The Scratchpad II Newsletter: Vol. 2 Num. 1

November 1, 1987 5

This domain defines a ring of differential operators
which act on an A-module, where A is a differential
ring. The type of the coefficients, A, is declared to
belong to the category DifferentialRing and type of
the operands, M, is declared to belong to the category
Module{A) with a derivative operation. The con-
structed domain of operators is declared to belong to
a category of general polynomials with coefficients
A and two additional operations. The operation D
creates a differential operator and “.” provides the
method of applying operators to elements of M.

Multiple Views and Multiple Inheritance

It is often necessary to view a given domain as be-
longing to different categories at different times.
Sometimes we want to think of the domain Integer
as a belonging to Ring, sometimes as belonging to
OrderedSet, and at other times as belonging to other
categories. For a domain to have multiple views, it
should be declared to belong to the Join of the ap-
propriate categories. For example, the following
keyed access file datatype may be viewed either as a
table or as a file: .

KeyedAccessFile(Entry: Set): T == B where
FileRec ==> Record{key: String, entry: Entry)
ErrorMsg ==> String

T == Join(FileCategory(LibraryName, FileRec),
TableCategory(String, Entry, ErrorMsg)) _
with
pack:s § -> §

B == add ...

An important use of categories is to supply default
implementations of operations. So long as certain
primitive operations are provided by a domain, oth-
ers can be implemented categorically. For example,
supplying only “<" and “=" allows definitions of
“>" %< ="and “> =", Thus a domain may in-
herit operations from a category. The use of Join
provides multiple inheritance.

Compile-Time Binding

A domain object contains several vectors of
function/environment pairs. When operation
bindings are not known at compile-time (as for the
operations exported by a type parameter), the oper-
ations are performed by calling the function in the
appropriate slot of a vector. When operation
bindings are known at compile time, a code fragment
for the operation may be placed in line. -

The scope rules in Scratchpad II and the operations
applicable to domain values have been designed so
that when a domain is known to belong to a partic-
ular category, it is also known exactly what oper-
ations it exports. From this, the precise location of
each function is determined. Thus when a function
is called using the general mechanism, a hard-coded
offset is used.

Scratchpad II is implemented on top of LISP/VM.
Since the exact number and type of arguments are
known at compile time, much of the usual function
can be omitted. This, in conjunction with compile-
time knowledge of function offsets, makes function
calling in Secratchpad II faster than that of the
underlying Lisp system.

Construction of Algebraic Error Control
Codes (ECC) on the Elliptic Riemann
Surface

by
Martin Hassner
William H. Burge
Stephen M. Watt

In this paper we make use of the power series facility
of Scratchpad II to construct algebraic ECC on the
elliptic Riemann surface of genus one. We present
the construction of a specific example that highlights
the method.

Linear algebraic ECC are formally defined as ideals
in a function field. A message word which consists
of k symbols in a ground field is mapped by a matrix
encoder over the ground field into a code word which
consists of n symbols, n> k. The encoder matrix is
the null space of a check matrix that constrains the
symbols of the code word to be the residues at »
distinct singular points of first order of a function
whose poles are a fized set of pointers that locate the
symbols inside each code word. An additional con-
straint imposed on each code function is its
divisibility by a fixed function or linear system of
functions whose zero set is disjoint from the pole set.
A code consists of all the n-vectors of residues asso-
ciated with such a system of functions which form
an ideal. Within this algebraic framework it is pos-
sible to classify and determine (lower) bounds on the
performance, i.e, efficiency vs. correction power, of
algebraic ECC.

6 November 1, 1987

The Scratchpad II Newsletter: Vol. 2 Num, 1

P, P, P, P, P, P P, P, Py
X, |1 0 a 1 0 8 0 «
X, 0 1 0 1 a 0 B 1 ¢
X, 1 1 1 0 | I 1 0 0
Figure 1. 9 rational points

The butk of the existing theory of algebraic ECC is
centered on ideals of rational functions in the rational
function field obtained as a simple transcendental
extension of the ground field GF(2"). The choice of
this ground field was dictated by applications of the
theory to computer data. The theory was extended
recently by the Russian coding theorist Goppa, who
formulated the unifying algebraic framework pre-
sented above, to fields of algebraic functions in one
variable obtained by algebraic extensions of the ra-
tional function field [2]. Further interest in this
theoretical development was produced by a recent
paper in which it was shown that codes defined on
elliptic modular curves, i.e, in elliptic modular func-
tion fields, have asymptotic parameters that exceed
the Gilbert bound,a lower bound on the asymptotic
performance of linear codes [4]. This bound was
believed to be tight until the appearance of this re-
sult.

The construction described in [2] uses a geometric
model for the field of algebraic functions defined on
an algebraic curve. As a specific example a code
constructed on the nonsingular elliptic cubic over the
ground field GF(2?) = {0,1, «, 8} is presented. The
equation of the nonsingular cubic over this ground
-field in the projective coordinates (X;, X;, X;} is

N+X+X=0 (1)

On this curve there are 9 rational points with coor-
dinates in this ground field (seé¢ Figure 1).

These 9 points are the inflection points of the cubic,
each has a triple tangent. They constitute the pole
divisor D= {P)},i=0,..,8, whose degree is the
block length of each code word, n=9. The linear
system of functions chosen for the zero divisor G is
{anv Xlzr){22! XOXI! ’Yl){ls XDX:} = {‘i’t}! i= 1! "y 6.

This linear system generates all the conics, in partic-
ular the conic ¢,= X X, + X,.X; + X, X; which as-
sumes nonzero values at all the nine points
{P},i=0, ..., 8. The check matrix is obtained as

&,
()

and the generator matrix given in [2] is the following

100081
0108018«
00101alla

The number of points at which a conic intersects a
cubic is 6, by Bezout’s theorem, hence the degree of
the zero divisor G is 6. The genus of the elliptic
curve is g= 1. These two parameters determine the
code separation d and the number of error control
symbols r estimated through the Riemann-Roch
theorem

1 1 1 ?/? 41
a1 aq’ +a BgP+8 P41
e +1 B +P ag?+a 1
@41 048 aqPta P41
qﬂla +1 q.'l/:l +1 q2/3 +1 q1/3 +1
qlla +1 aq.'l/S +a ﬁql/3 +ﬁ q1f3 +1

Figure 2. Parity check matrix of rank 6

ag*’® +
B+

2 +1
ag’? +a
Bg'/? + 4

B> +8 ag*+a P +1 B 48
ag?? + a 1 1 1

1 B +8 1 +1 ag? ta
qﬂll +1 ﬁq1/3 +,B q1/3+1 aqlla +a
B 1P agfita P41 getltig
ag’*+a B+1 B+1 f41

The Scratchpad IT Newsletter: Vol. 2 Num. 1

November 1, 1987 7

d2degG~2g+2 7
r<d+g-1)

The actual parameters for the example considered are
d=6,r=6.

We will now introduce an analytic model for the
nonsingular elliptic cubic based on the Riemann
surfa.ce for _the elliptic normal curve

=z(1-2)(1—4%2). This surface is a torus
whxch becomes simply connected by introducing two
cuts. It has two periods, the complete elliptic inte-
grais of the first kind

' dz ¥ &
K=_|.E and '~’"=IE
0 1
The elliptic integral of the first kind

maps the cut torus conformally onto a rectangle
whose sizes are 2K and 2iK". The inverse map from
this fundamental domain onto the torus determines
the coordinates {z, w} of a point u in the complex
plane. This map is described by quotients of power
series in the variable g = e*X'X and named Theta-
series in honor of Jacobi who used this notation. In
particular the coordinates on the torus of points that
lie on a regular grid inside the fundamental domain
can be expressed in terms of quotients of Theta- se-
ries with broken characteristic [3]. For our partic-
ular example these are the 9 trisection points and the
corresponding 9 characteristics are obtained by al-
lowing g and % to assume values in the set
{ — 1,0,1}; the argument v below is 22X,

[flo= D, (I EDER

m=--o0

The 9 trisection points are imbedded into the
projective plane by triple products of these series
such that the characteristic sum in each product is
congruent to zero mod 3. The projective coordinates
chosen are

%= 0][§ s 5]

[%
a= ool il
=3[} |0 % Js[L]o

The Sylvester form of the nonsingular cubic in the
projective plane is a power series identity satisfied
by these three power series

X+X+X+6emXX X, =0 (5)

The parameter m is a modular invariant that
parametrizes the family of cubics. Its value is

= — (1 + 2c%)/6c* where ¢ is given in terms of
theta-nulls [5]

oftJos] o[o
s[s]@s o3[5]

The reason that equations (1) and (5) have different
forms is that the coordinate origin in the projective
plane in [2] is picked such that the term 6m X XX,
is zero. The coefficients of the power sedes in
Xy, X, and X; at the 9 trisection points are algebraic
integers obtained from the cubic root of unity. In
Scratchpad II by a simple coercion we force them to
lie in GF(2?). The projective coordinates of all 9
trisection points are obtained by using the transfor-
mation formula for Theta-series[3]; the parameter <
in equation (7) is iK'/ K.

o[fJors 5 r) -
.9[2+ g,](v) - % (2ee(h+h’) L g) (7

(6)

h+ K 3 3

We have implemented in Scratchpad II the Jacobi
Theta series in a package named THETA3 and with
it we have checked equation (5). In the computation
of the check matrix we make use of a Pade approxi-
mation algorithm [1] that was implemented in a
Scratchpad II package named PADE which approxi-
mates {X,/X;, X,/ X;} by quotients of polynomials in
q'3. We chose the lowest degree approximants with
numerator of degree 1 and denominator of degree 2.
The approximants sansfy equation (5) exactly. The
parity check matrix is computed as {¢(P)} where
we use the same linear system as in [2]. All the ele-
ments in this matrix are nonzero, it has rank 6, and
it is given in Figure 2 on page 6.

The generator matrix obtained as the null space of
this matrix is as follows

0

0

I

(

< R
R o— T

10
01
01

o R o
OO

R o R

1
o
0

R

8 November 1, 1987

The Scratchpad II Newsletter: Vol. 2 Num, 1

The code over GF(2%) generated by this matrix has
distance d= 6 and 6 control symbols, i.e., the same
parameters as the code produced in [2]. Further-
more the weight enumerators of the two codes are
identical, both have 63 nonzero code words of block
length 9 out of which 36 have Hamming weight 6
and 27 have Hamming weight 8.

To conclude, we have shown an alternative method
for the derivation of algebraic ECC on algebraic
curves that seems to give equivalent codes. In com-
parison with the geometric model used by Goppa,
the Riemann surface provides a local analytic struc-
ture which should be useful in the reconstruction of
code functions, ie, in decoding. So far this problem
has remained unsolved within the framework of the
geometric method.

The first author acknowledges the warm support of
the Computer Algebra Group during his visit in the
winter of 1987 as well as several stimulating dis-
cussions with Professors Chudnovsky from
Columbia University.

References

[1] Baker, G.A., and Graves-Morris, P.R., “Pade
approximants: Basic Theory Part 1", Encyclo-
pedia of Mathematics, vol. 13, Reading,
Massachusetts: Addison-Wesley, 1981,

[2] Goppa, V.D., “Codes on algebraic curves,”
Soviet Math. 24 (1981): 170-172.

[3] Krazer, A., Lehrbuch der Thetafunktionen, New
York: Chelsea, 1970.

- [4] Katsman, G.L., Tsfasman,M.A. and Vladut,
5.G., “"Modular curves and codes with a
polynomial construction,” IEEE Tr. on IT, 30
(1984): 353-355.

[5] Sievert, H., Die Parameterdarstellung der
Kurven 3. Ordnung durch Thetafunktionen, Pr.
Bayreuth, 1905.

Some Questions and Answers About
Scratchpad II

The Computer Algebra Group welcomes youwr
questions about Scratchpad I1. Questions deemed to

be most interesting to a wide audience will be an-
swered in future columns, while more specific
questions will be answered on an individual basis.

Q: My terminal does not have brackets (“[” and
“T" or braces (“{" and “}”). Is there another
way to enter these characters so that I can cre-
ate lists and sets? prime number p dividing an
integer ¢?

A: The 2 character combinations “(|" and “I.)” and
CM{<” and “>)" may be substituted for “["
and “]" and “{" and “}", respectively.
(11,2,31)
(1) 1,2,31

Type: L I

(<1,2,3>)
(2) 1,2,3}
Type: FSET [

Another way of accomplishing the same thing
is to use the n-ary function construct instead
of “[” and “]". The function brace may be
applied to a list to create a set.

construct(1,2,3)
(3 0,2,3]
Type: L [

brace construct(i,2,3)
(4) {1,2,3}
Type: FSET I

Q: How do I evaluate a polynomial with a partic-
ular value for a variable?

A: Throughout Scratchpad II the function eval is
used to do what you want. For example, given
the polynomiat
P t= x**3 - (x®y*H2 - 2¥z)"%2

2 2 24 3
(1) -4z +4xyz-xy +x

Type: P I

you can substitute 10 for x by issuing

