
Reprinted from pp. 206-217, Proc. ISSAC ’88, Springer-Verlag LNCS 358, 1989.

A FIXED POINT METHOD FOR POWER SERIES COMPUTATION

Stephen M. Watt
IBM Thomas J. Watson Research Center

Box 218, Yorktown Heights, NY 10598 USA

Abstract

This paper presents a novel technique for manipulating structures which represent infinite power series.

When power series are implemented using lazy evaluation, many operations can be written as simple recursive
procedures. For example, the programs to generate the series for the elementary transcendental functions are almost
transliterations of the defining integral equations. However, a naive lazy algorithm provides an implementation
which may be orders of magnitude slower than a method which manipulates the coefficients explicitly.

The technique described here allows a power series to be defined in a very natural but computationally inefficient
way and transforms it to an equivalent, efficient form. This is achieved by using a fixed point operator on the
delayed part to remove redundant calculations.

The paper describes this fixed point method and the class of problems to which it is applicable. It has been used in
Scratchpad II to improve the performance of a number of operations on infinite series, including division, reversion,
special functions and the solution of linear and non-linear ordinary differential equations.

A few examples are given of the method and of the speed up obtained. To illustrate, the computation of the first
n terms of exp(u) for a dense, infinite series u is reduced from O(n4) to O(n2) coefficient operations, the same as
required by the standard on-line algorithms.

1 Introduction

When computing with power series it is often not known in advance how many terms will be required.
For this reason, some computer algebra systems provide facilities for working with “infinite” series.1

What this means is that it is possible to create series, perform various operations on them (e.g., addition,
differentiation, reversion) and then at the end ask for any number of terms of the result.

Infinite series are traditionally implemented as a list of generated terms and a remainder which can be
used to produce further terms as required. The remainder is represented either as a formula for the
general term or as the lazily evaluated tail of the term list. There are advantages to both approaches;
the lazy evaluation approach is more general but, in the cases where it is possible, it is often useful to
have a formula for the general term. Only the lazy evaluation approach is considered here.

In both of these representations it is desirable to have on-line algorithms for manipulating series, i.e.
algorithms which produce the terms individually, in order, and which do not require the number of terms
to be specified in advance. It is then possible to construct a series incrementally, computing only the new
terms when they are required. Knuth [2] presents a few on-line algorithms for power series.

1Maple [4] and Scratchpad II [3][6][7], for example.

1

When infinite series are implemented using lazy evaluation, many series operations have extremely simple
on-line programs which arise directly from the mathematical definition. However, the advantage of
mathematical transparency can be overshadowed by hidden costs which make the programs impractical
beyond low orders. The principal problem is that many series have recursive defining relations which
cause the initial terms of the series to be recomputed several times. What is desired is some method of
avoiding this recomputation while maintaining the simple form of the programs.

One possible solution would be to use an implementation where functions remember the values they have
computed (e.g. memo functions in Lisp, or option remember in Maple). The problem with this approach
is that it is pessimistic, remembering every term ever computed.

The approach taken here is to apply a fixed point operator in the construction of the series, making it
self-referential. When several series have mutually recursive defining relations, a fixed point operator is
applied to the entire collection. This way only those terms which will be of future use are preserved.

The outline of the remainder of the paper is as follows: Section 2 presents a few recursive lazy algorithms
to illustrate their simplicity. Section 3 shows how the re-evaluation arises and examines its cost. Section 4
shows how to view the series calculation in such a way that the re-evaluation is explicit. Section 5 outlines
how fixed point operators can be applied to data structure-forming operations to produce self-referential
objects. The interesting effects of using fixed point operators in conjunction with lazy evaluation are then
discussed briefly. Section 6 shows how to use such fixed point operators in the definition of power series.
Section 7 characterizes the problems to which the method is applicable. Section 8 concludes, illustrating
examples of the speed-up achieved.

2 Recursive Lazy Algorithms for Power Series

Let us assume that our programming language has some support for lazy evaluation2 and that power
series are represented densely as lazy lists of coefficients. In this case, possibly the simplest on-line
algorithm is to add two series:3

a + b == cons(first a + first b, delay(rest a + rest b))

In this definition, “+” is overloaded: the addition first a + first b uses the “+” from the coefficient
type and the addition rest a + rest b is a recursive call. Since the evaluation of the second argument
is delayed, this “infinite recursion” does not cause run time problems.

It is by now a classic exercise [5][7][8] to compute power series for elementary functions using this technique
applied to a defining integral equation. For example, the exponential may be defined by the relation

eu(x) = eu(x0) +
∫ u(x)

u(x0)
eu(z)du(z)

2If not, then lazy arguments can be simulated by passing function/environment pairs as arguments.
3If finite series end, rather than trail to an infinite list of zeros, then the following modification can be made:

a + b ==
(null a => b; null b => a; cons(first a + first b, delay(rest a + rest b)))

2

The choice of x0 is arbitrary. Assuming u does not have a pole, taking x0 equal to the point of expansion
provides the constant coefficient as u(x0).

The corresponding program in Scratchpad II uses the series function integrate, which takes a constant
of integration and the integrand as arguments. The evaluation of the integrand is delayed by integrate.

exp u == integrate(exp lc u, exp u * pderiv u)

As with “+” in the previous example, there are two different uses of exp here. The call exp lc u uses
the exponential function for the coefficient domain and the second call, exp u, is recursive.

A number of functions on power series were initially implemented in Scratchpad II using this simple style
of lazy recursion, including the arithmetic functions, composition, Lagrange inversion, the elementary
functions, the hypergeometric function, elliptic functions, and the solution of certain differential equations.

Other examples of recursive lazy procedures are shown below in their naive versions, so that they may
be compared with the improved versions. The trigonometric functions may be implemented in terms of:

tan u == integrate(tan lc u, (1 + tan(u)**2)*pderiv u)
sin u == integrate(sin lc u, cos u * pderiv u)
cos u == integrate(cos lc u, -sin u * pderiv u)

The function lde solves linear ordinary differential equations using undetermined coefficients. The call
y := lde(la, lp) solves the nth order equation

y(n) + lpn−1y
(n−1) + · · ·+ lp1y

′ + lp0y = 0
y(0) = la0, y

′(0) = la1, ...

The function ldeprod integrates the trial y(n) using the boundary condition for each order.

lde(la, lp) ==
integrate(first la, ldeprod(rest la, lp, lde(la, lp)))

ldeprod(la, lp, y) ==
if null la then

-- compute y<n> = -(lp(0)*y + lp(1)*y’ + ... + lp(n-1)*y<n-1>)
-reduce(0,_+,zip(_*,lp,generate(pderiv,y))

else
integrate(first la, ldeprod(rest la, lp, y))

Not all of the recursive functions are based on integration. Two other examples susceptible to optimization
are division and Lagrange inversion.

Series division can be performed based on the identity

a0 + xA

b0 + xB
=

a0

b0
+

x

b0
(A−B ∗ a0 + xA

b0 + xB
)

3

a/b == delay
if null a then return 0
if null b then error "division by zero"
a0 := first a; A := rest a
b0 := first b; B := rest b
if b0 = 0 then

if a0 = 0 then return A/B else error "division by zero"

cons(a0/b0, 1/b0 * (A - B * (a/b)))

Lagrange inversion of a power series f produces the series for g satisfying g(x) = xf(g(x)). One method
for power series reversion is based on this.

lagrange f == delay cons(0, compose(f, lagrange f))

These programs operate on whole series, rather than series coefficients so their structure can mimic rather
closely the defining relationships.

3 The Cost of Naive Computation

While correct, these definitions are not the most efficient for producing the indicated series — the initial
terms in the series are recomputed for each new higher order term. Examining the case of exp(u)
illustrates this. It is seen that the call to exp is exactly the same at each recursive level.

How costly is this re-evaluation? Assume u has already been computed to the required order. (In practice,
u is lazy and will not normally be pre-computed so the cost of extending u may be incurred as exp(u) is
extended.) When exp is called, integrate produces a series with some leading coefficient and a delayed
tail. When the second term is needed, the delayed part is evaluated. This causes the function exp to be
called again, as well as the functions pderiv and “*”. To produce the nth term, the (n− 1)st term of the
delayed series must be produced, along with the (n− 2)nd term of its delayed series, and so on. The cost
of producing the nth term may be written as

T (n) =
n−1∑
i=0

T (i) + P (n) + M(n)

P (n), the cost to compute the partial derivative, is O(n) coefficient operations. M(n), the cost to perform
the multiplication, is O(n2). Therefore T (n) is O(n3) and the cost to compute the first n terms of exp(u),
given a pre-computed series u, is O(n4) coefficient operations.

An on-line algorithm presented by Knuth [2] has cost O(n2) and a semi-on-line O(n log n) can be achieved
using Newton’s method. So, although the above program wins in terms of conciseness, it looses badly in
terms of efficiency. In section 6, the fixed point method is used to reduce the cost of our program to that
of the Knuth’s, while maintaining the simple, direct definition.

4

4 Recasting the Problem

We have seen in our examples that a recursive call often has exactly the same arguments as the original.
This is the source of the re-evaluation we wish to avoid.

In these cases, the series f(x) satisfies a relation

f(x) = F (f(x))

for some F and we have used this fact to compute f(x).4 While the use of this relation leads to re-
evaluation in a naive implementation, it allows the redundant calculations to be identified. Once they
have been identified, they can be removed.

With this in mind, we can try to express series calculations so that when such a relation is satisfied, the
functional equation is explicit. For example, rather than writing

L[y] = 0

for a differential equation, we try to solve
L̂[y] = y

It is the cases where we make the functional equation explicit which can be optimized by computing a
fixed point.

5 Fixed Point Operators

A fixed point p of a map F is a point in the domain of F such that p = F (p). Given a function which
operates on a recursively defined data type, it is often possible to compute a useful fixed point. Specific
effects can be obtained by tailoring a particular structure-forming or structure-transforming function
of which to take the fixed point. As well as providing a functional mechanism for manufacturing self-
referential structures, a combination of lazy evaluation and self-reference may be achieved.

Consider a recursively defined data type T and the class of functions mapping T → T . Certain functions
in this class have trivial fixed points: the identity and constant valued functions. Some functions in the
class may have no fixed point. Other functions may have a fixed point which it is impossible to compute
effectively.

Let us restrict our attention to functions which do not perform operations on their argument but rather
simply include it in a new structure which is returned as the value. Then we may always compute a fixed
point as follows:

4In fact, the existence of this functional relation may be the reason the series is interesting in the first place.

5

fixedPoint(F) ==
arg := generateUnique()
ret := F(arg)
if arg = ret then

-- F is the identity
return arb. element from the domain of F

else
ret := subs(arg = ret in ret)
return ret

Here generateUnique is a function which returns a unique system-wide value. Since F does not perform
any operations on its argument, it is safe to pass it this generated unique value, which strictly speaking
does not lie in its domain. A common notation for this fixed point is Y F .

From the definition of fixedPoint above we see that, for functions in our restricted class, the set of fixed
points will be one of

• a single constant (for functions which ignore their argument),

• the entire domain (for the identity function), or

• a single self-referential structure

As an example, an infinite repeating list can be obtained as follows:

cons1234(lst) == cons(1,cons(2,cons(3,cons(4,lst))))
repeating1234 := fixedPoint cons1234

When the use of the fixed point operator is combined with lazy evaluation, the result is more than simply
a self-repeating data structure. In this case, the self-reference can occur as a value in an environment for
a delayed function evaluation. When that part of the data structure is evaluated, the result can be some
interesting transformation of the self-reference.

This combination of lazy evaluation and self-reference is what we want for our power series calculations.

6 Using Fixed Point Operators For Series

It is now shown how computing a fixed point avoids the redundant calculations seen in section 3. Let us
continue with the example of the exponential:

exp u == integrate(exp lc u, exp u * pderiv u)

In this case, the lazy recursive call is exp u.5 Therefore, given u, we take the fixed point of the unary
function

5Recall that integrate delays the evaluation of the integrand.

6

e +-> integrate(exp lc u, e * pderiv u)

and the exponential is given by

exp u == fixedPoint(e +-> integrate(exp lc u, e * pderiv u))

Here, a +-> b is Scratchpad II notation for the anonymous function a 7→ b.6

Now the recursive calls to integrate are able to access the leading terms of the series computed so far.
When defined this way, the exponential function evaluates each term only once. The dominant cost is
that of the single delayed multiplication. See 8.

Sometimes large subexpressions arise and it is better to compute them prior to determining the fixed
point. This may be done by first creating a function of higher arity, with the extra parameters to specify
information about the argument series.

As a trivial example, one would write:

expre(e0, e, du) == integrate(e0, e*du)

in the exponential case. This function can be curried with arguments pertaining to the particular series,
u, to produce a unary function:

e +-> expre(exp lc u, e, pderiv u)

The fixed point of this unary function is now the exponential of u:

exp u == fixedPoint(e +-> expre(exp lc u, e, pderiv u))

7 Obtaining f = F(f)

This method is applicable to any function in which the lazy recursive call has the same arguments as the
original call.

Sometimes functions may benefit by the judicious use of an identity. For example, the tangent was defined
as

tan u == integrate(tan lc u, (1 + tan(u)**2)*pderiv u)

rather than
6The old Scratchpad II compiler uses a different notation: e.g., 3*#1 + 1 for n +-> 3*n + 1

7

tan u == integrate(tan lc u, sec(u)**2 * pderiv u)

to make it suitable for the fixed point method. An arithmetic identity was used for division (see section
2).

When a set of functions is mutually recursive, they may be written as a single system. For example, sin
and cos become [

sin
cos

]
u(x) =

[
sin
cos

]
u(x0) +

[
0 1

−1 0

] ∫ u(x)

u(x0)

[
sin
cos

]
u(z)du(z)

sincosre(s0,c0,sc,du) == [integrate(s0,sc.1*du),integrate(c0,-sc.0*du)]

sincos u == fixedPoint(sc +-> sincosre(sin lc u, cos lc u, sc, pderiv u), 2)

sin u == sincos(u).0
cos z == sincos(u).1

The argument 2 to fixedPoint indicates the size of the system.

With this in mind, applying the fixed point optimization method is quite straightforward. Applying it
to the other examples of sections 2 gives:

tan u == fixedPoint(t +-> integrate(tan lc u, (1 + t**2)*pderiv u))

ldere(la,lp,y) == integrate(first la, ldeprod(rest la, lp, y))
lde(la,lp) == fixedPoint(y +-> ldere(la, lp, y))

divre(a0, ib0, A, B, adivb) == delay cons(a0*ib0, ib0*(A-B*adivb))

a/b ==
if null a then return 0
if null b then error "division by zero"
a0 := first a; A := rest a
b0 := first b; B := rest b
if b0 = 0 then

if a0 = 0 then return A/B else error "division by zero"

fixedPoint(adivb +-> divre(a0, 1/b0, A, B, adivb))

lagrangere(f,l) == delay cons(0, compose(f, l))
lagrange f == fixedPoint(l +-> lagrangere(f, l))

Once we know we want to use fixed points in computations, this programming style can be used from
the start. An example of a package created this way is PowerSeriesODESolver, displayed in 8., with
examples shown in 8.

8

8 Conclusion

It has been shown how to use the fixed point operator to reduce the computational complexity of recursive
lazy power series algorithms by removing redundant calculations. This allows many functions to have
efficient programs which look much like their defining equations. Examples of the improvements achieved
are shown in 8 and 8.

This method is particularly well suited to power series computation since recursive common subexpres-
sions seem to be the norm, rather than the exception. The modification of programs using the fixed point
is quite straightforward and is something which could in principle be done by an optimizing compiler.

Current work includes investigation of fixed points in multivariate power series and their use in solving
implicit equations.

Acknowledgements

William Burge was the principal designer of infinite power series in Scratchpad II. The examples presented
in section 2 are based on his programs. When the author presented him with this fixed point method to
to improve existing programs, he then found other places where the method could be applied.

Bibliography

[1] H.B. Curry and R. Feys, Combinatory Logic North Holland, Amsterdam, 1958.

[2] D.E. Knuth, The Art of Computer Programming Volume 2, Second Edition, Addison-Wesley, Reading Mass,
1981.

[3] R.D. Jenks and B.M. Trager, A Language for Computational Algebra, Proc. 1981 ACM Symposium on
Symbolic and Algebraic Computation.

[4] B.W. Char, K.O. Geddes, G.H. Gonnet and S.M. Watt, Maple User’s Guide, Watcom Publications, Waterloo
Ontario, 1985.

[5] H. Abelson and G. Sussman (with J. Sussman), Structure and Interpretation of Computer Programs, The
MIT Press, Cambridge Mass, 1985.

[6] R.D. Jenks, R.S. Sutor and S.M. Watt, Scratchpad II: An Abstract Datatype System for Mathematical Com-
putation, IMA Volumes in Mathematics and Its Applications, Volume 14, Springer-Verlag, New York (to
appear). (Also RC 12327, IBM Research 1986)

[7] W.H. Burge and S.M. Watt, Infinite Structures in Scratchpad II, Proc. 1987 European Conference on
Computer Algebra, Leipzig, GDR, Springer Verlag Lecture Notes in Computer Science (to appear).

[8] J.P. Henry and M. Merle, Puiseux Pairs, Resolution of Curves and Lazy Evaluation, Preprint 1987.

9

exp(x), for the monomial x exp(u), for u dense + infinite
============================= ===============================
Naive Recursion Fixed Point Naive Recursion Fixed Point

Terms + * / + * / + * / + * /
10 62 135 55 11 23 10 255 275 55 63 65 10
20 227 475 210 21 43 20 1710 1750 210 228 230 20
30 492 1015 465 31 63 30 5365 5425 465 493 495 30
40 857 1755 820 41 83 40 12220 12300 820 858 860 40
50 1322 2695 1275 51 103 50 23275 23375 1275 1323 1325 50
60 1887 3835 1830 61 123 60 39530 39650 1830 1888 1890 60

Figure 1: Coefficient operations in computing the exponential

10

DE1 DE2 DE3 DE4 DE5

f(a)=1 ---
5: 30/ 10 23/ 14 28/ 22 15/ 15 15/ 5
10: 110/ 20 86/ 29 80/ 47 155/ 110 55/ 10
15: 240/ 30 183/ 44 162/ 72 1140/ 255 120/ 15
20: 420/ 40 321/ 59 291/ 97 2850/ 400 210/ 20
25: 650/ 50 493/ 74 438/ 122 5285/ 545 325/ 25
30: 930/ 60 706/ 89 615/ 147 8445/ 690 465/ 30
100: .../ 200 .../ 299 .../ 497 .../ 2720 .../ 100

f(a)=1+a+a**2 --
5: 46/ 17 29/ 19 29/ 23 15/ 15 50/ 20
10: 191/ 37 122/ 44 94/ 58 155/ 110 275/ 65
15: 436/ 57 274/ 69 201/ 93 1390/ 345 800/ 135
20: 781/ 77 492/ 94 367/ 128 3850/ 590 1750/ 230
25: 1226/ 97 769/ 119 564/ 163 7535/ 835 3250/ 350
30: 1771/ 117 1112/ 144 804/ 198 12445/ 1080 5425/ 495
100: .../ 397 .../ 494 .../ 688 .../ 4510 .../ 5150

f(a)=sin a ---
5: 50/ 20 30/ 20 29/ 23 15/ 15 71/ 32
10: 275/ 65 156/ 65 104/ 68 155/ 110 466/ 117
15: 800/ 135 435/ 135 262/ 138 1490/ 405 1436/ 252
20: 1750/ 230 936/ 230 551/ 233 5050/ 950 3231/ 437
25: 3250/ 350 1715/ 350 974/ 353 12085/ 1745 6101/ 672
30: 5425/ 495 2841/ 495 1574/ 498 23845/ 2790 10296/ 957
100: .../ 5150 .../ 5150 .../ 5153 .../43670 .../ 10197

nnn/fff compares the number of multiplications for naive vs. fixed point
ttt: number of terms
DE1-DE4 solved using lde
DE5 solved using ode1

Figure 2: Coef operations in the method of undetermined coefficients

11

++ This package provides power series solutions
++ to regular linear or non-linear ordinary
++ differential equations of arbitrary order.

PowerSeriesODESolver(z: Expression, K: Field): Interface == Implementation where
UPS ==> UnivariatePowerSeries(z, K)
L ==> List

Interface ==> with
ode1: ((UPS->UPS), K) -> UPS

++ ode1(f,c) is the solution to
++ y’=f(y) such that y(0)=c

ode2: ((UPS,UPS) -> UPS, K,K) -> UPS
++ ode2(f,c0,c1) is the solution to
++ y’’=f(y,y’)
++ such that
++ y(0) = c0, y’(0) = c1

ode: (L UPS -> UPS, L K) -> UPS
++ ode(f, cl) is the solution to
++ y<n>=f(y,y’,..,y<n-1>)
++ such that
++ y<i>(0) = cl.i, for i in 0..n-1

Implementation ==> add
ode1(f,c) ==

fixedPoint(y +-> integrate(c, f y))

ode2(f, c0, c1) ==
fixedPoint(y +-> integrate(c0, integrate(c1, f(y, pderiv y)))

-- Compute [y,y’,..,y<n>] = [int(y’),..,int(y<n>),f(y,..,y<n-1>)]
odeNre(f: L UPS->UPS, cl: L K, yl: L UPS): L UPS ==

yis := [integrate(c, y) for c in cl for y in rest yl]
append(yis, [f yis])

ode(f, cl) ==
fixedPoint(yl +-> odeNre(f,cl,yl), #cl+1).0

Figure 3: Power Series ODE Solver: Implementation

12

-- Problem: Solve y’’’ = sin(y’’) exp(y) + cos(x)
-- subject to y(0)=1, y’(0)=0, y’’(0)=0.

-- Allow the series to have elementary function coefs.
ups := UPS(’x, EF I);

-- Define f(y) = y’’’.
f(C: List ups): ups == sin(C.2)*exp(C.0)+cos x;

-- Use ode with the appropriate boundary conditions.
y := ode(f, [1, 0, 0])$PSODE(’x, EF I)

2 3
1 3 %e 4 %e - 1 5 %e - 2%e 6

(3) 1 + - x + -- x + ------- x + --------- x
6 24 120 720

4 2
%e - 8%e + 4%e + 1 7 8

+ -------------------- x + O(x)
5040

-- By default, only the first few terms are shown.

-- Test the solution.
yp:=pderiv y; ypp:=pderiv yp; yppp:=pderiv ypp;

yppp - f [y, yp, ypp]

8
(5) O(x)

Figure 4: PowerSeries ODE Solver: Example

13

