ﬁ/ ?mgvmmlaf\ww iTL ML{')—\&& .

Abstract Datatypes, Multiple Views and Multiple Inheritance in Scratchpad
11
Extended Abstract

Stephen M. Watt 8-862-3405 (SMWATT at YKTVMZ)
Richard D. Jenks 8-862-1233 (JENKS at YKTVMZ)

Computer Algebra Group, Mathematical Sciences Department
IBM Thomas J. Watson Research Center
P.O. Box 218, Yorktown Heights, New York 10598

Scratchpad II is an abstract datatype language developed at Yorktown Heights for the implemen-
tation of a new computer algebra system. It provides packages of polymorphic functions and
paramererized, abstract datatypes with operator overloading and multiple inheritance. To express
the intricate inter-relationships between the datatypes necessary for the description of mathematical
objects, a number of techniques based on the notion of eategory have been used. Categorics ate
used to enforce relationships between type parameters and to provide the mechanism for multiple
inheritance, They also allow the language to be statically type checked and the generation of effi-
cient code. This paper describes the role of categories in Scratchpad II.

Domains

In an environment where each operation may have many meanings, it is often useful to give a
“domain of computation” to specify the operations of interest. A domain is a Scratchpad 11 object
which provides a set of operations and attributes. Domains are used to implement abstract
datatypes and packages.

In Scratchpad 1 every object belongs to a unique domain. For example, 2 belongs to the domain
Integer. Domains are first class run-time values which belong to the domain Domain. Objects be-
longing to a domain may be maniputated by operations it exports. For example, two of the oper-
ations Integer provides are

"+": (Integer, Integer) -> Integer
"=": (Integer, Integer) -> Boolean

The operations exported by a domain need not combine only members of the domain itself. The
signatures of the exported operations may involve any types whatsoever. For example, the domain
RationalNumber exports the operations

"/": {Integer, Integer) -> RationalNumber
characteristic: ()} -> NonNegativelnteger

Note that RationalNumber does not appear in the signature for characteristic. A domain which
does not export any operations for creating or manipulating members is a package.

Domains may be created by functions, providing parameterized types and packages of polymorphic
functions. As an example of a parametenzed type, when Integer is passed to the function Stack a
domain which we denote Stack(Integer) is returned. :

The need for polymorphic functions stems from the desire to implement a gi\fén algorithm only
once, and to be able to use the program for any values for which it makes sense.. For example, the
Buclidean algorithm for computing greatest common divisors can be used for values belonging to
any type which is a Euclidean domain. The following package takes a Euchdean domain as a type
parameter and exports the operations gcd and 1cm on that type.

GCDpackage(R: EuclideanDomain): with
ged: (R, R) > R
Tem: (R, R} => R
== add .
gcd(x,y) == -- Euclidean algorithm
x:= unitiormal.x.coef
y:= unithormal.y.coef
while y 7= 0 repeat
(x,¥):= (y,x rem y)
y:= unitormal.y,coef

X
Tem{x, y) ==
ut Union(R, "failed") := y exquo gcd(x,y)
x * un:R

The exported operations can equally well be used for many types, the integers or polynomials over
GF(7) being two examples. Although the same gcd program is used in both cases, the operations
it uses (rem, unitNormal, etc.) come from the type parameter R.

Subdomains

An object may belong to any number of subdomains. The number 2, for example, belongs to many
subdomains of Integer, including PositiveInteger, EvenInteger and Smalllnteger. The domain
Integer belongs to many subdomains of Domain, including Monoid, AbelianGroup, Ring and
Algebra{Integer).

A subdomain consists of

* adomain

* aboolean function that characterizes which members of the domain belong to the subdomain
e additional operations defined on the subdomain.

A variable may be declared to belong to a domain or to a subdomain. When a variable is declared
to belong to a subdomain, its domain is that which the subdomain restricts. That is, values lying
in a subdomain also li¢ in the domain and may be used in all the appropriate domain operations.

‘The subdomain may provide operations which supplement or supersede those of the domain but
which are restricted to values lying in the subdomain. This restriction is for two reasons. First,
operations which are closed on the domain may not be closed on the subdomain. Second, if a
value has been determined to lie in a subdotnain. or is the result of a closed subdomain operation,
then the subdomain may provide a more efficient implementation than the domain operation.

Often the subdomain predicate can be determined at compile-time. In places where this cannot
be done, a run-time check may be inserted when a value must belong to a subdomain. Certain
subdomains which are known to the compiler can be more highly optimised than others.

Categories

While polymorphic packages allow the itnplementation of algorithms in a general way, it is neces-
sary to ensure that these algorithms may only be used in meaningful contexts. It would not be
meaningful to try to use GCDpackage above with Stack(Integer) as the parameter. In order to re-
strict the use to cases where it makes sense Scratchpad IT has the notion of categories.

A category in Scratchpad II is a restriction on the class of all domains. It specifies what operations
a domain must support and certain properties the operations must satisfy. A category may be
created using a category constructor such as the one below.

OrderedSet(): Category == Set with

-- operations
"<": (4,$) -> Boolean
max: ($,$) -> $
min: ($,$) -> §

-- attributes
irrefiexive "<" == not (x < x)
transitive "<" - x <yandy <z implies x <z
total <" -- not(x < y} and not{y < x) 1implies x=y

OrderedSet gives a category which extends the category Set by requiring three additional operations
and three properties, or attributes.

A declaration is necessary in order for a domain to belong to a given category: having the necessary
operations and attributes does not suffice. This is because the attributes are not intended to give
a complete set of axioms, but merely to make explicit certain facts that may be queried later on.
It is usually the case that belonging to a category implies that a domain must satisfy conditions that
are not mentioned as attributes. For example, in OrderedSet there is no attribute relating min and
* <", although such relations are implied.

A type parameter to a domain or package constructor is usually required to belong to an appro-
priate category. For example, in the previous section the parameter R to GCDpackage was declared
to belong to the category EuclideanDomatn.

Separation of Contract and Implementation

The use of categories in restricting the type parameters to a domain or package constructor allows
algorithms o be specified in very general contexts. For example, since all table types belopg to a
common category, algorithms can be written that do not need to know the actual implementation
(for example, whether it is a hash table in memory or a file on disk). As an example of algebraic
generality, consider the domain of linear ordinary differential operators, which is declared as follows

LinearOrdinaryDifferentialOperator(A, M): T == B where
A: DifferentialRing
M: Module(A} with deriv: § ~> §

== GeneralPolynamialWithoutCommutativity(A ,NonNegativelnteger) with
0: () ->%
II.II: ($' M) - M

This domain defines a ring of differential operators which act upon an A-module, where A is a
differential ring. The type of the coefficients, A, is declared to belong to the category
DifferentialRing and type of the operands, M, is declared to belong to the category Module(A) with
a derivative operation. The constructed domain of operators is declared to belong to a category
of general polynomials with coefficients A and two additional operations. The operation D creates
a differential operator and “.” provides the method of applying operators to elements of M.

Multiple Views and Multiple Inheritance

It is often necessary to view a given domain as belonging to different categories at different times,
Sometimes we want to think of the domain Integer as a belonging to Ring, sometimes as belonging
to OrderedSet, and at other times as belonging to other categories. For a domain to have multiple
views, it should be declared to belong to the Join of the appropriate categories. For example, the
following keyed access file datatype may be viewed either as a table or as a file:

KeyedAccessFile(Entry: Set): T == B where
FileRec ==> Record(key: String, entry: Entry)
ErrorMsg ==> String

T == Join(FiTeCategory(LibraryName, FileRec},
TableCategory{String, Entry, ErrorMsg)) _
with
pack: § ~> %

B==add ...

An important use of categories is to supply default implementations of operations. So long as
certain primitive operations are provided by a domain, others can be implemented categorically.
For example, supplying only “ < ” allows definitions of “>", “< =" and “> =", Thus a domain
may inherit operations from a category. The use of Join provides multiple inheritance.

Compile-Time Binding

A domain object contains a number of vectors of function/environment pairs. When operation
bindings are not known at compile-time (as for the operations exported by a type parameter), the
operations are performed by calling the function in the appropriate slot of a vector. When opera-
tion bindings are known at compile time, a code fragment for the operation may be placed in fine.

The scope rules in Scratchpad 11 and the operations applicable to domain values have been designed
so that when a domain is known to belong to a particular category, it is also known exactly what
operations it exports. From this, the precise location of each function is determined. Thus when
a function is called using the general mechanism, a hard-coded offset is used.

Scratchpad 11 is implemented on top of Lisp/VM. Since the cxact number and type of arguments
are known at compile time, much of the usual function can be omiited. This, in conjunction with
compile-time knowledge of function offsets, makes function calling in Scratchpad II faster than that
of the underlying Lisp system.

Bibliography

[11 Jenks, R. D. and Trager, B. M., “A Language for Computational Algebra,” Proceedings of
SYMSAC '81, 1981 Symposium on Symbolic and Algebraic Manipulation, Snowbird, Utah,
August, 1981, Also SIGPLAN Notices, New York: Association for Computing Machinery,
November 1981, and IBM Research Report RC 8930 (Yorktown Heights, New York).

[2] Jenks, R. D., “A Primer: 11 Keys to New Scratchpad,” Proceedings of EUROSAM "84, 1984
International Symposium on Symbolic and Algebraic Computation, Cambridge, England, July
1984

[3] Computer Algebra Group, Basic Algebraic Facilities of the Scratchpad 11 Computer Algebra
System, Yorktown Heights, New York: IBM Corporation, March 1986.

[41 Computer Algebra Group, An Overview of the Scratchpad II Language and System,
Yorktown Heights, New York: IBM Corporation, April 1986.

[5] Computer Algebra Group, Scratchpad II Examples from INPUT Files, Yorktown Heights,
New York: IBM Corporation, August 1986.

[6] Sutor, R. S., ed. The Scratchpad I Newsletter, Vol. 1, No. 1, Yorktown Heights, New
York: IBM Corporation, September 1, 1985,

{71 Sutor, R. 8., ed. The Scratchpad Il Newsletter, Vol. 1, No. 2, Yorktown Heights, New
York: IBM Corporation, January 15, 1986. :

[8] Sutor, R. 5., ed. The Scratchpad I Newsletter, Vol. 1, No. 3, Yorktown Heights, New
York: IBM Corporation, May 15, 1986,

