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Abstract

Scratchpad Il is a language developed at Yorktown Heights for the imple-
mentation of a new computer algebra system. The need to model the in-
tricate relationships among the datatypes representing mathematical
objects has provided a number of challenges in the design of a type sys-
tem for the programming language.

In languages in which a datatype constructor may take multiple parame-
ters, ensuring compatibility between them is extremely important.
Scratchpad Il addresses this issue by basing its implementation of abstract
datatypes on cafegories. Categories provide a convenient and useful
method for specifying requirements on operations from datatypes. These
requirements can be very complex when modeliing mathematics.

We show how categories provide multiple inheritance and how inheritance
of specification is separated from inheritance of implementation. We also
present implications of the type system on compilation of efficient code
and flexibility of a weakly typed interactive user interface.

Finally, the mechanisms of Scratchpad Il are compared with those of tra-
ditional abstract datatype and object-oriented programming languages.



1. Introduction

Computer algebra provides tools for the manipulation of symbolic math-
ematical expressions. It is a fascinating field, rich in problems in the
structuring of data, analysis of algorithms and constructive mathematics
[ACOMALG.] [&SYMSACS6.] [&FRENCH.] [&KNUTH2.]. This paper is not
about computer algebra, however. [t is about certain general program-
ming language issues which become increasingly important when writing
software for nontrivial mathematical applications.

Scratchpad It is a language developed for the implementation of a new
computer algebra system. It has been undergoing an evolution since 1979
and is by now fairly mature [&MODLISP.] [&KEYS.] [&APLPAPR.]
[&SNOWBIRD.]. A modern dialect of the Scratchpad Il has been used to
implement approximately of 50,000 lines of code, including a library of fa-
cilities for the manipulation of symbolic mathematical expressions, a
compiler, and an underlying library of data structures.

From an early stage, Scratchpad |l was intended to be used both as a ve-
hicle for the implementation of mathematical algorithms in their most
general naturai contexts and as a publication language. These goals are
closely related — in both cases it is necessary to specify precisely the
range of applicability.

An important criterion for the language from the point of view of this paper
was that the library of code for symbolic mathematics was to be structured
according i{o the established formalisms of modern abstract algebra
[&BOURBAKI.].

A similarity between mathematicians and computer scientists is that both
both participate in the activities of generalization and abstraction. A dif-
ference between them is that mathematicians have been doing this for
several hundred years. It is not surprising that by now the mathematical
community has produced thousands of inter-related abstractions.

Scratchpad Il is certainly not specific to mathematical applications, Con-
siderable effort has been applied to keep specifics of the mathematical
applications confined to the library. However, as with any other language,
the requirements of the initial application area have made us consider
certain language design aspects more than others. In the design of
Scratchpad Il we have been forced to examine issues relating to relation-
ships among datatypes.

To be able to give formal specifications of the scope of algorithms, a re-
quirement was that the language have mechanisms to be able to express
the rich set of relationships among the standard abstractions of modern
mathematics. This paper describes the language mechanisms developed
for this purpose,

In sections 2 and 3, we begin by presenting the foundations of the type
system. It is based on the primitive notions of domain

In section 4, we go on to define the category abstraction in terms of do-
mains and subdomains. In section 5, we define fype as synonymous to
subdomain and discuss how types are used in the language.

In section 6, we indicate how categories pravide various linguistic facili-
ties. We describe how we obtain parameterized abstract datatypes,
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polymorphic packages, multiple views and multiple inheritance. We show
how categories are used to make assertions about and relations between
domain parameters. Finally, we show how packages fit naturally into the
model.

In section 7, we present certain implementation aspects of the type sys-
tem. In particular, we show how categories are used to specify compile-
compile time bindings for overload resofution.

In section 8, we lllustrate how a weakly typed interactive interface is used
in conjunction with the strongly typed compiled language. A number of
interesting issues arise here, largely because the number of types that
need to be considered is not finite,

Finally, in section 9, we compare the type system of Scratchpad |l with that
of other abstract data type languages and with object oriented systems.

2. Domain

In an environment where an operation symbol such as + may have many
different meanings, it is useful to specify a “domain of computation”, or,
simply, “domain”, to restrict attention to specific meanings of interest. A
domain is a Scratchpad Il object providing a set of executable
operations,' often called the operations exported by the domain.

In Scralchpad Il every value belongs to a unique domain. For example, 2
belongs to the domain Iinteger. Domains are themselves first class run-
time values which belong to the domain Domain.

The operations of a domain are syntactically described by a signature
which pairs an operation name with source and target domains (see sec-

tion § for a precise definition), For example, two of the operations Integer
provides are

"+": (Integer, Integer) -> Integer
"=": (Integer, Integer) -> Boolean

Values belonging to a domain are generally manipulated by operations it
exports. The operations exported by a domain however may manipulate

any values whatsoever. For example, the domain RationalNumber ex-

- ports the operations

“/": (Integer, Integer) -> RatijonalNumber
characteristic: () -> NonNegativelnteger

Note that RationalNumber does not appear in the signature for charac-
teristic. A domain which exports no operation for creating or manipulating

members is a package.

Creating Domains

i An operation consists of a name (e.g. *+ or gcd) and a description of 2 mapping from
one set of values to another.
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Domains are run-time values created by functions? called domain
constructors,

Domain constructors are often parameterized. For example, function Stack
is a domain constructor with cne formal argument parameter; when Inte-
ger is passed to the function Stack a domain which we denote
Stack(Integer) is returned.

The operations of a domain are implemented by functions defined by the
domain constructor. These functions are cailed pofymorphic since they
are defined over a class of domains. For example, the operation

push: (S,%$) -> $

is exported by domain Stack(S) for any domain S. This operation is im-
plemented by a single function regardless of the value S.

Stack is an example of how a domain constructor is used to create a
datatype. Domain constructors may also be used to implement a package
of polymorphic functions. Here there is the desire to implement a given
algorithm only once, and to be able to use the program for any values for
which it makes sense. The following package takes a Euclidean domain
as a domain parameter and exports the operations ged and lecm on that
domain,.

GCDpackage(R: EuclideanDomain): with
ged: (R, R) -> R
Tem: (R, R) -> R

== add
ged(x,y) == =-- Euclidean algorithm
while y -= 0 repeat (x,y):= (y,x rem y)
normalize x
Tem(x, y) ==
u: Union(R, "failed") := y exquo gcd(x,y)
x * u:sR

The exported operations here can be used equally well for many domains,
the integers or polynomials over GaloisField(7) being two examples. Al-
though the same ged program is used in both cases, the operations it uses

(rem, normalize, etc.) come from the domain parameter R.

The above definition illustrates Scratchpad Il as an “abstract datatype lan-
guage” for defining domains. Everything before the first “= =" is the
public part of the definition of the constructor GCDpackage. This part
describes its parameters (R) and exported operations (gcd and lcm). Ev-
erything after the first “= =" is private information as to how the oper-
ations are implemented.

2 A function is a program implementing an operation.
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3. Subdomains

A value may belong to any number of subdomains. The number 2, for ex-
ample, belongs to many subdomains of Integer, including NonNegative-
Integer, Eveninteger, and Primelnteger.

A subdomain consists of

e adomain

e a hoolean function that characterizes which members of the domain
belong to the subdomain

¢ additional operations defined on the subdomain.

For convenience, we will regard any domain to be a subdomain of itself.

Values in a subdomain also lie in the domain and may be used in all the
appropriate domain operations. The subdomain may provide operations
which supplement or supersede those of the domain but which are re-
stricted to values lying in the subdomain. This restriction is for three rea-
sons. First, operations which are closed on the domain may not be closed
on the subdomaln. Second, if a value has been determined to lie in a
subdomain or is the result of a closed subdomain operation, then the
subdomain may provide a more efficient implementation than the domain
operation, Third, the operation may be defined only on the subdomain.

Often the subdomain predicate can be determined at compile-time. |In
places where this cannot be done, run-time checks may be required when
values must belong to a subdomain. Certain subdomains known to the
compiler and the checks can be more highly optimized than others.

Creating Subdomains

The simplest way to construct a subdomain is to specify a base domain
and a subdomain condition:

NonNegativelnteger() == Subdomain{n — (n >= 0), Integer)
The signature of the binary subdomain constructor above is given by

Subdomain(condition: D -> Boolean, D: Domain): Subdomain(D)

That is, given a domain D and a mapping from D into Boolean, it produces
a subdomain of D.

if additional operations are desired they are provided in a body similar to
that of a domain:

EvenInteger(): Subdomain(Integer) with
haif: $ -» Positivelnteger
== Suybdomain(n —(n rem 2 = 0), Integer) add
half(n) == n quo 2

A subdomain may be created as a refinement of another subdomain. In
this case, the new subdomain has the same base domain as the first and
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the conjunction of the predicates is used. We use the same notation as for
creating a subdomain from a domain.

Positivelnteger() == Subdomain(n — (n>0), NonNegativelnteger)

Finally, it is possible to construct a subdomain by combining the conditions

of several other subdomains. To do this one uses the Join constructor.
One could define

PositiveEvenInteger() == Join(Positivelnteger, EvenInteger)

4. Categories

A category in Scratchpad Il is a restriction on the class of all domains.
We formally identify Category = = Subdomain(Domain).

The domain Integer belongs to many subdomains of Domain, including
Monoid, AbelianGroup, Ring and Algebra(integer).

A category may specify what operations a domain must support, proper-
ties the operations must satisfy, or other criteria. Categories may be
parameterized by domains or other values and may guarantee additional
properties, based on the values of the parameters.

Categories existed as primitives in Scratchpad il from a very early stage
[&SNOWBIRD.] [&ALIST.]. Their use was inspired by algebraic specifica-
tion [&ADJ.] and previous experiments in computer algebra.
[&ANDANTE.]

More recently, the language has been simplified by redefining categories
in terms of Subdomain(Domain).

Creating Categories

A category may be created using a category constructor such as the one
befow.

OrderedSet(): Category == Set with
-= operations
"<": ($,%) -> Boolean
max: ($,$) -> $
min: ($,$) -> 3§
-- attributes

irrefiexive "<" -- pot (x < x)
transitive "<" --x<yandy<z --> x <z
total "<" == not(x < y) & not(y < x) --> x=y

OrderedSet gives a category which extends the category Set by requiring
three additional operations (* <", max, and min) and three properties, or
attributes. The attributes are not intended to give a complete set of axi-
oms, but merely to make explicit certain facts that may be queried.
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A parameterized category may be given in a similar fashion. When iden-
tities must hold between operations, it is often possible to give default
implementations for certain ones in terms of the others.

The following example shows a parameterized category with conditional
operations and a default implementation.

FiniteSetCat(S: Set): Category == Set with
null: $ -> Boolean
union: ($,$) > 3%
intersect: ($,%$) -> $
difference: ($,$) -> $
member: {S$,$) ~> Boolean

if S has Finite then
Finite with

alt: () -> 3
compiement: $ -> §
default

complement s == difference(all{), s)

5. Types

In Scratchpad I, type is synonymous with subdomain. The type of a value
is not unique: the type of a value is any subdomain of its domain. The
number 2, for example, simuitaneously has type Integer, NonNegative-
Integer, Positivelnteger, PositiveEvenlnteger, among other subdomains of
Integer. Likewise, the domain Integer simultaneously has type Ordered-
Set, EuclideanDomain, Ring, among other subdomains of Domain.

Types form hierarchies as a result of subdomain definitions (Figure 1).
Once a value is known to have some type, it immediately has the type of
all of its ancestors up the hierarchy. For example, once a value is known
to have type Positivelnteger, it also has type NonNegativelnteger and In-
teger. Likewise, once a domain has type Ring, it also has type SimpleRing,
Module(integer), AbelianGroup, and others.

Although types are values in Scratchpad I, their most important use is in
“declarations” and signatures. A declaration has the form “x : T” for var-
iable x and type T. This means that variable x must be bound to a value
of type T. Thus the declaration

n : Positivelnteger

is used to only allow positive integers to be assigned to the variable n.

A mapping is a primitive type which pairs a “source” type with a “target”
type using an infix operator "->". For example, the declaration

f . NonNegativelnteger -> Integer

requires that the value of variable f be a function which maps values of
type NonNegativelnteger to those of type Integer. Given the above decla-
rations, the application f(n) is type-correct.
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The package form GCDpackage(RationalNumber()) is likewise type-
correct. By definition,

RationalNumber(): Join(Field,Algebra(Integer)) with .

and so, RationalNumber has type Field, Algebra(Integer), and ali of their
ancestors. One of these ancestors is EuclideanDomain as required by the

package constructor GCDpackage.

A signature is similar to a declaration except that it pairs the name of the
operation with a type, usually a mapping. For example, the above decla-
ration for RationalNumber could be written

RationalNumber: () -> Join(Field,Algebra(Integer)) with .

Signatures are used to describe the exported operations from domain and
category constructors. Since types in signatures are not required to be
mappings, domains and categories may export constants as well.

The notions of subdomain for three primitive types: mappings, records,
and unions are all system defined. A mapping M is defined to be a sub-
domain of M’, for example, if the source of M is a subdomain of the source
of M" and the target of M’ is a subdomain of the target of M.

An operation in a given type will subsume an operation in an ancestor type
with the same name if the type in the operation for the given type is a
subdomain of the corresponding type in the ancestor’s operation. For ex-
ample, category SemiGroup and Group respectively export the
exponentiation operation

"X ($,NonNegativelnteger)
kKL (¢ Integer)

Since, Group is a subdomain of SemiGroup, the second operation
subsumes the first.

6. Linguistic Uses of Types

Relations among Parameters and Results

While polymorphic packages allow the implementation of algorithms in a
general way, it is necessary to ensure that these algorithms may only be
used in meaningful contexts. It would nof be meaningful to try to use

GCDpackage above with Stack(Integer) as the parameter.

Algorithms rarely require values to be from a particular domain. Even al-
gorithms such as ged which are originally intended to work over the inte-
gers actually work over a more general classes of values. Categories
serve as classifications of domains. In Scratchpad Il, a user may imple-
ment may then choose the most general class of domains for which the
any algorithm so as to be applicable to the most general class of values
where the algorithm makes sense.
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Consider for example a user wishes to implement the algorithms
quickSort, heapSort, and shellSort for sorting an array of integers. Once
these algorithms have been written, the implementer will notice that these
algorithms apply to a wider class of domains. From a system classification
of data structures, this class is determined to be LinearAggregate with the
shallowMutability attribute. The attribute assures that datatypes have op-
erations which allow component values to be reset “in place”.

These sorting functions are then embedded in a package so as to be
parameterized by the domains over which they are defined.

SortPackage(S:0rderedSet,
V:(FinitelLinearAggregate(S) with shallowiyMutable)):
with
quickSort: (S,V) -> V
heapSort: (S,V) -> V
shellSort: (S,V) -> V
== add ..,

The algorithm may now be used not only for arrays but lists, doubly linked
lists, strings, flexible arrays, and others, whose elements are integers, ra-
tional or floating point numbers, or, given that ordering is lexicographic,
essentially any datatype. Moreover, the definition of the algorithms which
follow the add are essentially unchanged from the original versions re-
stricted to arrays of integers.

Multiple Views

It is often necessary to view a given domain as belonging to different cat-
egories at different times. Sometimes we want fo think of a vector of in-
tegers as a ring, sometimes as an ordered set, sometimes as a module
over the integers. In Scratchpad II, this is equivalent to regarding the type
of a wvalue from Vector(integer) as Ring, OrderedSet, or
Module(Integer). Likewise, it is often useful to view values in subdo-
mains in different ways, e.g. a prime integer as an odd integer, a positive
integer, or simply an integer.

A domain has muitiple views whenever it is declared to belong to the Join
of the appropriate categories. For example, the following keyed access file
datatype may be viewed either as a table or as a file:

KeyedAccessFile(Entry: Set): T == C where
FileRec ==> Record(key: String, entry: Entry)
ErrorMsg ==> String

T ==> Join(FileCategory(LibraryName, FileRec),
TableCategory(String, Entry, ErrorMsg))

C ==> add .
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Inheritance

When two sets of operations are Joined, identical operations coalesce and
are assumed to have the same meaning. This implies all implementations
of an operation in a domain and its subdomains have identical semantics,
i.e. return equivalent values and produce equivalent side-effects.

A type may always define an operation it exports. In particular, an opera-
tion exported by a type may always be reimplemented and exported by
one of its subdomains. Usually this is to make it more efficient. While
isPrime? is exported by Integer, it may be redefined in Primelnteger, to
simply return true. Thus primality testing would be immediate within any
algorithm expecting values from List(Integer) but receiving values from
Primelnteger instead.

An implementation of an operation in a type serves as a default imple-
mentation for all subdomains of that type. Thus a type need not provide
an implementation for an operation if an ancestor does. In this case, the
type is said to inherit the implementation from the ancestor. The + op-
eration in Positivelnteger, for example, is inherited from Integer.

The use of Join provides a mechanism for multiple inheritance. When a
type such as PositiveEvenlinteger has two or more ancestors, the imple-
mentation is currently chosen to be the first offered by the components of
the Join taken in left-to-right order. A default + for PositiveEveninteger
would be the same in each ancestor so that the order of components in the
Jain is irrelevant.

Categories as types provide default implementations for domains. So long
as certain basic operations are provided by a domain, default implemen-
tations of others can be implemented categorically. For example, supply-
ing only “ <" allows definitions of “>”, “< =" and “> =", Thus a domain
may inherit operations from a category.

Abstract Hierarchies and Implementation Hierarchies

Categories are used to describe the specification part of an abstract
datatype and might be said to constitute the abstract component of the
system. Since categories are subdomains, they form a hierarchy de-
scribed by a directed acylic graph with root note Domain. Each node of the
graph is a category representing a class of domains. Any domain which
is a member of a category at a given node is also a member of every cat-
egory which is an ancestor of that node.

A domain and all of its subdomains form an implementation hierarchy de-
scribed by a similar graph. Each node of the graph is a subdomain re-
presenting a class of values. Any value which is a member of a subdomain
at a given node is also a member of every ancestor. In each of the two
kinds of hierarchies, an implementation missing at a given node are in-
herited from a “nearest” ancestor node which supplies one.
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Another kind of implementation hierarchy is formed by add chains. A
QuotientField domain, for example, is defined as an extension of a
LocalAlgebra domain:

QuotientField(D: IntegralDomain):
Join(Field,Algebra(D),...) with ...
== LocalAlgebra(D,D,D) add ...

Implementations of operations in a domain serve as default implementa-
tions for any extension of that domain.

The general inheritance of operations in Scratchpad H may be described
as follows. The search for a default operation for a type, a subdomain of
some domain, say, D, is in the following order:

1. up the implementation hierarchy from the subdomain to D,
2. up the add-chain for D,
3. up the abstract hierarchy of categories (types) of D.

Semantics of Types

A declaration is necessary in order for a domain to belong to a type: hav-
ing the necessary operations and attributes does not suffice. This state-
ment is obvious for domains. A category is more than a macro, that is, a
name which stands for the list of exported operations and attributes. s
name implicitly implies a/l of the mathematical properties associated with
the class of domains it denotes. For example, ordered rings are defined

by

OrderedRing(): Category == Join(OrderedAbelianGroup,Ring)

Knowing that a domain is both an ordered abelian group and ring does not
make it an ordered ring.

Stated another way, the system will not It is usually the case that belong-
ing to a category implies that a domain must satisfy conditions that are not
mentioned as attributes. For example, in the category OrderedSet there
is no attribute relating min and “ <", although such a relation is implicit.

A domain object contains a number of vectors of function/environment-
pointer pairs. When operation values are not known at compile-time {as
for the operations exported by a type parameter), the operations are per-
formed by calling the function in the appropriate slot of a vector. In cases
where operation values can be fixed at compile time, a code fragment for
the operation may be placed in line.

The scope rules in Scratchpad Il and the operations applicable to demain
values have been designed so that when a domain is known to belong to
a particular category, it is known statically that it exports certain oper-
ations. Compile-time operator overload resolution is performed based on
this knowledge.
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From this, the precise location of each function is determined. Thus when
a function is called using the general mechanism, a hard-coded offset is
used.

Scratchpad |1 is implemented on top of LISP/VM [&LISPVM.] running on
I1BM VM/SP operating system. Since the exact number and type of argu-
ments are known at compile time, much of the usual function can be
omitted. This, in conjunction with compile-time knowledge of function off-
sets, makes function calling in Scratchpad |l faster than that of the under-
lying Lisp system.

8. The System Interpreter

In addition to the compiler and the constructor library, the Scratchpad ||
system contains an experimental user interface with an interpreter for
interactively creating objects and applying functions from domains and
packages. Although the user cannot define new category and domain
constructors in the interpreter, the rest of the Scratchpad H language is
supported. It is a design goal to provide an easy to use interface in the
spirit of those found in other computer algebra systems such as Maple
[&MAPLE.] and Macsyma [&MACSYMA.]. The interpreter relaxes the
strong typing requirement of the compiler. The combination of the so-
phisticated type system of Scratchpad |l and the desire to have few (if any)
user declarations and explicit function package calls requires the inter-
preter to have extensive facilities for type inference and automatic
coercion.

The basic analysis of expressions in the interpreter proceeds via a
bottom-up pre-order traversal of an attributed tree created from parsed
user input with some top-down information propagation. The interpreter
reduces each successive subtree to a value by attempting to select and
apply a function identified by an entry in an operation database created
from the constructors in the system library.

Each entry in the operation database contains a signature, a predicate, and
an implementation location expressed in terms of pattern variables *1, *2,
etc.. These variables may represent domains or objects of domains. For
example, an entfry for a “less than” function might look like
< (1,1 — *2 from *1
if *1 has OrderedSet and *2 is Boolean

This states that there is a binary homogeneous function “<" on objects
of a domain (*1) belonging to the category OrderedSet and that the func-
tion is implemented in that domain and returns a Boolean result {*2). This
entry refers to a function declared in a category; other entries may refer to
functions from particular domains or packages.

In the Scratchpad Il interpreter, a coercion is a conversion that may be
performed whenever it is needed to satisfy a type requirement on a func-
tlon argument or an assignment to a declared variable. Ideally, all
coercions would be 1 to 1 mappings and thus be completely reversible and
information preserving. In practice, other transformations are included
among the embedding coercions. For example, integers may be coerced



12 The Scratchpad Il Type System: Domains and Subdomains

to be elements of finite fields, though it is not possible to uniquely retract
the images. Since coercions are data driven, their occurrence is predict-
able from the contents of the constructor library. Thus a “+" operation
will be chosen from Integer rather than GalcisField(2) for the expression
3 + 4. Some conversions that are not coercions are those that pass from
exact to inexact forms; there is no coercion from RationalNumber to
Float (though there is a convert function).

In order for a database entry to be considered applicable, the operation
name and arity must be the same as those of the expression subtree.
Coercions may be necessary for actual arguments to match the types or
predicate specified in the operation entry. The process of coercing objects
may recursively involve the operation selection procedure. Whenever a
pattern variable occurs more than once in an entry, the interpreter must
compute a minimal coerceable type from those types of the actual argu-
ments corresponding to the variable. For example, the mintmal
coerceable type computed from RationalNumber and

Polynomial(integer) is Polynomial(RationalNumber).

Another kind of type computation is shown by the following example.
Given a 2 by 2 square matrix of integers, the following operation entry is
found when the inverse function is invoked with the matrix as argument:

inverse: *1— Union(*1,"failed”) from *1

if *1 is SquareMatrix(*2,*3) and
*2 : Positivelnteger and *3 has Field

A simple substitution might yield *2 = 2, *3 = Integer and so *1 =
SquareMatrix(2, Integer). This is not quite right though, as *3 must be-
long to the category Field and Integer does not. The interpreter computes
that RationalNumber is the “minimal” type belonging to the category
Field to which all objects of Integer can be coerced. Thus the correct
substitutions are "3 = RationalNumber and *1 = SquareMatrix(2,
RationalNumber). The original matrix will need to be coerced before this
particular inverse can be applied.

If multiple database entries are found to be applicable, they are ranked
according to the cost of coercing the actual function arguments to the re-
quired types. When a final selection is made, the function is gotten by
instantiating the completed constructor form indicated in the implementa-
tion location of the database entry. Further details of the interpreter type
inference and coercion facilities are given in [&SIGPLANS7.].

9. Comparison with Other Abstract Datatype Languages

The difficulty of understanding, changing, and maintaining a program ap-
pears to grow exponentially with its size. Abstract datatype languages
provide for the decomposition of a large program into a number of small
“modules” which can be independentiy defined and tested.
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Examples of abstract datatype languages are CLU, [&CLU.] Ada,? [&ADA.]
Modula-2, [&RMODULA2.] Russell, [&RUSSELL.] and Poly [&POLY..] An
abstract datatype language characteristically separates the definition of a
datatype in two parts: (1) a specification part which describes the set of
operations exported by the datatype, and (2) an imp/ementation part which
defines functions to implement the exported operations. Users of the
datatype may refer only to the specification part. The implementation part
is private to the implementer of the datatype and may be relmplemented
and replaced without semantic consequence. The datatype is called ab-
stract since implementation-specific information is hidden from user-view.

In Scratchpad !l, modules are called domain constructors, are generally
parameterized, and are used to create domains, which may be either
datatypes or packages of functions.

Like Russell, Poly, and an experimental version of CLU, [&CLUIMP.]
datatypes in Scratchpad Il are run-time objects. The type system of
Scratchpad Il was designed to model domain towers of mathematics, e.g.
polynomials of matrices of gaussian integers. Many algorithms in com-
puter algebra are most naturailly expressed in terms of domain towers
where some component domains are expressed categorically, e.g.
polynomiais over a field.

In most abstract datatype languages, the specification part of a module
definition lists the operations exported by a module. The specification part
of a Scratchpad |l module is a category. Unlike other languages, specifi-
cations also include attributes. Aftributes are used to assert important
properties such as mathematical axioms and theorems which may be
conditionally present and which may be queried by programs.

Abstract datatype languages also vary according to the extent to which
restrictions can be placed on type parameters. Ada allows modules to be
created without specifying semantic requirements on the parameters. Cluy
provides a mechanism for requiring type-valued parameters for type-
constructors to export a certain set of operations. Scratchpad |l type pa-
rameters may be required to belong to a category and/or to export a
certain set of operations and attributes.

Scratchpad |l appears to be unique in allowing the exported operations
depend on the parameters of that module. This feature, while a practical
necessity for computer algebra, is also useful in data structure definitions.

For example, Polynomial(R) exports ged if R is a Field, Polynomial(R)
has a commutative homogeneous multiplication if R does, and List(S) ex-
ports a “ <" function if 8 is an OrderedSet.
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