The Scratchpad II Newsletter: Vol. 2 Num. |

November 1, 1987 9

eval{p,x,10)

2 2 4
(2) -4z + 40y z < 100y + 1000

Type: P I

The value need not be a constant. You can
substitute another polynomial for the variable.

eval{p,x,z+l)
(3} :
3 4 2 . 2 4 . 2
z +(-y +4y -1z +(-2y +8 + 3z
+
)
vy +1

Type: P I

There also a form of eval that does sirnultane-
ous substitution for several variables.

eval(p,[x,y,z],[y,z,x]}

24 2 3 2
(4) -yz +4xyz +y -4dx

Type: P I

As one would expect, this is different from se-
quential substitution.

eval(eval{eval{p,x,y).y,z},Z,x)

6 4 3 2
(5) - x +4x +x - 4x

Type: P I

What is the difference between fand g as de-
fined by

The difference is that g is a nullary function
that may be called to return the value 3 while
f1s a rule that evaluates to 3. You can see this
by defining and g as above and and then ask-
ing for their values.

f

{4) g{)==3
Type: Q

That is, g is a function. You must call the
function to get 3,

g()
Comptling function g with signature {) -> I

(5} 3
Type: 1

Rules are convenient to use when the defi-
nitions have dependencies on values that are
changing. Functions may also be used in this
case and must be used when you have one or
more arguments or when you want to create a
nullary function object. For example, the
function apply will take a nullary function ob-
ject and then call it, returning the result.

apply nuliaryFun == nullaryFun()
h:()=->1
h{) ==
apply h
Comptling function apply with signature
(() >1) > 1
Compiling function h with signature ()} -> I
(8) 3

Streams and Power Series

Streams have been in Scratchpad II for some time.
They are now implemented by a domain constructor
Stream and may be infinite, unlike lists. A stream
is represented by a list whose last element is a func-
tion that contains the wherewithal to create the rest
of the list from that point, should it ever be required.

The stream functions provided are take, drop, elt,
null, cons, first and rest (similar to the list functions),
together with functions for creating finite and infinite

Compiling .body of rule f to compute value of type Istreams. There are also packages that supply several

(3) 3
Type: I

So when you mention fyou get 3.

general purpose functions from streams to streams.
Since some of these functions operate on functions,
another package called MappingPackage has been
provided to simplify the expression of functional ar-
guments. Some examples follow:

10 November 1, 1987

The Scratchpad II Newsletter: Vol. 2 Num. 1

}set streams calculate §

All evaluated elements are printed, but at least the
first 5 will be evaluated.

a = [1..]
(1y 01,2,3,4,5,...]
b := [i+1 for 1 in al
(2} [2,3,4,5,6,...]

Select the 20# element:
b.20
(3) 22
The first 21 elements of b are evaluated:

b

(4)
le, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 2, 22, ...]
The stream of odd integers

[1 for i in a | oddp i]
(s [1,3,5,7,9,...]

([1,3] for i in a for j in bl
(6) [I1,21,[2,3),(3,4],[4,51,[5,61,...]

}set streams calculate 10

append(a,b} concatenates streams a and b

append{[i for { in a while i<7],a)

{7
[,23,45,6,1,2,3,4,5,6,7, 8,9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, ...]
The sum of a finite stream of integers:
reduce(0, +$I,take(a,10))
{8) 55
A stream of partial sums:
sc'anto._+$I.a)

(99 ,3,6,10,15,21,28,36,45,55,...]

To save space infinite streams of the same element
have a loop at the end.

3:5T I := repeating((8])

(10} (8]

[i+1 for i in al
(11) 9]

The functions in the Stream domain and stream
packages are particularly suitable for the implemen-
tation of algorithms on power series. The domain
PowerSeries is provided as a field, and the domain
UnivariatePowerSeries and an elementary function
package adds to it the functions exp, log, sin, cos,
tan,, composition, lagrange inversion, reversion to-
gether with the solution of linear differential
equations in power series.

A general method of producing programs which
solve recursion or differential equations in power se-
ries by the method of undetermined coefficients has
been developed in which the program can be written
down almost immediately from the defining relation.
In the method of undetermined coefficients a trial
series together with an initial value or two is substi-
tuted into the recursion or differential equation, and
then coefficients of equal powers are equated.

In these programs the trial series is made up of the
initial values followed by the as yet unevaluated
stream. The tail of the stream is then defined in
terms of the whole stream and when elements are
required the trial series becomes the resulting stream.
The program, because it uses functions that operate
on whole streams, rather than stream elements has
the same structure as the defining relation.

For example e raised to the power series power
A(x), has defining relation

(eA(X))r = Al(x)eA(I)

The corresponding program for generating the power
series exp A, in Scratchpad II, where A is a power
series is

exp A == integrate(l,deriv A%exp A))

in which integrate and deriv integrate and differen-
tiate power series. Some examples follow. The
command

)set streams calculate n

will cause the series up to the n* coefficient to be
printed.

The Scratchpad II Newsletter: Vol. 2 Num. 1

November 1, 1987 11

The following declares and assigns x to be a
UPS(x,RN), in other words a Univariate-
PowerSeries with variable x and with rational
number coefficients.

X 1= ps X

(12) «x

We can now compute easily with power series in-
volving x.

exp x

{13)
12 13 1 4 1 5
Lwx+ (=)x +(=dx + {==dx + (+=-)x
2 6

24 120
+
1 [1 7 1 8 1 9
(-==)x + {====)x 4+ (===== PR bty Ix
720 5040 40320 362880
+
1 10 11
(meamees oo+ 0(x)
3628800
cos x * cos x
{14)

12 7 4 19 6 1597 8
1= {=)x #{==)x = (=+=}x + {-==-- x
2

24 180 40320
+
373 10 11
o Sl x o+ 0(x)
32400
x/(exp x=1)
(15)
1 1 2 1 4 1 6
L= (=dx 4 (==Jx = (==-}x + {-=--- Ix
2 12 720 . 30240
+
1 8 1 10 11
= (wwwmee- I+ (ememenne x o +0(x)
1209600 47900160

expl(exp x=1)

(16)
2 5 3 5 4 13 5 203 6
L4 x+x 4 ()% + (2Ix + (==)x + (===)x
6 8 10

720

+

877 7 23 8 1007 9 4633 10

{m=edx + (===)x 4 (=---- SR S i x

5040 224 17280 145152
+

11
Olx)

atan {x)

1 3 1 5 1 7 1 9 11
(18 x = (=)x + {=)x = (=)x + (=)x +0O{x)
3 5 7 9

Power series provide a method of solving differential
equations when all else fails, The function Ide solves
the n* order linear differential equation, its argument
is a list of power series coefficients. The two sol-
utions of

V' ¥+ (cosx)y’ + (sinx)y=10
are

1de({sin x,cos x])
EIQJ
1 2 1 4 31 6 379 8
1= (=)x # (=)x = {===)x #& (====- x
2 6

720 40320
+
1639 10 11
= (==o=-- o+ 0(x)
907200 :
1 3 1 5 59 7 a9 11
o= {=)x 4+ (==)t = (===-)x o+ (====)x + O(x)
3 10 2520 6480

1

Power series are also used as enumerating generating
functions. For example, the function lambert will
transform one series into another in which the coef-
ficient 4, of x» is the sum of the coefficients of the
original a, for all i that divide n, including 1 and ».
In other words, if f(x) is a power series, then
lambert(f) is the power series

FE+FEH +)+ f(xY) + ...

The series for the number of divisors of # is

lambert(x/{1-x})

(20)
2 3 | 8 6 7 8
XX +2% ¥ 3x +2x +4x 4+ 2x + 4x
+
9 10 11
I +4x +0(x)

Using this function it is possible to expand certain
infinite products as power series. For example the
enumerating generating function for partitions is

o0

1
H (1-4"

n=1

12 November 1, 1987

The Scratchpad II Newsletter: Vol. 2 Num. 1

partitions := exp({lambert{log(l/(1-x))))

(21)
2 3 4 5 6 7
1+x+2¢ +#3x +58x +7x +1lx + 15x
+
8 9 10 i1
22x + 30x + 42x 4+ 0(x)

euler := llpartitidns

5 7 i1
(22) 1 -x=-x +x +x +0{x)

The generating function for partitions into distinct
parts is:

O

(144"

exp{lambert(log{l+x}))

(23)
3 4 5 6 7 8
T+x+x +20 +2x +3x +4x + 5% + 6x
+
9 10 11
8 + 10x +0(x)

The generating function for the
polynomials is

Legendre

1
(1—2xt+ A2

and with suitable declarations for x and t may be
expanded directly, as follows. '
(1-2%x*eee**2)**(-1/2)

(24)

. 2 2
L+ x* + ((3/2)x - 1/2)t
+

3 3
((5/2)x - (3/2)x)t
+
L) 2 4
((35/8)x = (15/84)x + 3/8)t
+

5 3 5
((63/8)x =~ (35/4)x + (15/8)x)t
+
6 L 2 6
((231/16)x - (315/16)x + (105/16)x - 5/16)t
+

7 5 k}
(429/16)x - (693/16)x + (315/16)x
+
= {35/16)x
7
t

8
0{t)

These examples show the present capability of writ-
ing expressions that denote power series. It should
be possible in the future to enter differential or
recursion equations that define new power series in
terms of existing ones as suggested in the example for
exp above, Other plans are to make multivariate
power series more usable and to add Puiseux series.
William H. Burge
Stephen M. Watt
Scott C. Morrisen

Primary Decomposition of Ideals

Scratchpad II now provides a facility for the primary
decomposition of polynomial ideals over fields of
characteristic zero. The algorithm is discussed in
[1] and works in essentially two steps:

1. the problem is solved for 0-dimensional ideals
by “generic” projection on the last coordinate

2. a “reduction process” uses localization and ideal
quotients to reduce the general case to the
0-dimensional one.

The Scratchpad II constructor IdealDomain repres-
ents ideals with coefficients in any field and supports
the basic ideal operations, including intersection,
sum and quotient. IdealDecompositionPackage
contains the specific functions for the primary de-
composition and the computation of the radical of
an ideal with polynomial coefficients in a field of
characteristic 0 with an effective algorithm for fac-
toring polynomials.

The follow examples illustrate the capabilities of this
facility. First consider the ideal generated by
x?+ y2— 1 (which defines a circle in the (x,p)-plane)
and the ideal generated by x? — y? (corresponding to
the straight lines x = yand x = —y.

f,g ¢ OMP{[x,y],RN)
n,m : L DMP{[x,y],RN)

m = [x**2+y*¥2-1]

2 2
(3) [x +y =11

Type: L DMP([x,y],RN}

n o= [x**2-y**2]

z 2
4) [x -y1

Type: L DMP([x,y]1,RN)

