation

pderiv((x+1)*exp{log(x}/x+x**2/3}/{x-1},x)
ANoglx) + x

4 Note that we are being a bit careless with the language here. Technically, the type of x is always Union(l, 5, BF).

If it belongs to the Integer branch, x may be coerced to an object of type Integer.

16

integrate(%,x) --check result
3
3log(x) + x
x +1 3x
(34) (=---- Jte
Xx -1

Solution of a Polynomial Equation

first solve(x**3+x+1=0,x) --look at only the first of several solutions
12 1
11 11 3 11 3
2 2 2 2 2 2 1

1 9 1 1 1
{15) (- (-)3 3t - -){(-=)331 --}} +((--}331 --)
2 2 18 2 18 2

Al 25 S5 1 -~check result

(16) ¢

Complex Zeros

soTvel X" 742* x5y ¥4 443 **3-2¥x**2-1=0,x,1/10000) --eqn, variable, precision

1 28377 1 28377
{10) [~ %3,284,~ = = (==-=- i, - =+ {oe--=)%i,1]
2 32768 2 32768

Solution of Systems of Polynomial Equations

soTvel [x*¥2-x + 2wt *24 2% y* ¥ 242%z%*2=0, 2 x*wid*wry+2 y*z-w=0,_

2Oy 242N Z-y=0 , 2+ W 2 y 4242120}, -- set of equations
{x,y,z,w}, _ -- set of variables
1/1000) -= precision
(6)

683 683 901 215 2n 629

[{x=====,y=0,z===~~ w=0}, {x®1,y=0,2z=0,u=0}, {x=-~---,ys=--=-, z2= === JWE=eel,
2048 2048 2048 2048 2048 2048
1527 383 165 479 1157 525 383 305

[x=—wmm yme —mm- z===== We====}, {X=wr-- ys--== z== === JW=====},

2088 2008 2048 2048 2048 2048 2048 2048
387 155 515 161)

{a====-,y==muc gzemm= ===

’y ’ 1
2048 2048 2048 2048

Eigenvectors and Eigenvalues of a Matrix

eigenvectors [[x,2,1],[2,1,~21,[1,-2,x]]

(4)
Il
I
[[efgval= x + 1,eigvec= [101]],
1

1l

Po-1 |
| |
2 Ix - %A - 11
[algrel= (%A - I}x - %A + 9,algvec= [|=-===~=~-- -1
2 |

17

10. Coercion

Scratchpad II provides very sophisticated facilities for changing an object of one type into an object
of another type. If such a transformation involves no loss of information (as in creating a rational
number from an integer), this process is called coercion. If some information may be lost (as in
changing a rational number to a fixed precision floating point number), the process is called con-
version. For the user, the major difference between coercions and conversions is that former may
be automatically performed by the Scratchpad II interpreter while the latter must be explicitly re-
quested.

Since coercions happen automatically, the interpreter sometimes gives the impression of doing what
you mean, rather, perhaps, than what you say. This can be quite helpful (would you really want
to give all the detail involved in the above example?) but might not always give you what you ex-
pect. The following is a definition of a function that computes Legendre polynomials.

leg(0) =
leg(l) =
leg(n) =

i

H oo

X
{{2*n=1)*x"1eg(n-1)=(n=1)*1eg{n-2}}/n when n in 2.,

leg 6
Compiting leg with signature [-> RF I
Compiling leg as a recurrence relation

6 4 2
231x - 315x + 105x -5

Type: RF I

The only problem with this function is that it does not actually produce polynomials! What was
actually produced was a rational function, that is, a quotient of polynomials. The denominator is
the constant polynomial 2. To see this result as a polynomial with rational number coefficients, just
do a coercion.

% PRN
231 6 35 4 105 2 5
(8) (===)x = (===)x + (===)x = ==
16 16 16 16
Type: P RN

The double colon is the symbol for explicit coercion/conversion, where you are telling the inter-
preter, *1 know what I want, so try to give me an object of this type.”

The interpreter decided that we wanted a rational function because of the way we did the division
in the third line of the definition:

leg{n) == ((Z*n-l)*x']eg(n-l)-(n-l)*leg(n-?))/n when n in 2..

If this is changed to

Teg{n) == (1/n)*({2*n-1)*x*1eg(n-1)~(n-1}*1eg(n~2)) when n in 2..

we will get a polynomial without having to do the coercion.

As this example illustrates, coercion may be used to change the way an object looks. In this sense,
coercion corresponds to the algebraic manipulation of formulas that one does, say, to simplify an
expression or change it into a form that is more meaningful.

To illustrate this, let's start with a 2 by 2 matrix of polynomials whose coefficients are complex
numbers. In this form, it doesn’t make much sense to ask for the “real” part of the object. We
will transform the matrix until we get a representation with a real and imaginary part, each of which
is a matrix with polynomial coefficients. In the following, the symbol %i is the complex square root

18

of 1. G is the abbreviation for Gaussian, a parameterized type used to create domains such as the
complex numbers.

m: SM(2,P G I
m o= 0] + Bi)*x**k - (k + ¥1)*y**j for j in 1..2] for k in 1..2]

I 2 |-
(-1 =%i)y # (1 +%i)x (-1-%)y +(2+ %)k :

|
| 2 2 2
(-2 -gidy+ (1+%kx (-2-%b)y +(2+ %)

(2)

Type: SM{2,P G I)
The matrix entries can be transformed so that they each have real and imaginary parts.

m:: SM(2, G P I}
| 2 2 |
| =y +x+ {-y+x)gi -y +2&x+{-y +x)% |
(3} | 1
| 2 2 2 2 2 2 |
=2y +x +{=y+x)%i =2 +2x + (-y +x)&l

Type: SM{2,6 P I)

Now we push the matrix structure inside the real and imaginary parts.

g:=%::65M2,P10)

| 2 [2 I

| -y +x -y +2x | l-y+x -y +x|
(a4) | I+ |41

{ 2 2 2l 2 2 2l

-2y +x -2y +2x| i-y+x -y +xl

Type: G SM(2,P 1)
It is now clearer what is meant by the “real part” of the object.

real(g)
} 2 |
I =y+x -y +2x |
(5) 1 |

| 2 2 24
I=2y +x -2y +2x 1

Type: SM{2,P 1}

In fact, this is what would have been returned if you just asked for real(m). If we would rather
see this last object as a polynomial with matrix coefficients, a simple coercion will do it.

% :: P SM{2,ID)
(6)
10 =112 -1 0l 10 ol 2 11 2]
| ly +1 ly + | Ix + 1 Ix
i -2l |- 2 0l 11 2t 0 0l

Type: P SM(2,I)

11. Output

Besides to the character-oriented two-dimensional output you have already seen in this paper,
Scratchpad II provides facilities for viewing output in FORTRAN format and in forms suitable for
TeX and the IBM Script Formula Formatter. The following equation is displayed in the standard

Scratchpad 1I output format,

19

R = (zix**2+4)itq/(x*i2_2)t*5

3 6 4 2
16x + 128x + 3B4x + 512x + 256
(1) R = mmmmmememmeeccccm e oo
10 8 6 4 2
x = 10x + 40x - 80x + 80x =~ 32

The FORTRAN-style output of the equation is

R=(16*x**B+128*x**6+3B4%x** 4451 2*x**24256) /(x**10 -10*x**8+40*x**6 -80*
YR80 YR -32)

A form suitable for input to the TeX formula processor is

L4

{(R=f{16 N {x \sp 83)+{128 \ {x \sp 6}}+{384 \ {x \sp 4}}+(512 \ {x
\sp 2)3+256} “over {{x \sp 10} -{10 \ {x “sp 8}1+{40 \ [x \sp 6}} ~={
80\ {x \sp 4}}+{80 \ {x \sp 2}} -32}}}

L}

This is for input to the Script Formula Formatter:

1df.

<R=<<<]f % <x sup B>>+<128 § <x sup 6>>+<384 % <x sup 4>>+<512 & <x sup
2>>+256> over <<x sup 10> =-<10 ¥ <x sup 8>>+<40 ¢ <x sup 6>> -<B0 % <x
sup 4>>+<80 % <x sup 2>> -32>>»

redf.

When formatted by Script, the equation appears as

16 x® + 128 x5 + 384 x* + 512 x% +256

R=
x0—10x®+40x%—80x*+80x%~32

The integration with respect to x of the right hand side of the equation produces a object which is
a rational function plus a sum over the roots of a polynomial. The output produced by Scratchpad
II for the Script Formula Formatter is -

1df.

<<<=<10 % <x sup 7>> -<12 ¥ <x sup 5>> -<24 % <x sup 3>> -<80 ¥ x>>
over <<x sup 8> =<8 § <x sup 6>>+<24 % <x sup 4>> =<32 ¥ <x sup 2>>+16>>
+<sum from <<< alpha sup 2> -<9 over 2>>=0> of < alpha ¥ <log left (<
<<% % alpha > -3>> pight)>>>>

sedf.

The processed form is much easier to understand!

7 5 3
—10x"—12x°~24x"—80x Z o log(xa—3)
o 0

*-8xf+24x 322416

-3
Z

12. Packages

In a large system there will be thousands of functions and there must be some way to organize
them. One would be like to be able to group similar functions together and to be able to think in
terms of useful collections of functions. In Scratchpad II, this is done with packages. For example,
functions to compute permutations, combinations and partitions are be grouped together in a
package providing simple combinatoric functions.

To see what functions are available in a package, the show system command is used.

20

)show CombinatericFunctions
CombinatoricFunctions is a package constructor.

Abbreviation for CombinatoricFunctions is COMBINAT
Issue Jedit ARITHMET SPAD to see source code for COMBINAT

------------------------ Operations ====-=-=ws==meoo——eomm-o-os
binomial : (I[,[}) => I combination : ([,I} -> I
wultinomial : (I,L [) -» I partition : [-> 1
permutation : (I,I[) -> I selection : (I,I) > I

To group a collection of functions as a package, they must be compiled together in the body of a
package constructor. A package constructor is a function which returns a Scratchpad I package
object. This act of calling such a function is called package instantiation.

The package constructor for the CombinatoricFunctions is

CombinatoricFunctions(}: T == B where
T == with
binomial: (Integer,Integer) -> Integer

multinomial: {Integer, List Integer) -> Integer
permutation: (Integer,Integer} -> Integer
combinatfon: (Integer,Integer) -> Integer
selection: (Integer,Integer) -> Integer
partition: Integer -> Integer

== add
ArithmeticFunctions{) =-- import factorial from another package

binomial(n,k
k <Qor
or

v

“nmn
v
=l =]

> binomial{n,n=k)

t:=1
for § in 1..k repeat t := {t*(n-i+1)} quo i
t

-- p 15 not exported, it is local to this package.
p(m: Integer, n: Integer): Integer ==
m=1=>1
m < n => p{m-i,n) + p{m,n-m)
m=n=>pim=1,n) +1
p{n,n)

partition n == p{n,n)

This example serves to illustrate several points. The first line is the definition of the function
CombinatoricFunctions which has type T and body B, with T and B defined further on. The type
. information for a package consists mainly of a list of the functions it exports and their types. The
body gives the definitions of the exported functions. Because local variables in the body of the
package constructor are invisible from outside, it is possible to maintain information which is pri-
vate to the package.

13. Domains

One very natural way to group functions is to place together the operations for combining values
of a given type. In one sense, the collection of operations which may be performed on values ofa
given type define what the type is. If these functions are provided by a single package, then it is
possible to hide the representation of the values belonging to the type by keeping it local to the
package. In Scratchpad II, using packages to so encapsulate a new types is the basic method of
data abstraction.

For convenience we usually distinguish between packages which implement types and those which
do not. We call the former domains and usually use the term package only for those which do not
implement types.

We illustrate Stack below as an example of a domain constructor. The use of “$” in the signatures
of exported operations (e.g. pop) represents the type which the domain implements.

21

Stack(S: Set): T == B where
T == Set with

stack: ()-> §
empty?: $ -> Boolean
depth: § -> [nteger
push: (5, $) => §
pop: $ > 8§
peek: § -> S
peek: (§, Integer) -> §

B == add
-~ Rep is a record so that the empty stack is mutable.
Rep := Record(head: String, body: List $)

Ex ==> Expression
coerce(s): Ex ==
args: List Ex := {]
for e in s.body repeat args := cons(e::Ex, args)
args := nreverse cons{"Bottom"::Expression, args)
mkNary(“stack"::Ex, args)
stack() ==
["Stack", [1]
empty? s ==
null s.body
push{e, s) ==
s.body := cons(e, s.body)
e

pop s ==
empty? 5 => error "Stack over popped.”
e := first s.body; s.body := rest s.body

e

paek s ==
empty? s => error "Can't peek empty stack.”
first s.body

depth s == #s.body

peek{s,i) ==
n := # s.body
i>n-1ori<-n=>error "Out of bounds peek."
s.body.(i<0 => n+i; i)

The coercion to Expression is used to give the output form of values in the domain.

14. Polymorphism

Whereas the package constructor for CombinatoricFunctions is a nullary function, in practice most
package constructors take arguments as does Stack. Since package constructors may have type
valued arguments, the exported functions may be used to express polymorphic algorithms.

The need for polymorphic functions stems from the desire to implement a given algorithm only
once, and to be able to use the program for any values for which it makes sense. For example, the
Euclidean algorithm can be used for values belonging to any type which is a Euclidean domain.
The following package takes a Euclidean domain as a type parameter and exports the operations
ged and 1em on that type.

GCDpackage(R: EuclideanDomain): with
gcd: (R, R} -> R
lem: (R, R} => R
== add
gedix,y) == -- Euclidean algorithm
x:= unitNormal.x.coef
y:i= unitNormal.y.coef
while y == 0 repeat
(x,y):= {y,x remy)
y:= unitNormal.y.coef

X

lemix, y) ==
u: Union(R, "fatled") := y exquo gcd(x,y)
x Y unR

The exported operations are said to be polymorphic because they can equally well be used for many
types, the integers or polynomials over GF(7) being two examples. Although the same ged program

22

is used in both cases, the operations it uses (rem, unitNormal, ctc.) come from the type parameter
R.

15. Categories

While polymorphic packages allow the implementation of algorithms in a general way, it is neces-
sary to ensure that these algorithms may only be used in meaningful contexts. It would not be
meaningful to try to use GCDpackage above with Stack(Integer) as the parameter. In order to
restrict the use o cases where it makes sense Scratchpad II has the notion of categories.

A category in Scratchpad I1 is a restriction on the class of all domains. It specifies what operations
a domain must support and certain properties the operations must satisfy. A category is created
using a category constructor such as the one below.

OrderedSet(): Category == Set with
-- ogperations
"<": ($,$} -» Boolean
max: ($,$) -> %
min: ($,$) -> ¢
-= attributes
irreflexive "<" -- not (x < x)

transitive "< =~ x <yandy <z implies x <z
total "< == not{x < y) and not{y < x) implies x=y

OrderedSet gives a category which extends the category Set by requiring three additional oper-
ations and three properties, or attributes.

A declaration is necessary in order for a domain to belong to a given category: having the necessary
operations and attributes does not suffice. This is because the attributes are not intended to give
a complete set of axioms, but merely to make explicit certain facts that may be queried later on.
It is usually the case that belonging to a category implies that a domain must satisfy conditions that
are not mentioned as attributes. For example, in OrderedSet there is no attribute relating min and
“ <" although such relations are implied.

A type parameter to a domain or package constructor is usually required to belong to an appro-
priate category. For example, in the previous section the parameter R to GCDpackage was de-
clared to belong to the category EuclideanDomain.

The use of categories in restricting the type parameters to a domain or package constructor allows
algorithms to be specified in very general contexts. For example, since all table types belong to a
common category, algorithms can be written that do not need to know the actual implementation
(for example, whether it is a hash table in memory or a file on disk). As an example of algebraic
generality, consider the domain of linear ordinary differential operators, which is declared as follows

LinearOrdinaryDifferenttalOperator(A, M): T == B where
A: DifferentialRing
M: Module{A) with deriv: $ -> $

T == GeneralPolynomialWithoutCommutativity(A,NonNegativelntegar) with
0: () -> §
u.u: (s’ M) - M

This domain defines a ring of differential operators which act upon an A-module, where A is a
differential ring. The type of the coefficients, A, is declared to belong to the category
DifferentialRing and type of the operands, M, is declared to belong to the category Module(A) with
a derivative operation. The constructed domain of operators is declared to belong to a category
of general polynomials with coefficients A and two additional operations. The operation D creates
a differential operator and “.” provides the method of applying operators to elements of M.

It is often necessary to view a given domain as belonging to different categories at different times.
Sometimes we want to think of the domain Integer as a belonging to Ring, sometimes as belonging
to OrderedSet, and at other times as belonging to other categories. For a domain to have multiple

23

views, it should be declared to belong to the Join of the appropriate categories. For example, the
following keyed access file datatype may be viewed either as a table or as a file:

keyedAccessFite(Entry: Set): T == B where

FileRec ==> Record(key: String, entry: Entry)
ErrorMsg ==> String

T == Join(FiteCategory(LibraryName, FileRec),
TableCategory(String, Entry, ErrorMsg)) _
with
pack: § -> §

B == add ...

An important use of categories is to supply defauit implementations of operations. So long as
certain primitive operations are provided by a domain, others can be implemented categorically.
For example, supplying only “ < allows definitions of “>", “< =" and “> =". Thus a domain
may inherit operations from a category. The use of Join provides multiple inheritance.

Acknowledgments

The authors would like to thank Barry Trager, William Burge and Riidiger Gebauer of the Com-
puter Algebra Group at Yorktown Heights, and Greg Fee of the Symbolic Computation Group
at the University of Waterloo for their suggestions and examples.

Bibliography

{1]

(2]

[3]

[4]

(5]

(6]

(7]

(8]

Jenks, R. D. and Trager, B. M., “A Language for Computational Algebra,” Proceedings of
SYMSAC "81, 1981 Symposium on Symbolic and Algebraic Manipuiation, Snowbird, Utah,
August, 1981. Also SIGPLAN Notices, New York: Association for Computing Machinery,

" November 1981, and IBM Research Report RC 8930 (Yorktown Heights, New York).

Jenks, R. D., "“A Primer: 1 Keys to New Scratchpad,” Proceedings of EUROSAM 84, 1984
International Symposium on Symbolic and Algebraic Computation, Cambridge, England, July
1984

Computer Algebra Group, Basic Algebraic Facilities of the Scratchpad 11 Computer Algebra
System, Yorktown Heights, New York: IBM Corporation, March 1986.

Computer Algebra Group, An Overview of the Scraichpad I Language and System,
Yorktown Heights, New York: IBM Corporation, April 1986.

Computer Algebra Group, Scratchpad 11 Examples from INPUT Files, Yorktown Heights,
New York: IBM Corporation, August 1986.

Sutor, R. S., ed. The Scratchpad Il Newsletter, Vol. 1, No. 1, Yorktown Heights, New
York: IBM Corporation, September 1, 1985.

Sutor, R. §., ed. The Scratchpad Il Newsletter, Vol. I, No. 2, Yorktown Heights, New
York: IBM Corporation, January 15, 1986.

Sutor, R. S., ed. The Scratchpad I Newsletter, Vol. 1, No. 3, Yorktown Heights, New
York: IBM Corporation, May 15, 1986,

