The Scratchpad II Newsletter: Vol. 2 Num. 1

November 1, 1987 3

Domains and Subdomains in
Scratchpad II

by
Stephen M. Watt

The implementation of the Scratchpad II computer
algebra system is based upon a compiled, strongly
typed language. This language provides packages of
polymorphic functions and parameterized, abstract
datatypes with operator overloading and multiple
inheritance, To express the intricate inter-
relationships between the datatypes necessary for the
description of mathematical objects, several tech-
niques based on the notion of category have been
used.

Categories have been used to enforce relationships
between type parameters and to provide the mech-
anism for multiple inheritance. They also allow the
language to be statically type checked and the gener-
ation of efficient code. This article describes the role
of categories in Scratchpad II. (Scratchpad II uses
the word “category” consistently with the computer
science terminology of algebraic specification, which
is somewhat inconsistent with the mathematical ter-
minology of category theory.) Please note that this
article refers to some language features that are not
yet available in publicly distributed versions of the
system. The compiler supporting these deatures is
scheduled for release in early 1988.

Domains

In an environment where each operation may have
many meanings, it is often useful to give a “domain
of computation” to specify the operations of interest.
A domain is a Scratchpad 11 object which provides
a set of operations and attributes. Domains are used
to implement datatypes and packages.

In Scratchpad II every object belongs to a unique do-
main. For example, 2 belongs to the domain
Integer. Domains are first class run-time values
which belong to the domain Domain. Objects be-
longing to a domain may be manipulated by oper-
ations it exports. For example, two of the operations
Integer provides are

"+": {Integer, Integer) -> Integer -
“=": (Integer, Integer) -> Boolean

The operations exported by a domain need not
combine only members of the domain itself. The
signatures of the exported operations may involve
any types whatsoever. For example, the domain
RationalNumber exports the operations

“/": (Integer, Integer) -> RationalNumber
characteristic: () -> NonNegativelnteger

Note that RationalNumber does not appear in the
signature for characteristic. A domain which does
not export any operations for creating or manipulat-
ing members is a package.

Domains may be created by functions, providing
parameterized types and packages of polymorphic
functions. As an example of a parameterized type,
when Integer is passed to the function Stack the
domain which we denote Stack(integer) is retumed.

The need for polymorphic functions stems from the
desire to implement a given algorithm only once, and
to be able to use the program for any values for
which it makes sense. For example, the. Euclidean
algorithm for computing greatest common divisors
can be used for values belonging to any type which
1s a Euclidean domain. The following package takes
a Euclidean domain as a type parameter and exports
the operations ged and /em on that type.

GCDpackage(R: EuclideanDomain): with
ged: (R, RY => R
lem: (R, R} =» R
== add

== Euclidean algoritim

ged{x,y) ==
while y = O repeat (x,y) := (y,x rem y)
normalize x

lemix, y) ==
(x exquo ged{x,y))::R * y

The exported operations can equally well be used for
many types, the integers or polynomials over
GaloisField(7) being two examples. Although the
same ged program is used in both cases, the oper-
ations it uses (rem, normalize, etc.) come from the
type parameter R, '

Subdomains

An object may belong to any number of subdomains.
The number 2, for example, belongs to many sub-
domains of Integer, including Positivelnteger,
Eveninteger and Smallinteger. The domain Inte-
ger belongs to many subdomains of Domain, in-

4 November 1, 1987

The Scratchpad II Newsletter: Vol. 2 Num. 1

cluding Monoid,
Algebra{lnteger).

AbelianGroup, Ring and

A subdomain consists of
¢ . adomain

¢ a boolean function that charactedzes which
members of the domain belong to the subdo-
main

* additional operations defined on the subdomain.

A variable-may be declared to belong to a domain
or to a subdomain. When a variable is declared to
belong to a subdomain, its domain is that which the
subdomain restricts. That is, values lying in a sub-
domain also lie in the domain and may be used in
all the appropriate domain operations.

The subdomain may provide operations which sup-
plement or supersede those of the domain but which
are restricted to values lying in the subdomain. This
restriction is for two reasons. First, operations which
are closed on the domain may not be closed on the
subdormain. Second, if a value has been determined
to lie in a subdomain or is the result of a closed
subdomain operation, then the subdomain may
provide a more efficient implementation than the
domain operation. ‘

Often the subdomain predicate can be determined at
compile-time. In places where this cannot be done,
a run-time check may be inserted when a value must
belong to a subdomain. Certain subdomains which
are known to the compiler can be more highly opti-
mized than others.

Categories

While polymorphic packages allow the implementa-
tion of algorithms in a general way, it is necessary to
ensure that these algorithms may only be used in
meaningful contexts. It would not be meaningful to
try to use GCDpackage above with Stack{integer)
as the parameter. To restrict the use to cases where
it makes sense, Scratchpad II has the notion of cate-
gories.

A category in Scratchpad II is a restriction on the
class of all domains. It specifies what operations a
domain must support and certain properties the op-
crations must satisfy. A category may be created
using a category constructor such as the one below.

OrderedSet(): Category == Set with
== gperations
"<": ($,$) -> Boolean
max: ($,5) -> §
min: (§,8) > §
== attributes
irreflexive "<"
transitive "<

-= not (x < x}
~~x<yandy<z

== implies x < z

total "<" == not{x < y) and not(y < x)
== implies x=y

OrderedSet gives a category which extends the cat-
egory Set by requiring three additional operations
and three properties, or atributes.

A declaration is necessary in order for a domain to
belong to a given category: having the necessary op-
erations and attributes does not suffice. This is be-
cause the attributes are not intended to give a
complete set of axioms, but merely to make explicit
certain facts that may be queried later. It is usually
the case that belonging to a category implies that a
domain must satisfy conditions that are not men-
tioned as attributes. For example, in OrderedSet
there is no attribute relating min and “ <”, although
such relations are implied.

A type parameter to a domain or package
constructor is usually required to belong to an ap-
propriate category. For example, in the previous
section the parameter R to GCDpackage was de-
clared to belong to the category EuclideanDomain.

Separation of Contract and Implementation

The use of categories in restricting the type parame-
ters to a domain or package constructor allows al-
gorithms to be specified in very general contexts.
For example, since all table types belong to a com-
mon category, algorithms can be written that do not
need to know the actual implementation (for exam-
ple, whether it is a hash table in memory or a file on
disk). As an example of algebraic generality, con-
sider the domain of linear ordinary differential oper-
ators, which is declared as follows

LinearOrdinaryDifferentialOperator(A,M): T == B where
A: DifferentialRing
M: Module(A) with deriv: § ~> §

T == GeneralPolynomialWithoutCommutativity(A,
NonNegativelnteger) with
D: () =%
‘ot (5, M) -> N

The Scratchpad II Newsletter: Vol. 2 Num. 1

November 1, 1987 5

This domain defines a ring of differential operators
which act on an A-module, where A is a differential
ring. The type of the coefficients, A, is declared to
belong to the category DifferentialRing and type of
the operands, M, is declared to belong to the category
Module{A) with a derivative operation. The con-
structed domain of operators is declared to belong to
a category of general polynomials with coefficients
A and two additional operations. The operation D
creates a differential operator and “.” provides the
method of applying operators to elements of M.

Multiple Views and Multiple Inheritance

It is often necessary to view a given domain as be-
longing to different categories at different times.
Sometimes we want to think of the domain Integer
as a belonging to Ring, sometimes as belonging to
OrderedSet, and at other times as belonging to other
categories. For a domain to have multiple views, it
should be declared to belong to the Join of the ap-
propriate categories. For example, the following
keyed access file datatype may be viewed either as a
table or as a file: .

KeyedAccessFile(Entry: Set): T == B where
FileRec ==> Record{key: String, entry: Entry)
ErrorMsg ==> String

T == Join(FileCategory(LibraryName, FileRec),
TableCategory(String, Entry, ErrorMsg)) _
with
pack:s § -> §

B == add ...

An important use of categories is to supply default
implementations of operations. So long as certain
primitive operations are provided by a domain, oth-
ers can be implemented categorically. For example,
supplying only “<" and “=" allows definitions of
“>" %< ="and “> =", Thus a domain may in-
herit operations from a category. The use of Join
provides multiple inheritance.

Compile-Time Binding

A domain object contains several vectors of
function/environment pairs. When operation
bindings are not known at compile-time (as for the
operations exported by a type parameter), the oper-
ations are performed by calling the function in the
appropriate slot of a vector. When operation
bindings are known at compile time, a code fragment
for the operation may be placed in line. -

The scope rules in Scratchpad II and the operations
applicable to domain values have been designed so
that when a domain is known to belong to a partic-
ular category, it is also known exactly what oper-
ations it exports. From this, the precise location of
each function is determined. Thus when a function
is called using the general mechanism, a hard-coded
offset is used.

Scratchpad II is implemented on top of LISP/VM.
Since the exact number and type of arguments are
known at compile time, much of the usual function
can be omitted. This, in conjunction with compile-
time knowledge of function offsets, makes function
calling in Secratchpad II faster than that of the
underlying Lisp system.

Construction of Algebraic Error Control
Codes (ECC) on the Elliptic Riemann
Surface

by
Martin Hassner
William H. Burge
Stephen M. Watt

In this paper we make use of the power series facility
of Scratchpad II to construct algebraic ECC on the
elliptic Riemann surface of genus one. We present
the construction of a specific example that highlights
the method.

Linear algebraic ECC are formally defined as ideals
in a function field. A message word which consists
of k symbols in a ground field is mapped by a matrix
encoder over the ground field into a code word which
consists of n symbols, n> k. The encoder matrix is
the null space of a check matrix that constrains the
symbols of the code word to be the residues at »
distinct singular points of first order of a function
whose poles are a fized set of pointers that locate the
symbols inside each code word. An additional con-
straint imposed on each code function is its
divisibility by a fixed function or linear system of
functions whose zero set is disjoint from the pole set.
A code consists of all the n-vectors of residues asso-
ciated with such a system of functions which form
an ideal. Within this algebraic framework it is pos-
sible to classify and determine (lower) bounds on the
performance, i.e, efficiency vs. correction power, of
algebraic ECC.

