
Chapter 9

Some Examples of Domains
and Packages

In this chapter we show examples of many of the most commonly used AXIOM
domains and packages. The sections are organized by constructor names.

9.1 AssociationList

The AssociationList constructor provides a general structure for associative
storage. This type provides association lists in which data objects can be saved
according to keys of any type. For a given association list, specific types must
be chosen for the keys and entries. You can think of the representation of an
association list as a list of records with key and entry fields.

Association lists are a form of table and so most of the operations available
for Table are also available for AssociationList. They can also be viewed as
lists and can be manipulated accordingly.

This is a Record type with age and gender fields.

Data := Record(monthsOld : Integer, gender : String)

Record(monthsOld: Integer,gender: String)

Type: Domain

In this expression, al is declared to be an association list whose keys are
strings and whose entries are the above records.

al : AssociationList(String,Data)

Type: Void

The table operation is used to create an empty association list.

1

2 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

al := table()

table()

Type: AssociationList(String,Record(monthsOld: Integer,gender:
String))

You can use assignment syntax to add things to the association list.

al."bob" := [407,"male"]$Data

[monthsOld = 407, gender = "male"]

Type: Record(monthsOld: Integer,gender: String)

al."judith" := [366,"female"]$Data

[monthsOld = 366, gender = "female"]

Type: Record(monthsOld: Integer,gender: String)

al."katie" := [24,"female"]$Data

[monthsOld = 24, gender = "female"]

Type: Record(monthsOld: Integer,gender: String)

Perhaps we should have included a species field.

al."smokie" := [200,"female"]$Data

[monthsOld = 200, gender = "female"]

Type: Record(monthsOld: Integer,gender: String)

Now look at what is in the association list. Note that the last-added (key,
entry) pair is at the beginning of the list.

al

table ("smokie" = [monthsOld = 200, gender = "female"],

"katie" = [monthsOld = 24, gender = "female"],

"judith" = [monthsOld = 366, gender = "female"],

"bob" = [monthsOld = 407, gender = "male"])

9.2. BALANCEDBINARYTREE 3

Type: AssociationList(String,Record(monthsOld: Integer,gender:
String))

You can reset the entry for an existing key.

al."katie" := [23,"female"]$Data

[monthsOld = 23, gender = "female"]

Type: Record(monthsOld: Integer,gender: String)

Use delete! to destructively remove an element of the association list. Use
delete to return a copy of the association list with the element deleted. The
second argument is the index of the element to delete.

delete!(al,1)

table ("katie" = [monthsOld = 23, gender = "female"],

"judith" = [monthsOld = 366, gender = "female"],

"bob" = [monthsOld = 407, gender = "male"])

Type: AssociationList(String,Record(monthsOld: Integer,gender:
String))

For more information about tables, see 9.64 on page 215. For more informa-
tion about lists, see 9.36 on page 129. Issue the system command

)show AssociationList

to display the full list of operations defined by AssociationList.

9.2 BalancedBinaryTree

BalancedBinaryTrees(S) is the domain of balanced binary trees with elements
of type S at the nodes. A binary tree is either empty or else consists of a node
having a value and two branches, each branch a binary tree. A balanced binary
tree is one that is balanced with respect its leaves. One with 2k leaves is perfectly
“balanced”: the tree has minimum depth, and the left and right branch of
every interior node is identical in shape.

Balanced binary trees are useful in algebraic computation for so-called “divi-
de-and-conquer” algorithms. Conceptually, the data for a problem is initially
placed at the root of the tree. The original data is then split into two subprob-
lems, one for each subtree. And so on. Eventually, the problem is solved at the
leaves of the tree. A solution to the original problem is obtained by some mech-
anism that can reassemble the pieces. In fact, an implementation of the Chinese

4 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Remainder Algorithm using balanced binary trees was first proposed by David
Y. Y. Yun at the IBM T. J. Watson Research Center in Yorktown Heights,
New York, in 1978. It served as the prototype for polymorphic algorithms in
AXIOM.

In what follows, rather than perform a series of computations with a single
expression, the expression is reduced modulo a number of integer primes, a
computation is done with modular arithmetic for each prime, and the Chinese
Remainder Algorithm is used to obtain the answer to the original problem. We
illustrate this principle with the computation of 122 = 144.

A list of moduli.

lm := [3,5,7,11]

[3, 5, 7, 11]

Type: List PositiveInteger

The expression modTree(n, lm) creates a balanced binary tree with leaf
values n mod m for each modulus m in lm.

modTree(12,lm)

[0, 2, 5, 1]

Type: List Integer

Operation modTree does this using operations on balanced binary trees. We
trace its steps. Create a balanced binary tree t of zeros with four leaves.

t := balancedBinaryTree(#lm, 0)

[[0, 0, 0], 0, [0, 0, 0]]

Type: BalancedBinaryTree NonNegativeInteger

The leaves of the tree are set to the individual moduli.

setleaves!(t,lm)

[[3, 0, 5], 0, [7, 0, 11]]

Type: BalancedBinaryTree NonNegativeInteger

Use mapUp! to do a bottom-up traversal of t, setting each interior node to
the product of the values at the nodes of its children.

mapUp!(t,_*)

1155

9.2. BALANCEDBINARYTREE 5

Type: PositiveInteger

The value at the node of every subtree is the product of the moduli of the
leaves of the subtree.

t

[[3, 15, 5], 1155, [7, 77, 11]]

Type: BalancedBinaryTree NonNegativeInteger

Operation mapDown!(t,a,fn) replaces the value v at each node of t by
fn(a,v).

mapDown!(t,12,_rem)

[[0, 12, 2], 12, [5, 12, 1]]

Type: BalancedBinaryTree NonNegativeInteger

The operation leaves returns the leaves of the resulting tree. In this case,
it returns the list of 12 mod m for each modulus m.

leaves %

[0, 2, 5, 1]

Type: List NonNegativeInteger

Compute the square of the images of 12 modulo each m.

squares := [x**2 rem m for x in % for m in lm]

[0, 4, 4, 1]

Type: List NonNegativeInteger

Call the Chinese Remainder Algorithm to get the answer for 122.

chineseRemainder(%,lm)

144

Type: PositiveInteger

6 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.3 BinaryExpansion

All rational numbers have repeating binary expansions. Operations to access
the individual bits of a binary expansion can be obtained by converting the value
to RadixExpansion(2). More examples of expansions are available in 9.14 on
page 58, 9.29 on page 96, and 9.51 on page 184.

The expansion (of type BinaryExpansion) of a rational number is returned
by the binary operation.

r := binary(22/7)

11.001

Type: BinaryExpansion

Arithmetic is exact.

r + binary(6/7)

100

Type: BinaryExpansion

The period of the expansion can be short or long . . .

[binary(1/i) for i in 102..106][
0.000000101, 0.000000100111110001000101100101111001110010010101001,

0.000000100111011, 0.000000100111,

0.00000010011010100100001110011111011001010110111100011
]

Type: List BinaryExpansion

or very long.

binary(1/1007)

0.000000000100000100010100100101111000001111110000101111110010110001111101

000100111001001100110001100100101010111101101001100000000110000110011110

111000110100010111101001000111101100001010111011100111010101110011001010

010111000000011100011110010000001001001001101110010101001110100011011101

101011100010010000011001011011000000101100101111100010100000101010101101

011000001101101110100101011111110101110101001100100001010011011000100110

001000100001000011000111010011110001

Type: BinaryExpansion

9.4. BINARYSEARCHTREE 7

These numbers are bona fide algebraic objects.

p := binary(1/4)*x**2 + binary(2/3)*x + binary(4/9)

0.01 x2 + 0.10 x + 0.011100

Type: Polynomial BinaryExpansion

q := D(p, x)

0.1 x + 0.10

Type: Polynomial BinaryExpansion

g := gcd(p, q)

x + 1.01

Type: Polynomial BinaryExpansion

9.4 BinarySearchTree

BinarySearchTree(R) is the domain of binary trees with elements of type R,
ordered across the nodes of the tree. A non-empty binary search tree has a value
of type R, and right and left binary search subtrees. If a subtree is empty, it
is displayed as a period (“.”).

Define a list of values to be placed across the tree. The resulting tree has 8
at the root; all other elements are in the left subtree.

lv := [8,3,5,4,6,2,1,5,7]

[8, 3, 5, 4, 6, 2, 1, 5, 7]

Type: List PositiveInteger

A convenient way to create a binary search tree is to apply the operation
binarySearchTree to a list of elements.

t := binarySearchTree lv

[[[1, 2, .], 3, [4, 5, [5, 6, 7]]], 8, .]

Type: BinarySearchTree PositiveInteger

Another approach is to first create an empty binary search tree of integers.

emptybst := empty()$BSTREE(INT)

8 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[]

Type: BinarySearchTree Integer

Insert the value 8. This establishes 8 as the root of the binary search tree.
Values inserted later that are less than 8 get stored in the left subtree, others
in the right subtree.

t1 := insert!(8,emptybst)

8

Type: BinarySearchTree Integer

Insert the value 3. This number becomes the root of the left subtree of t1.
For optimal retrieval, it is thus important to insert the middle elements first.

insert!(3,t1)

[3, 8, .]

Type: BinarySearchTree Integer

We go back to the original tree t. The leaves of the binary search tree are
those which have empty left and right subtrees.

leaves t

[1, 4, 5, 7]

Type: List PositiveInteger

The operation split(k,t) returns a containing the two subtrees: one with
all elements “less” than k, another with elements “greater” than k.

split(3,t)

[less = [1, 2, .], greater = [[., 3, [4, 5, [5, 6, 7]]], 8, .]]

Type: Record(less: BinarySearchTree PositiveInteger,greater:
BinarySearchTree PositiveInteger)

Define insertRoot to insert new elements by creating a new node.

insertRoot: (INT,BSTREE INT) -> BSTREE INT

Type: Void

9.5. CARDINALNUMBER 9

The new node puts the inserted value between its “less” tree and “greater”
tree.

insertRoot(x, t) ==
a := split(x, t)
node(a.less, x, a.greater)

Function buildFromRoot builds a binary search tree from a list of elements
ls and the empty tree emptybst.

buildFromRoot ls == reduce(insertRoot,ls,emptybst)

Type: Void

Apply this to the reverse of the list lv.

rt := buildFromRoot reverse lv

[[[1, 2, .], 3, [4, 5, [5, 6, 7]]], 8, .]

Type: BinarySearchTree Integer

Have AXIOM check that these are equal.

(t = rt)@Boolean

true

Type: Boolean

9.5 CardinalNumber

The CardinalNumber domain can be used for values indicating the cardinality
of sets, both finite and infinite. For example, the dimension operation in the
category VectorSpace returns a cardinal number.

The non-negative integers have a natural construction as cardinals

0 = #{ }, 1 = {0}, 2 = {0, 1}, ..., n = {i | 0 <= i < n}.

The fact that 0 acts as a zero for the multiplication of cardinals is equivalent
to the axiom of choice.

Cardinal numbers can be created by conversion from non-negative integers.

c0 := 0 :: CardinalNumber

0

10 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: CardinalNumber

c1 := 1 :: CardinalNumber

1

Type: CardinalNumber

c2 := 2 :: CardinalNumber

2

Type: CardinalNumber

c3 := 3 :: CardinalNumber

3

Type: CardinalNumber

They can also be obtained as the named cardinal Aleph(n).

A0 := Aleph 0

Aleph (0)

Type: CardinalNumber

A1 := Aleph 1

Aleph (1)

Type: CardinalNumber

The finite? operation tests whether a value is a finite cardinal, that is, a
non-negative integer.

finite? c2

true

Type: Boolean

finite? A0

false

9.5. CARDINALNUMBER 11

Type: Boolean

Similarly, the countable? operation determines whether a value is a count-
able cardinal, that is, finite or Aleph(0).

countable? c2

true

Type: Boolean

countable? A0

true

Type: Boolean

countable? A1

false

Type: Boolean

Arithmetic operations are defined on cardinal numbers as follows: If x = #X
and y = #Y then
x + y = #(X + Y) cardinality of the disjoint union
x− y = #(X− Y) cardinality of the relative complement
x ∗ y = #(X ∗ Y) cardinality of the Cartesian product
x ∗ ∗y = #(X ∗ ∗Y) cardinality of the set of maps from Y to X

Here are some arithmetic examples.

[c2 + c2, c2 + A1]

[4, Aleph (1)]

Type: List CardinalNumber

[c0*c2, c1*c2, c2*c2, c0*A1, c1*A1, c2*A1, A0*A1]

[0, 2, 4, 0, Aleph (1), Aleph (1), Aleph (1)]

Type: List CardinalNumber

[c2**c0, c2**c1, c2**c2, A1**c0, A1**c1, A1**c2]

[1, 2, 4, 1, Aleph (1), Aleph (1)]

12 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: List CardinalNumber

Subtraction is a partial operation: it is not defined when subtracting a larger
cardinal from a smaller one, nor when subtracting two equal infinite cardinals.

[c2-c1, c2-c2, c2-c3, A1-c2, A1-A0, A1-A1]

[1, 0, "failed", Aleph (1), Aleph (1), "failed"]

Type: List Union(CardinalNumber,"failed")

The generalized continuum hypothesis asserts that

2**Aleph i = Aleph(i+1)

and is independent of the axioms of set theory.1

The CardinalNumber domain provides an operation to assert whether the
hypothesis is to be assumed.

generalizedContinuumHypothesisAssumed true

true
When the generalized continuum hypothesis is assumed, exponentiation to

a transfinite power is allowed.

[c0**A0, c1**A0, c2**A0, A0**A0, A0**A1, A1**A0, A1**A1]

[0, 1, Aleph (1), Aleph (1), Aleph (2), Aleph (1), Aleph (2)]

Type: List CardinalNumber

Three commonly encountered cardinal numbers are
a = #Z countable infinity
c = #R the continuum
f = #{g|g : [0, 1]− > R}

In this domain, these values are obtained under the generalized continuum
hypothesis in this way.

a := Aleph 0

Aleph (0)

Type: CardinalNumber

c := 2**a

1Goedel, The consistency of the continuum hypothesis, Ann. Math. Studies, Princeton
Univ. Press, 1940.

9.6. CARTESIANTENSOR 13

Aleph (1)

Type: CardinalNumber

f := 2**c

Aleph (2)

Type: CardinalNumber

9.6 CartesianTensor

CartesianTensor(i0,dim,R) provides Cartesian tensors with components be-
longing to a commutative ring R. Tensors can be described as a generalization of
vectors and matrices. This gives a concise tensor algebra for multilinear objects
supported by the CartesianTensor domain. You can form the inner or outer
product of any two tensors and you can add or subtract tensors with the same
number of components. Additionally, various forms of traces and transpositions
are useful.

The CartesianTensor constructor allows you to specify the minimum index
for subscripting. In what follows we discuss in detail how to manipulate tensors.

Here we construct the domain of Cartesian tensors of dimension 2 over the
integers, with indices starting at 1.

CT := CARTEN(i0 := 1, 2, Integer)

CartesianTensor(1, 2, Integer)

Type: Domain

Forming tensors

Scalars can be converted to tensors of rank zero.

t0: CT := 8

8

Type: CartesianTensor(1,2,Integer)

rank t0

0

Type: NonNegativeInteger

14 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Vectors (mathematical direct products, rather than one dimensional array
structures) can be converted to tensors of rank one.

v: DirectProduct(2, Integer) := directProduct [3,4]

[3, 4]

Type: DirectProduct(2,Integer)

Tv: CT := v

[3, 4]

Type: CartesianTensor(1,2,Integer)

Matrices can be converted to tensors of rank two.

m: SquareMatrix(2, Integer) := matrix [[1,2],[4,5]][
1 2
4 5

]
Type: SquareMatrix(2,Integer)

Tm: CT := m [
1 2
4 5

]
Type: CartesianTensor(1,2,Integer)

n: SquareMatrix(2, Integer) := matrix [[2,3],[0,1]][
2 3
0 1

]
Type: SquareMatrix(2,Integer)

Tn: CT := n [
2 3
0 1

]
Type: CartesianTensor(1,2,Integer)

In general, a tensor of rank k can be formed by making a list of rank k-1
tensors or, alternatively, a k-deep nested list of lists.

9.6. CARTESIANTENSOR 15

t1: CT := [2, 3]

[2, 3]

Type: CartesianTensor(1,2,Integer)

rank t1

1

Type: PositiveInteger

t2: CT := [t1, t1]

[
2 3
2 3

]
Type: CartesianTensor(1,2,Integer)

t3: CT := [t2, t2]

[[
2 3
2 3

]
,

[
2 3
2 3

]]
Type: CartesianTensor(1,2,Integer)

tt: CT := [t3, t3]; tt := [tt, tt]

[
2 3
2 3

] [
2 3
2 3

]
[

2 3
2 3

] [
2 3
2 3

]
,

[

2 3
2 3

] [
2 3
2 3

]
[

2 3
2 3

] [
2 3
2 3

]

Type: CartesianTensor(1,2,Integer)

rank tt

5

Type: PositiveInteger

16 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Multiplication

Given two tensors of rank k1 and k2, the outer product forms a new tensor of
rank k1+k2. Here

Tmn(i, j, k, l) = Tm(i, j) Tn(k, l)

Tmn := product(Tm, Tn)
[

2 3
0 1

] [
4 6
0 2

]
[

8 12
0 4

] [
10 15
0 5

]

Type: CartesianTensor(1,2,Integer)

The inner product (contract) forms a tensor of rank k1+k2-2. This prod-
uct generalizes the vector dot product and matrix-vector product by summing
component products along two indices.

Here we sum along the second index of Tm and the first index of Tv. Here

Tmv =
dim∑
j=1

Tm(i, j) Tv(j)

Tmv := contract(Tm,2,Tv,1)

[11, 32]

Type: CartesianTensor(1,2,Integer)

The multiplication operator “*” is scalar multiplication or an inner product
depending on the ranks of the arguments.

If either argument is rank zero it is treated as scalar multiplication. Other-
wise, a*b is the inner product summing the last index of a with the first index
of b.

Tm*Tv

[11, 32]

Type: CartesianTensor(1,2,Integer)

This definition is consistent with the inner product on matrices and vectors.

Tmv = m * v

[11, 32] = [11, 32]

Type: Equation CartesianTensor(1,2,Integer)

9.6. CARTESIANTENSOR 17

Selecting Components

For tensors of low rank (that is, four or less), components can be selected by
applying the tensor to its indices.

t0()

8

Type: PositiveInteger

t1(1+1)

3

Type: PositiveInteger

t2(2,1)

2

Type: PositiveInteger

t3(2,1,2)

3

Type: PositiveInteger

Tmn(2,1,2,1)

0

Type: NonNegativeInteger

A general indexing mechanism is provided for a list of indices.

t0[]

8

Type: PositiveInteger

t1[2]

3

18 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: PositiveInteger

t2[2,1]

2

Type: PositiveInteger

The general mechanism works for tensors of arbitrary rank, but is somewhat
less efficient since the intermediate index list must be created.

t3[2,1,2]

3

Type: PositiveInteger

Tmn[2,1,2,1]

0

Type: NonNegativeInteger

Contraction

A“contraction” between two tensors is an inner product, as we have seen above.
You can also contract a pair of indices of a single tensor. This corresponds to
a “trace” in linear algebra. The expression contract(t,k1,k2) forms a new
tensor by summing the diagonal given by indices in position k1 and k2.

This is the tensor given by

xTmn =
dim∑
k=1

Tmn(k, k, i, j)

cTmn := contract(Tmn,1,2) [
12 18
0 6

]
Type: CartesianTensor(1,2,Integer)

Since Tmn is the outer product of matrix m and matrix n, the above is equiv-
alent to this.

trace(m) * n

9.6. CARTESIANTENSOR 19[
12 18
0 6

]
Type: SquareMatrix(2,Integer)

In this and the next few examples, we show all possible contractions of Tmn
and their matrix algebra equivalents.

contract(Tmn,1,2) = trace(m) * n[
12 18
0 6

]
=

[
12 18
0 6

]
Type: Equation CartesianTensor(1,2,Integer)

contract(Tmn,1,3) = transpose(m) * n[
2 7
4 11

]
=

[
2 7
4 11

]
Type: Equation CartesianTensor(1,2,Integer)

contract(Tmn,1,4) = transpose(m) * transpose(n)[
14 4
19 5

]
=

[
14 4
19 5

]
Type: Equation CartesianTensor(1,2,Integer)

contract(Tmn,2,3) = m * n[
2 5
8 17

]
=

[
2 5
8 17

]
Type: Equation CartesianTensor(1,2,Integer)

contract(Tmn,2,4) = m * transpose(n)[
8 2
23 5

]
=

[
8 2
23 5

]
Type: Equation CartesianTensor(1,2,Integer)

contract(Tmn,3,4) = trace(n) * m[
3 6
12 15

]
=

[
3 6
12 15

]
Type: Equation CartesianTensor(1,2,Integer)

20 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Transpositions

You can exchange any desired pair of indices using the transpose operation.
Here the indices in positions one and three are exchanged, that is,

tTmn(i, j, k, l) = Tmn(k, j, i, l).

tTmn := transpose(Tmn,1,3)
[

2 3
8 12

] [
4 6
10 15

]
[

0 1
0 4

] [
0 2
0 5

]

Type: CartesianTensor(1,2,Integer)

If no indices are specified, the first and last index are exchanged.

transpose Tmn
[

2 8
0 0

] [
4 10
0 0

]
[

3 12
1 4

] [
6 15
2 5

]

Type: CartesianTensor(1,2,Integer)

This is consistent with the matrix transpose.

transpose Tm = transpose m[
1 4
2 5

]
=

[
1 4
2 5

]
Type: Equation CartesianTensor(1,2,Integer)

If a more complicated reordering of the indices is required, then the rein-
dex operation can be used. This operation allows the indices to be arbitrarily
permuted.

This defines rTmn(i, j, k, l) = Tmn(i, l, j, k).

rTmn := reindex(Tmn, [1,4,2,3])
[

2 0
4 0

] [
3 1
6 2

]
[

8 0
10 0

] [
12 4
15 5

]

Type: CartesianTensor(1,2,Integer)

9.6. CARTESIANTENSOR 21

Arithmetic

Tensors of equal rank can be added or subtracted so arithmetic expressions can
be used to produce new tensors.

tt := transpose(Tm)*Tn - Tn*transpose(Tm)

[
−6 −16
2 6

]
Type: CartesianTensor(1,2,Integer)

Tv*(tt+Tn)

[−4,−11]

Type: CartesianTensor(1,2,Integer)

reindex(product(Tn,Tn),[4,3,2,1])+3*Tn*product(Tm,Tm)

[

46 84
174 212

] [
57 114
228 285

]
[

18 24
57 63

] [
17 30
63 76

]

Type: CartesianTensor(1,2,Integer)

Specific Tensors

Two specific tensors have properties which depend only on the dimension.
The Kronecker delta satisfies

delta(i, j) =
{

1 if i = j
0 if i 6= j

delta: CT := kroneckerDelta()[
1 0
0 1

]
Type: CartesianTensor(1,2,Integer)

This can be used to reindex via contraction.

contract(Tmn, 2, delta, 1) = reindex(Tmn, [1,3,4,2])

22 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES
[

2 4
3 6

] [
0 0
1 2

]
[

8 10
12 15

] [
0 0
4 5

]
 =

[

2 4
3 6

] [
0 0
1 2

]
[

8 10
12 15

] [
0 0
4 5

]

Type: Equation CartesianTensor(1,2,Integer)

The Levi Civita symbol determines the sign of a permutation of indices.

epsilon:CT := leviCivitaSymbol()[
0 1
−1 0

]
Type: CartesianTensor(1,2,Integer)

Here we have:

epsilon(i1, . . . , idim) =

+1 if i1, . . . , idim is an even permutation of
i0, . . . , i0 + dim− 1

−1 if i1, . . . , idim is an odd permutation of
i0, . . . , i0 + dim− 1

0 if i1, . . . , idim is not a permutation of
i0, . . . , i0 + dim− 1

This property can be used to form determinants.

contract(epsilon*Tm*epsilon, 1,2) = 2 * determinant m

−6 = −6

Type: Equation CartesianTensor(1,2,Integer)

Properties of the CartesianTensor domain

GradedModule(R,E) denotes “E-graded R-module”, that is, a collection of R-
modules indexed by an abelian monoid E. An element g of G[s] for some specific
s in E is said to be an element of G with degree s. Sums are defined in each
module G[s] so two elements of G can be added if they have the same degree.
Morphisms can be defined and composed by degree to give the mathematical
category of graded modules.

GradedAlgebra(R,E) denotes “E-graded R-algebra.” A graded algebra is a
graded module together with a degree preserving R-bilinear map, called the
product.

degree(product(a,b)) = degree(a) + degree(b)

product(r*a,b) = product(a,r*b) = r*product(a,b)
product(a1+a2,b) = product(a1,b) + product(a2,b)
product(a,b1+b2) = product(a,b1) + product(a,b2)
product(a,product(b,c)) = product(product(a,b),c)

9.7. CHARACTER 23

The domain CartesianTensor(i0, dim, R) belongs to the category Graded
Algebra (R, NonNegativeInteger). The non-negative integer degree is the
tensor rank and the graded algebra product is the tensor outer product. The
graded module addition captures the notion that only tensors of equal rank can
be added.

If V is a vector space of dimension dim over R, then the tensor module T[k](V)
is defined as

T[0](V) = R
T[k](V) = T[k-1](V) * V

where“*”denotes the R-module tensor product. CartesianTensor(i0,dim,R)
is the graded algebra in which the degree k module is T[k](V).

Tensor Calculus

It should be noted here that often tensors are used in the context of tensor-
valued manifold maps. This leads to the notion of covariant and contravariant
bases with tensor component functions transforming in specific ways under a
change of coordinates on the manifold. This is no more directly supported by
the CartesianTensor domain than it is by the Vector domain. However, it
is possible to have the components implicitly represent component maps by
choosing a polynomial or expression type for the components. In this case,
it is up to the user to satisfy any constraints which arise on the basis of this
interpretation.

9.7 Character

The members of the domain Character are values representing letters, numerals
and other text elements. For more information on related topics, see 9.8 on
page 25 and 9.61 on page 205.

Characters can be obtained using String notation.

chars := [char "a", char "A", char "X", char "8", char "+"]

[a,A,X, 8,+]

Type: List Character

Certain characters are available by name. This is the blank character.

space()

Type: Character

This is the quote that is used in strings.

24 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

quote()

"

Type: Character

This is the escape character that allows quotes and other characters within
strings.

escape()

Type: Character

Characters are represented as integers in a machine-dependent way. The
integer value can be obtained using the ord operation. It is always true that
char(ord c) = c and ord(char i) = i, provided that i is in the range
0..size()$Character-1.

[ord c for c in chars]

[97, 65, 88, 56, 43]

Type: List Integer

The lowerCase operation converts an upper case letter to the corresponding
lower case letter. If the argument is not an upper case letter, then it is returned
unchanged.

[upperCase c for c in chars]

[A,A, X, 8,+]

Type: List Character

Likewise, the upperCase operation converts lower case letters to upper case.

[lowerCase c for c in chars]

[a, a, x, 8,+]

Type: List Character

A number of tests are available to determine whether characters belong to
certain families.

[alphabetic? c for c in chars]

9.8. CHARACTERCLASS 25

[true, true, true, false, false]

Type: List Boolean

[upperCase? c for c in chars]

[false, true, true, false, false]

Type: List Boolean

[lowerCase? c for c in chars]

[true, false, false, false, false]

Type: List Boolean

[digit? c for c in chars]

[false, false, false, true, false]

Type: List Boolean

[hexDigit? c for c in chars]

[true, true, false, true, false]

Type: List Boolean

[alphanumeric? c for c in chars]

[true, true, true, true, false]

Type: List Boolean

9.8 CharacterClass

The CharacterClass domain allows classes of characters to be defined and
manipulated efficiently.

Character classes can be created by giving either a string or a list of char-
acters.

cl1 := charClass [char "a", char "e", char "i", char "o", char
"u", char "y"]

"aeiouy"

26 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: CharacterClass

cl2 := charClass "bcdfghjklmnpqrstvwxyz"

"bcdfghjklmnpqrstvwxyz"

Type: CharacterClass

A number of character classes are predefined for convenience.

digit()

"0123456789"

Type: CharacterClass

hexDigit()

"0123456789ABCDEFabcdef"

Type: CharacterClass

upperCase()

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

Type: CharacterClass

lowerCase()

"abcdefghijklmnopqrstuvwxyz"

Type: CharacterClass

alphabetic()

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"

Type: CharacterClass

alphanumeric()

"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"

Type: CharacterClass

You can quickly test whether a character belongs to a class.

9.8. CHARACTERCLASS 27

member?(char "a", cl1)

true

Type: Boolean

member?(char "a", cl2)

false

Type: Boolean

Classes have the usual set operations because the CharacterClass domain
belongs to the category FiniteSetAggregate(Character).

intersect(cl1, cl2)

"y"

Type: CharacterClass

union(cl1,cl2)

"abcdefghijklmnopqrstuvwxyz"

Type: CharacterClass

difference(cl1,cl2)

"aeiou"

Type: CharacterClass

intersect(complement(cl1),cl2)

"bcdfghjklmnpqrstvwxz"

Type: CharacterClass

You can modify character classes by adding or removing characters.

insert!(char "a", cl2)

"abcdfghjklmnpqrstvwxyz"

Type: CharacterClass

remove!(char "b", cl2)

"acdfghjklmnpqrstvwxyz"

Type: CharacterClass

For more information on related topics, see 9.7 on page 23 and 9.61 on
page 205.

28 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.9 CliffordAlgebra

CliffordAlgebra(n,K,Q) defines a vector space of dimension 2n over the
field K with a given quadratic form Q. If {e1, . . . , en} is a basis for Kn then

{ 1
ei for 1 ≤ i ≤ n

ei1 , ei2 for 1 ≤ i1 ≤ i2 ≤ n
e1 e2 · · · en }

is a basis for the Clifford algebra. The algebra is defined by the relations

ei ei = Q(ei)
ei ej = −ej ei, i 6= j

Examples of Clifford Algebras are gaussians (complex numbers), quater-
nions, exterior algebras and spin algebras.

9.9.1 The Complex Numbers as a Clifford Algebra

This is the field over which we will work, rational functions with integer coeffi-
cients.

K := Fraction Polynomial Integer

Fraction Polynomial Integer

Type: Domain

We use this matrix for the quadratic form.

m := matrix [[-1]] [
−1

]
Type: Matrix Integer

We get complex arithmetic by using this domain.

C := CliffordAlgebra(1, K, quadraticForm m)

CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)

Type: Domain

Here is i, the usual square root of -1.

i: C := e(1)

9.9. CLIFFORDALGEBRA 29

e1

Type: CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)

Here are some examples of the arithmetic.

x := a + b * i

a + b e1

Type: CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)

y := c + d * i

c + d e1

Type: CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)

See 9.10 on page 34 for examples of AXIOM’s constructor implementing
complex numbers.

x * y

−b d + a c + (a d + b c) e1

Type: CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)

9.9.2 The Quaternion Numbers as a Clifford Algebra

K := Fraction Polynomial Integer

Fraction Polynomial Integer

Type: Domain

We use this matrix for the quadratic form.

m := matrix [[-1,0],[0,-1]][
−1 0
0 −1

]
Type: Matrix Integer

The resulting domain is the quaternions.

H := CliffordAlgebra(2, K, quadraticForm m)

CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

30 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Domain

We use Hamilton’s notation for i,j,k.

i: H := e(1)

e1

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

j: H := e(2)

e2

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

k: H := i * j

e1 e2

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

x := a + b * i + c * j + d * k

a + b e1 + c e2 + d e1 e2

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

y := e + f * i + g * j + h * k

e + f e1 + g e2 + h e1 e2

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

x + y

e + a + (f + b) e1 + (g + c) e2 + (h + d) e1 e2

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

x * y

−d h− c g − b f + a e + (c h− d g + a f + b e) e1+

(−b h + a g + d f + c e) e2 + (a h + b g − c f + d e) e1 e2

9.9. CLIFFORDALGEBRA 31

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

See 9.50 on page 182 for examples of AXIOM’s constructor implementing
quaternions.

y * x

−d h− c g − b f + a e + (−c h + d g + a f + b e) e1+

(b h + a g − d f + c e) e2 + (a h− b g + c f + d e) e1 e2

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

9.9.3 The Exterior Algebra on a Three Space

This is the field over which we will work, rational functions with integer coeffi-
cients.

K := Fraction Polynomial Integer

Fraction Polynomial Integer

Type: Domain

If we chose the three by three zero quadratic form, we obtain the exterior
algebra on e(1),e(2),e(3).

Ext := CliffordAlgebra(3, K, quadraticForm 0)

CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

Type: Domain

This is a three dimensional vector algebra. We define i, j, k as the unit
vectors.

i: Ext := e(1)

e1

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

j: Ext := e(2)

e2

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

32 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

k: Ext := e(3)

e3

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

Now it is possible to do arithmetic.

x := x1*i + x2*j + x3*k

x1 e1 + x2 e2 + x3 e3

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

y := y1*i + y2*j + y3*k

y1 e1 + y2 e2 + y3 e3

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

x + y

(y1 + x1) e1 + (y2 + x2) e2 + (y3 + x3) e3

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

x * y + y * x

0

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

On an n space, a grade p form has a dual n-p form. In particular, in
three space the dual of a grade two element identifies e1*e2->e3, e2*e3->e1,
e3*e1->e2.

dual2 a == coefficient(a,[2,3]) * i + coefficient(a,[3,1]) * j +
coefficient(a,[1,2]) * k

Type: Void

The vector cross product is then given by this.

dual2(x*y)

(x2 y3− x3 y2) e1 + (−x1 y3 + x3 y1) e2 + (x1 y2− x2 y1) e3

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

9.9. CLIFFORDALGEBRA 33

9.9.4 The Dirac Spin Algebra

In this section we will work over the field of rational numbers.

K := Fraction Integer

Fraction Integer

Type: Domain

We define the quadratic form to be the Minkowski space-time metric.

g := matrix [[1,0,0,0], [0,-1,0,0], [0,0,-1,0], [0,0,0,-1]]
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

Type: Matrix Integer

We obtain the Dirac spin algebra used in Relativistic Quantum Field Theory.

D := CliffordAlgebra(4,K, quadraticForm g)

CliffordAlgebra(4,Fraction Integer,MATRIX)

Type: Domain

The usual notation for the basis is γ with a superscript. For AXIOM input
we will use gam(i):

gam := [e(i)$D for i in 1..4]

[e1, e2, e3, e4]

Type: List CliffordAlgebra(4,Fraction Integer,MATRIX)

There are various contraction identities of the form

g(l,t)*gam(l)*gam(m)*gam(n)*gam(r)*gam(s)*gam(t) =
2*(gam(s)gam(m)gam(n)gam(r) + gam(r)*gam(n)*gam(m)*gam(s))

where a sum over l and t is implied.
Verify this identity for particular values of m,n,r,s.

m := 1; n:= 2; r := 3; s := 4;

Type: PositiveInteger

34 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

lhs := reduce(+, [reduce(+, [
g(l,t)*gam(l)*gam(m)*gam(n)*gam(r)*gam(s)*gam(t) for l in 1..4])
for t in 1..4])

−4 e1 e2 e3 e4

Type: CliffordAlgebra(4,Fraction Integer,MATRIX)

rhs := 2*(gam s * gam m*gam n*gam r + gam r*gam n*gam m*gam s)

−4 e1 e2 e3 e4

Type: CliffordAlgebra(4,Fraction Integer,MATRIX)

9.10 Complex

The Complex constructor implements complex objects over a commutative ring
R. Typically, the ring R is Integer, Fraction Integer, Float or DoubleFloat.
R can also be a symbolic type, like Polynomial Integer.

Complex objects are created by the complex operation.

a := complex(4/3,5/2)

4
3

+
5
2

%i

Type: Complex Fraction Integer

b := complex(4/3,-5/2)

4
3
− 5

2
%i

Type: Complex Fraction Integer

The standard arithmetic operations are available.

a + b

8
3

Type: Complex Fraction Integer

a - b

5 %i

9.10. COMPLEX 35

Type: Complex Fraction Integer

a * b

289
36

Type: Complex Fraction Integer

If R is a field, you can also divide the complex objects.

a / b

−161
289

+
240
289

%i

Type: Complex Fraction Integer

Use a conversion to view the last object as a fraction of complex integers.

% :: Fraction Complex Integer

−15 + 8 %i

15 + 8 %i

Type: Fraction Complex Integer

The predefined macro %i is defined to be complex(0,1).

3.4 + 6.7 * %i

3.4 + 6.7 %i

Type: Complex Float

You can also compute the conjugate and norm of a complex number.

conjugate a

4
3
− 5

2
%i

Type: Complex Fraction Integer

norm a

289
36

Type: Fraction Integer

36 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

The real and imag operations are provided to extract the real and imaginary
parts, respectively.

real a

4
3

Type: Fraction Integer

imag a

5
2

Type: Fraction Integer

The domain Complex Integer is also called the Gaussian integers. If R is
the integers (or, more generally, a EuclideanDomain), you can compute greatest
common divisors.

gcd(13 - 13*%i,31 + 27*%i)

5 + %i

Type: Complex Integer

You can also compute least common multiples.

lcm(13 - 13*%i,31 + 27*%i)

143− 39 %i

Type: Complex Integer

You can factor Gaussian integers.

factor(13 - 13*%i)

−(1 + %i) (2 + 3 %i) (3 + 2 %i)

Type: Factored Complex Integer

factor complex(2,0)

−i (1 + %i)2

Type: Factored Complex Integer

9.11. CONTINUEDFRACTION 37

9.11 ContinuedFraction

Continued fractions have been a fascinating and useful tool in mathematics
for well over three hundred years. AXIOM implements continued fractions for
fractions of any Euclidean domain. In practice, this usually means rational
numbers. In this section we demonstrate some of the operations available for
manipulating both finite and infinite continued fractions. It may be helpful if
you review 9.60 on page 202 to remind yourself of some of the operations with
streams.

The ContinuedFraction domain is a field and therefore you can add, sub-
tract, multiply and divide the fractions.

The continuedFraction operation converts its fractional argument to a
continued fraction.

c := continuedFraction(314159/100000)

3 +
1|
|7

+
1|

|15
+

1|
|1

+
1|

|25
+

1|
|1

+
1|
|7

+
1|
|4

Type: ContinuedFraction Integer

This display is a compact form of the bulkier

3 +
1

7 +
1

15 +
1

1 +
1

25 +
1

1 +
1

7 +
1
4

You can write any rational number in a similar form. The fraction will be
finite and you can always take the “numerators” to be 1. That is, any rational
number can be written as a simple, finite continued fraction of the form

a1 +
1

a2 +
1

a3 +
1

.. . an−1 +
1
an

The ai are called partial quotients and the operation partialQuotients
creates a stream of them.

partialQuotients c

[3, 7, 15, 1, 25, 1, 7, . . .]

38 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Stream Integer

By considering more and more of the fraction, you get the convergents.
For example, the first convergent is a1, the second is a1 + 1/a2 and so on.

convergents c [
3,

22
7

,
333
106

,
355
113

,
9208
2931

,
9563
3044

,
76149
24239

, . . .

]
Type: Stream Fraction Integer

Since this is a finite continued fraction, the last convergent is the original
rational number, in reduced form. The result of approximants is always an
infinite stream, though it may just repeat the “last” value.

approximants c [
3,

22
7

,
333
106

,
355
113

,
9208
2931

,
9563
3044

,
76149
24239

, . . .

]
Type: Stream Fraction Integer

Inverting c only changes the partial quotients of its fraction by inserting a
0 at the beginning of the list.

pq := partialQuotients(1/c)

[0, 3, 7, 15, 1, 25, 1, . . .]

Type: Stream Integer

Do this to recover the original continued fraction from this list of partial
quotients. The three-argument form of the continuedFraction operation takes
an element which is the whole part of the fraction, a stream of elements which
are the numerators of the fraction, and a stream of elements which are the
denominators of the fraction.

continuedFraction(first pq,repeating [1],rest pq)

1|
|3

+
1|
|7

+
1|

|15
+

1|
|1

+
1|

|25
+

1|
|1

+
1|
|7

+ . . .

Type: ContinuedFraction Integer

The streams need not be finite for continuedFraction. Can you guess
which irrational number has the following continued fraction? See the end of
this section for the answer.

9.11. CONTINUEDFRACTION 39

z:=continuedFraction(3,repeating [1],repeating [3,6])

3 +
1|
|3

+
1|
|6

+
1|
|3

+
1|
|6

+
1|
|3

+
1|
|6

+
1|
|3

+ . . .

Type: ContinuedFraction Integer

In 1737 Euler discovered the infinite continued fraction expansion

e− 1
2

=
1

1 +
1

6 +
1

10 +
1

14 + · · ·
We use this expansion to compute rational and floating point approximations

of e.2

By looking at the above expansion, we see that the whole part is 0 and the
numerators are all equal to 1. This constructs the stream of denominators.

dens:Stream Integer := cons(1,generate((x+->x+4),6))

[1, 6, 10, 14, 18, 22, 26, . . .]

Type: Stream Integer

Therefore this is the continued fraction expansion for (e− 1)/2.

cf := continuedFraction(0,repeating [1],dens)

1|
|1

+
1|
|6

+
1|

|10
+

1|
|14

+
1|

|18
+

1|
|22

+
1|

|26
+ . . .

Type: ContinuedFraction Integer

These are the rational number convergents.

ccf := convergents cf[
0, 1,

6
7
,
61
71

,
860
1001

,
15541
18089

,
342762
398959

, . . .

]
Type: Stream Fraction Integer

You can get rational convergents for e by multiplying by 2 and adding 1.

eConvergents := [2*e + 1 for e in ccf]

2For this and other interesting expansions, see C. D. Olds, Continued Fractions, New
Mathematical Library, (New York: Random House, 1963), pp. 134–139.

40 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES[
1, 3,

19
7

,
193
71

,
2721
1001

,
49171
18089

,
1084483
398959

, . . .

]
Type: Stream Fraction Integer

You can also compute the floating point approximations to these convergents.

eConvergents :: Stream Float

[1.0, 3.0, 2.7142857142857142857, 2.7183098591549295775,

2.7182817182817182817, 2.7182818287356957267,

2.7182818284 585634113, . . .]

Type: Stream Float

Compare this to the value of e computed by the exp operation in Float.

exp 1.0

2.7182818284 590452354

Type: Float

In about 1658, Lord Brouncker established the following expansion for 4/π,

1 +
1

2 +
9

2 +
25

2 +
49

2 +
81

2 + · · ·
Let’s use this expansion to compute rational and floating point approxima-

tions for π.

cf := continuedFraction(1,[(2*i+1)**2 for i in 0..],repeating
[2])

1 +
1|
|2

+
9|
|2

+
25|
|2

+
49|
|2

+
81|
|2

+
121|
|2

+
169|
|2

+ . . .

Type: ContinuedFraction Integer

ccf := convergents cf[
1,

3
2
,
15
13

,
105
76

,
315
263

,
3465
2578

,
45045
36979

, . . .

]

9.11. CONTINUEDFRACTION 41

Type: Stream Fraction Integer

piConvergents := [4/p for p in ccf][
4,

8
3
,
52
15

,
304
105

,
1052
315

,
10312
3465

,
147916
45045

, . . .

]
Type: Stream Fraction Integer

As you can see, the values are converging to π = 3.14159265358979323846...,
but not very quickly.

piConvergents :: Stream Float

[4.0, 2.6666666666 666666667, 3.4666666666 666666667,

2.8952380952 380952381, 3.3396825396 825396825,

2.9760461760 461760462, 3.2837384837 384837385, . . .]

Type: Stream Float

You need not restrict yourself to continued fractions of integers. Here is an
expansion for a quotient of Gaussian integers.

continuedFraction((- 122 + 597*%i)/(4 - 4*%i))

−90 + 59 i +
1|

|1− 2 i
+

1|
|−1 + 2 i

Type: ContinuedFraction Complex Integer

This is an expansion for a quotient of polynomials in one variable with ra-
tional number coefficients.

r : Fraction UnivariatePolynomial(x,Fraction Integer)

Type: Void

r := ((x - 1) * (x - 2)) / ((x-3) * (x-4))

x2 − 3 x + 2
x2 − 7 x + 12

Type: Fraction UnivariatePolynomial(x,Fraction Integer)

continuedFraction r

42 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

1 +
1|∣∣ 1

4 x− 9
8

+
1|∣∣ 16

3 x− 40
3

Type: ContinuedFraction UnivariatePolynomial(x,Fraction Integer)

To conclude this section, we give you evidence that

z = 3 +
1|
|3

+
1|
|6

+
1|
|3

+
1|
|6

+
1|
|3

+
1|
|6

+
1|
|3

+
1|
|6

+
1|
|3

+
1|
|6

+ · · ·

is the expansion of
√

11.

[i*i for i in convergents(z) :: Stream Float]

[9.0, 11.1111111111 11111111, 10.9944598337 9501385,

11.0002777777 77777778, 10.9999860763 98799786,

11.0000006979 29731039, 10.9999999650 15834446, . . .]

Type: Stream Float

9.12 CycleIndicators

This section is based upon the paper J. H. Redfield, “The Theory of Group-
Reduced Distributions”, American J. Math.,49 (1927) 433-455, and is an appli-
cation of group theory to enumeration problems. It is a development of the work
by P. A. MacMahon on the application of symmetric functions and Hammond
operators to combinatorial theory.

The theory is based upon the power sum symmetric functions si which are
the sum of the i-th powers of the variables. The cycle index of a permutation is
an expression that specifies the sizes of the cycles of a permutation, and may be
represented as a partition. A partition of a non-negative integer n is a collection
of positive integers called its parts whose sum is n. For example, the partition
(32 2 12) will be used to represent s2

3s2s
2
1 and will indicate that the permutation

has two cycles of length 3, one of length 2 and two of length 1. The cycle
index of a permutation group is the sum of the cycle indices of its permutations
divided by the number of permutations. The cycle indices of certain groups are
provided.

We first load what we need from the library.

)load cycles evalcyc

library CYCLES has been loaded.

CycleIndicators is now explicitly exposed in frame G1077

9.12. CYCLEINDICATORS 43

The operation complete returns the cycle index of the symmetric group of
order n for argument n. Alternatively, it is the n-th complete homogeneous
symmetric function expressed in terms of power sum symmetric functions.

complete 1

(1)

Type: SymmetricPolynomial Fraction Integer

complete 2

1
2

(2) +
1
2

(
12

)
Type: SymmetricPolynomial Fraction Integer

complete 3

1
3

(3) +
1
2

(2 1) +
1
6

(
13

)
Type: SymmetricPolynomial Fraction Integer

complete 7

1
7 (7) + 1

6 (6 1) + 1
10 (5 2) + 1

10

(
5 12

)
+ 1

12 (4 3) + 1
8 (4 2 1)+

1
24

(
4 13

)
+

1
18

(
32 1

)
+

1
24

(
3 22

)
+

1
12

(
3 2 12

)
+

1
72

(
3 14

)
+

1
48

(
23 1

)
+

1
48

(
22 13

)
+

1
240

(
2 15

)
+

1
5040

(
17

)
Type: SymmetricPolynomial Fraction Integer

The operation elementary computes the n-th elementary symmetric func-
tion for argument n.

elementary 7

1
7 (7)− 1

6 (6 1)− 1
10 (5 2) + 1

10

(
5 12

)
− 1

12 (4 3) + 1
8 (4 2 1)

− 1
24

(
4 13

)
+

1
18

(
32 1

)
+

1
24

(
3 22

)
− 1

12
(
3 2 12

)
+

1
72

(
3 14

)
− 1

48
(
23 1

)
+

1
48

(
22 13

)
− 1

240
(
2 15

)
+

1
5040

(
17

)

44 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: SymmetricPolynomial Fraction Integer

The operation alternating returns the cycle index of the alternating group
having an even number of even parts in each cycle partition.

alternating 7

2
7 (7) + 1

5

(
5 12

)
+ 1

4 (4 2 1) + 1
9

(
32 1

)
+ 1

12

(
3 22

)
+ 1

36

(
3 14

)
+

1
24

(
22 13

)
+

1
2520

(
17

)
Type: SymmetricPolynomial Fraction Integer

The operation cyclic returns the cycle index of the cyclic group.

cyclic 7

6
7

(7) +
1
7

(
17

)
Type: SymmetricPolynomial Fraction Integer

The operation dihedral is the cycle index of the dihedral group.

dihedral 7

3
7

(7) +
1
2

(
23 1

)
+

1
14

(
17

)
Type: SymmetricPolynomial Fraction Integer

The operation graphs for argument n returns the cycle index of the group
of permutations on the edges of the complete graph with n nodes induced by
applying the symmetric group to the nodes.

graphs 5

1
6 (6 3 1) + 1

5

(
52

)
+ 1

4

(
42 2

)
+ 1

6

(
33 1

)
+ 1

8

(
24 12

)
+

1
12

(
23 14

)
+

1
120

(
110

)
Type: SymmetricPolynomial Fraction Integer

The cycle index of a direct product of two groups is the product of the cycle
indices of the groups. Redfield provided two operations on two cycle indices
which will be called “cup” and “cap” here. The cup of two cycle indices is a kind
of scalar product that combines monomials for permutations with the same
cycles. The cap operation provides the sum of the coefficients of the result of
the cup operation which will be an integer that enumerates what Redfield called
group-reduced distributions.

We can, for example, represent complete 2 * complete 2 as the set of
objects a a b b and complete 2 * complete 1 * complete 1 as c c d e.

This integer is the number of different sets of four pairs.

9.12. CYCLEINDICATORS 45

cap(complete 2**2, complete 2*complete 1**2)

4

Type: Fraction Integer

For example,

a a b b a a b b a a b b a a b b
c c d e c d c e c e c d d e c c

This integer is the number of different sets of four pairs no two pairs being
equal.

cap(elementary 2**2, complete 2*complete 1**2)

2

Type: Fraction Integer

For example,

a a b b a a b b
c d c e c e c d

In this case the configurations enumerated are easily constructed, however the
theory merely enumerates them providing little help in actually constructing
them.

Here are the number of 6-pairs, first from a a a b b c, second from d d e
e f g.

cap(complete 3*complete 2*complete 1,complete 2**2*complete 1**2)

24

Type: Fraction Integer

Here it is again, but with no equal pairs.

cap(elementary 3*elementary 2*elementary 1,complete 2**2*complete
1**2)

8

Type: Fraction Integer

cap(complete 3*complete 2*complete 1,elementary 2**2*elementary
1**2)

46 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

8

Type: Fraction Integer

The number of 6-triples, first from a a a b b c, second from d d e e f
g, third from h h i i j j.

eval(cup(complete 3*complete 2*complete 1, cup(complete
2**2*complete 1**2,complete 2**3)))

1500

Type: Fraction Integer

The cycle index of vertices of a square is dihedral 4.

square:=dihedral 4

1
4

(4) +
3
8

(
22

)
+

1
4

(
2 12

)
+

1
8

(
14

)
Type: SymmetricPolynomial Fraction Integer

The number of different squares with 2 red vertices and 2 blue vertices.

cap(complete 2**2,square)

2

Type: Fraction Integer

The number of necklaces with 3 red beads, 2 blue beads and 2 green beads.

cap(complete 3*complete 2**2,dihedral 7)

18

Type: Fraction Integer

The number of graphs with 5 nodes and 7 edges.

cap(graphs 5,complete 7*complete 3)

4

Type: Fraction Integer

The cycle index of rotations of vertices of a cube.

s(x) == powerSum(x)

9.12. CYCLEINDICATORS 47

Type: Void

cube:=(1/24)*(s 1**8+9*s 2**4 + 8*s 3**2*s 1**2+6*s 4**2)

Compiling function s with type PositiveInteger ->
SymmetricPolynomial Fraction Integer

1
4

(
42

)
+

1
3

(
32 12

)
+

3
8

(
24

)
+

1
24

(
18

)
Type: SymmetricPolynomial Fraction Integer

The number of cubes with 4 red vertices and 4 blue vertices.

cap(complete 4**2,cube)

7

Type: Fraction Integer

The number of labeled graphs with degree sequence 2 2 2 1 1 with no loops
or multiple edges.

cap(complete 2**3*complete 1**2,wreath(elementary 4,elementary
2))

7

Type: Fraction Integer

Again, but with loops allowed but not multiple edges.

cap(complete 2**3*complete 1**2,wreath(elementary 4,complete 2))

17

Type: Fraction Integer

Again, but with multiple edges allowed, but not loops

cap(complete 2**3*complete 1**2,wreath(complete 4,elementary 2))

10

Type: Fraction Integer

Again, but with both multiple edges and loops allowed

cap(complete 2**3*complete 1**2,wreath(complete 4,complete 2))

48 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

23

Type: Fraction Integer

Having constructed a cycle index for a configuration we are at liberty to
evaluate the si components any way we please. For example we can produce
enumerating generating functions. This is done by providing a function f on an
integer i to the value required of si, and then evaluating eval(f, cycleindex).

x: ULS(FRAC INT,’x,0) := ’x

x

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

ZeroOrOne: INT -> ULS(FRAC INT, ’x, 0)

Type: Void

Integers: INT -> ULS(FRAC INT, ’x, 0)

Type: Void

For the integers 0 and 1, or two colors.

ZeroOrOne n == 1+x**n

Type: Void

ZeroOrOne 5

1 + x5

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

For the integers 0, 1, 2, ... we have this.

Integers n == 1/(1-x**n)

Type: Void

Integers 5

9.12. CYCLEINDICATORS 49

1 + x5 + O
(
x8

)
Type: UnivariateLaurentSeries(Fraction Integer,x,0)

The coefficient of xn is the number of graphs with 5 nodes and n edges.

eval(ZeroOrOne, graphs 5)

1 + x + 2 x2 + 4 x3 + 6 x4 + 6 x5 + 6 x6 + 4 x7 + O
(
x8

)
Type: UnivariateLaurentSeries(Fraction Integer,x,0)

The coefficient of xn is the number of necklaces with n red beads and n-8
green beads.

eval(ZeroOrOne,dihedral 8)

1 + x + 4 x2 + 5 x3 + 8 x4 + 5 x5 + 4 x6 + x7 + O
(
x8

)
Type: UnivariateLaurentSeries(Fraction Integer,x,0)

The coefficient of xn is the number of partitions of n into 4 or fewer parts.

eval(Integers,complete 4)

1 + x + 2 x2 + 3 x3 + 5 x4 + 6 x5 + 9 x6 + 11 x7 + O
(
x8

)
Type: UnivariateLaurentSeries(Fraction Integer,x,0)

The coefficient of xn is the number of partitions of n into 4 boxes containing
ordered distinct parts.

eval(Integers,elementary 4)

x6 + x7 + 2 x8 + 3 x9 + 5 x10 + 6 x11 + 9 x12 + 11 x13 + O
(
x14

)
Type: UnivariateLaurentSeries(Fraction Integer,x,0)

The coefficient of xn is the number of different cubes with n red vertices and
8-n green ones.

eval(ZeroOrOne,cube)

1 + x + 3 x2 + 3 x3 + 7 x4 + 3 x5 + 3 x6 + x7 + O
(
x8

)
Type: UnivariateLaurentSeries(Fraction Integer,x,0)

The coefficient of xn is the number of different cubes with integers on the
vertices whose sum is n.

50 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

eval(Integers,cube)

1 + x + 4 x2 + 7 x3 + 21 x4 + 37 x5 + 85 x6 + 151 x7 + O
(
x8

)
Type: UnivariateLaurentSeries(Fraction Integer,x,0)

The coefficient of xn is the number of graphs with 5 nodes and with integers
on the edges whose sum is n. In other words, the enumeration is of multigraphs
with 5 nodes and n edges.

eval(Integers,graphs 5)

1 + x + 3 x2 + 7 x3 + 17 x4 + 35 x5 + 76 x6 + 149 x7 + O
(
x8

)
Type: UnivariateLaurentSeries(Fraction Integer,x,0)

Graphs with 15 nodes enumerated with respect to number of edges.

eval(ZeroOrOne ,graphs 15)

1 + x + 2 x2 + 5 x3 + 11 x4 + 26 x5 + 68 x6 + 177 x7 + O
(
x8

)
Type: UnivariateLaurentSeries(Fraction Integer,x,0)

Necklaces with 7 green beads, 8 white beads, 5 yellow beads and 10 red
beads.

cap(dihedral 30,complete 7*complete 8*complete 5*complete 10)

49958972383320

Type: Fraction Integer

The operation SFunction is the S-function or Schur function of a partition
written as a descending list of integers expressed in terms of power sum sym-
metric functions.

In this case the argument partition represents a tableau shape. For example
3,2,2,1 represents a tableau with three boxes in the first row, two boxes in the
second and third rows, and one box in the fourth row. SFunction [3,2,2,1]
counts the number of different tableaux of shape 3, 2, 2, 1 filled with objects
with an ascending order in the columns and a non-descending order in the rows.

sf3221:= SFunction [3,2,2,1]

1
12 (6 2)− 1

12

(
6 12

)
− 1

16

(
42

)
+ 1

12 (4 3 1) + 1
24

(
4 14

)
− 1

36

(
32 2

)
+

1
36

(
32 12

)
− 1

24
(
3 22 1

)
− 1

36
(
3 2 13

)
− 1

72
(
3 15

)
− 1

192
(
24

)
+

1
48

(
23 12

)
+

1
96

(
22 14

)
− 1

144
(
2 16

)
+

1
576

(
18

)

9.13. DERHAMCOMPLEX 51

Type: SymmetricPolynomial Fraction Integer

This is the number filled with a a b b c c d d.

cap(sf3221,complete 2**4)

3

Type: Fraction Integer

The configurations enumerated above are:

a a b a a c a a d
b c b b b b
c d c d c c
d d d

This is the number of tableaux filled with 1..8.

cap(sf3221, powerSum 1**8)

70

Type: Fraction Integer

The coefficient of xn is the number of column strict reverse plane partitions
of n of shape 3 2 2 1.

eval(Integers, sf3221)

x9 + 3 x10 + 7 x11 + 14 x12 + 27 x13 + 47 x14 + O
(
x15

)
Type: UnivariateLaurentSeries(Fraction Integer,x,0)

The smallest is

0 0 0
1 1
2 2
3

9.13 DeRhamComplex

The domain constructor DeRhamComplex creates the class of differential forms
of arbitrary degree over a coefficient ring. The De Rham complex constructor
takes two arguments: a ring, coefRing, and a list of coordinate variables.

This is the ring of coefficients.

macro coefRing == Integer

52 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Void

These are the coordinate variables.

lv : List Symbol := [x,y,z]

[x, y, z]

Type: List Symbol

This is the De Rham complex of Euclidean three-space using coordinates x,
y and z.

der := DERHAM(coefRing,lv)

DeRhamComplex(Integer, [x, y, z])

Type: Domain

This complex allows us to describe differential forms having expressions of
integers as coefficients. These coefficients can involve any number of variables,
for example, f(x,t,r,y,u,z). As we’ve chosen to work with ordinary Eu-
clidean three-space, expressions involving these forms are treated as functions
of x, y and z with the additional arguments t, r and u regarded as symbolic
constants.

Here are some examples of coefficients.

R := Expression coefRing

Expression Integer

Type: Domain

f : R := x**2*y*z-5*x**3*y**2*z**5

−5 x3 y2 z5 + x2 y z

Type: Expression Integer

g : R := z**2*y*cos(z)-7*sin(x**3*y**2)*z**2

−7 z2 sin
(
x3 y2

)
+ y z2 cos (z)

Type: Expression Integer

h : R :=x*y*z-2*x**3*y*z**2

9.13. DERHAMCOMPLEX 53

−2 x3 y z2 + x y z

Type: Expression Integer

We now define the multiplicative basis elements for the exterior algebra over
R.

dx : der := generator(1)

dx

Type: DeRhamComplex(Integer,[x,y,z])

dy : der := generator(2)

dy

Type: DeRhamComplex(Integer,[x,y,z])

dz : der := generator(3)

dz

Type: DeRhamComplex(Integer,[x,y,z])

This is an alternative way to give the above assignments.

[dx,dy,dz] := [generator(i)$der for i in 1..3]

[dx, dy, dz]

Type: List DeRhamComplex(Integer,[x,y,z])

Now we define some one-forms.

alpha : der := f*dx + g*dy + h*dz(
−2 x3 y z2 + x y z

)
dz+(

−7 z2 sin
(
x3 y2

)
+ y z2 cos (z)

)
dy+(

−5 x3 y2 z5 + x2 y z
)

dx

Type: DeRhamComplex(Integer,[x,y,z])

beta : der := cos(tan(x*y*z)+x*y*z)*dx + x*dy

x dy + cos (tan (x y z) + x y z) dx

54 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: DeRhamComplex(Integer,[x,y,z])

A well-known theorem states that the composition of exteriorDifferential
with itself is the zero map for continuous forms. Let’s verify this theorem for
alpha.

exteriorDifferential alpha;

Type: DeRhamComplex(Integer,[x,y,z])

We supressed the lengthy output of the last expression, but nevertheless, the
composition is zero.

exteriorDifferential %

0

Type: DeRhamComplex(Integer,[x,y,z])

Now we check that exteriorDifferential is a “graded derivation” D, that
is, D satisfies:

D(ab) = D(a)b + (−1)deg(a)aD(b)

gamma := alpha * beta(
2 x4 y z2 − x2 y z

)
dy dz+(

2 x3 y z2 − x y z
)

cos (tan (x y z) + x y z) dx dz+((
7 z2 sin

(
x3 y2

)
− y z2 cos (z)

)
cos (tan (x y z) + x y z)−

5 x4 y2 z5 + x3 y z
)

dx dy

Type: DeRhamComplex(Integer,[x,y,z])

We try this for the one-forms alpha and beta.

exteriorDifferential(gamma) - (exteriorDifferential(alpha)*beta -
alpha * exteriorDifferential(beta))

0

Type: DeRhamComplex(Integer,[x,y,z])

Now we define some “basic operators” (see 9.45 on page 160).

a : BOP := operator(’a)

9.13. DERHAMCOMPLEX 55

a

Type: BasicOperator

b : BOP := operator(’b)

b

Type: BasicOperator

c : BOP := operator(’c)

c

Type: BasicOperator

We also define some indeterminate one- and two-forms using these operators.

sigma := a(x,y,z) * dx + b(x,y,z) * dy + c(x,y,z) * dz

c (x, y, z) dz + b (x, y, z) dy + a (x, y, z) dx

Type: DeRhamComplex(Integer,[x,y,z])

theta := a(x,y,z) * dx * dy + b(x,y,z) * dx * dz + c(x,y,z) * dy
* dz

c (x, y, z) dy dz + b (x, y, z) dx dz + a (x, y, z) dx dy

Type: DeRhamComplex(Integer,[x,y,z])

This allows us to get formal definitions for the “gradient” . . .

totalDifferential(a(x,y,z))$der

a,3 (x, y, z) dz + a,2 (x, y, z) dy + a,1 (x, y, z) dx

Type: DeRhamComplex(Integer,[x,y,z])

the “curl” . . .

exteriorDifferential sigma

(c,2 (x, y, z)− b,3 (x, y, z)) dy dz+

(c,1 (x, y, z)− a,3 (x, y, z)) dx dz+

(b,1 (x, y, z)− a,2 (x, y, z)) dx dy

56 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: DeRhamComplex(Integer,[x,y,z])

and the “divergence.”

exteriorDifferential theta

(c,1 (x, y, z)− b,2 (x, y, z) + a,3 (x, y, z)) dx dy dz

Type: DeRhamComplex(Integer,[x,y,z])

Note that the De Rham complex is an algebra with unity. This element 1 is
the basis for elements for zero-forms, that is, functions in our space.

one : der := 1

1

Type: DeRhamComplex(Integer,[x,y,z])

To convert a function to a function lying in the De Rham complex, multiply
the function by “one.”

g1 : der := a([x,t,y,u,v,z,e]) * one

a (x, t, y, u, v, z, e)

Type: DeRhamComplex(Integer,[x,y,z])

A current limitation of AXIOM forces you to write functions with more than
four arguments using square brackets in this way.

h1 : der := a([x,y,x,t,x,z,y,r,u,x]) * one

a (x, y, x, t, x, z, y, r, u, x)

Type: DeRhamComplex(Integer,[x,y,z])

Now note how the system keeps track of where your coordinate functions are
located in expressions.

exteriorDifferential g1

a,6 (x, t, y, u, v, z, e) dz+

a,3 (x, t, y, u, v, z, e) dy+

a,1 (x, t, y, u, v, z, e) dx

Type: DeRhamComplex(Integer,[x,y,z])

9.13. DERHAMCOMPLEX 57

exteriorDifferential h1

a,6 (x, y, x, t, x, z, y, r, u, x) dz+

(a,7 (x, y, x, t, x, z, y, r, u, x)+

a,2 (x, y, x, t, x, z, y, r, u, x)) dy+

(a,10 (x, y, x, t, x, z, y, r, u, x)+

a,5 (x, y, x, t, x, z, y, r, u, x)+

a,3 (x, y, x, t, x, z, y, r, u, x)+

a,1 (x, y, x, t, x, z, y, r, u, x)) dx

Type: DeRhamComplex(Integer,[x,y,z])

In this example of Euclidean three-space, the basis for the De Rham complex
consists of the eight forms: 1, dx, dy, dz, dx*dy, dx*dz, dy*dz, and dx*dy*dz.

coefficient(gamma, dx*dy)

(
7 z2 sin

(
x3 y2

)
− y z2 cos (z)

)
cos (tan (x y z) + x y z)

−5 x4 y2 z5 + x3 y z

Type: Expression Integer

coefficient(gamma, one)

0

Type: Expression Integer

coefficient(g1,one)

a (x, t, y, u, v, z, e)

Type: Expression Integer

58 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.14 DecimalExpansion

All rationals have repeating decimal expansions. Operations to access the in-
dividual digits of a decimal expansion can be obtained by converting the value
to RadixExpansion(10). More examples of expansions are available in 9.3
on page 6, 9.29 on page 96, and 9.51 on page 184. Issue the system com-
mand) show DecimalExpansion to display the full list of operations defined
by DecimalExpansion.

The operation DecimalExpansion is used to create this expansion of type
DecimaExpansion.

r := decimal(22/7)

3.142857

Type: DecimalExpansion

Arithmetic is exact.

r + decimal(6/7)

4

Type: DecimalExpansion

The period of the expansion can be short or long . . .

[decimal(1/i) for i in 350..354][
0.00285714, 0.002849, 0.0028409, 0.00283286118980169971671388101983,

0.00282485875706214689265536723163841807909604519774011299435
]

Type: List DecimalExpansion

or very long.

decimal(1/2049)

0.000488042947779404587603709126403123474865788189360663738408979990239

141044411908247925817471937530502684236212786725231820400195217179111

761835041483650561249389946315275744265495363591996095656417764763299

170326988775012201073694485114690092728160078086871644704734016593460

22449975597852611029770619814543679843826256710590531966813079551

9.15. DISTRIBUTEDMULTIVARIATEPOLYNOMIAL 59

Type: DecimalExpansion

These numbers are bona fide algebraic objects.

p := decimal(1/4)*x**2 + decimal(2/3)*x + decimal(4/9)

0.25 x2 + 0.6 x + 0.4

Type: Polynomial DecimalExpansion

q := D(p, x)

0.5 x + 0.6

Type: Polynomial DecimalExpansion

g := gcd(p, q)

x + 1.3

Type: Polynomial DecimalExpansion

9.15 DistributedMultivariatePolynomial

DistributedMultivariatePolynomial which is abbreviated as DMP and Homo-
geneousDistributedMultivariatePolynomial, which is abbreviated as HDMP,
are very similar to MultivariatePolynomial except that they are represented
and displayed in a non-recursive manner.

(d1,d2,d3) : DMP([z,y,x],FRAC INT)

Type: Void

The constructor DMP orders its monomials lexicographically while HDMP orders
them by total order refined by reverse lexicographic order.

d1 := -4*z + 4*y**2*x + 16*x**2 + 1

−4 z + 4 y2 x + 16 x2 + 1

Type: DistributedMultivariatePolynomial([z,y,x],Fraction
Integer)

d2 := 2*z*y**2 + 4*x + 1

60 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

2 z y2 + 4 x + 1

Type: DistributedMultivariatePolynomial([z,y,x],Fraction
Integer)

d3 := 2*z*x**2 - 2*y**2 - x

2 z x2 − 2 y2 − x

Type: DistributedMultivariatePolynomial([z,y,x],Fraction
Integer)

These constructors are mostly used in Gröbner basis calculations.

groebner [d1,d2,d3]

[
z − 1568

2745
x6 − 1264

305
x5 +

6
305

x4 +
182
549

x3 − 2047
610

x2 − 103
2745

x− 2857
10980

,

y2 +
112
2745

x6 − 84
305

x5 − 1264
305

x4 − 13
549

x3 +
84
305

x2 +
1772
2745

x +
2

2745
,

x7 +
29
4

x6 − 17
16

x4 − 11
8

x3 +
1
32

x2 +
15
16

x +
1
4

]
Type: List DistributedMultivariatePolynomial([z,y,x],Fraction

Integer)

(n1,n2,n3) : HDMP([z,y,x],FRAC INT)

Type: Void

(n1,n2,n3) := (d1,d2,d3)

2 z x2 − 2 y2 − x

Note that we get a different Gröbner basis when we use the HDMP polynomials,
as expected.

groebner [n1,n2,n3]

9.16. EQTABLE 61[
y4 + 2 x3 − 3

2
x2 +

1
2

z − 1
8
,

x4 +
29
4

x3 − 1
8

y2 − 7
4

z x− 9
16

x− 1
4
,

z y2 + 2 x +
1
2
,

y2 x + 4 x2 − z +
1
4
,

z x2 − y2 − 1
2

x,

z2 − 4 y2 + 2 x2 − 1
4

z − 3
2

x

]
Type: List

HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction
Integer)

GeneralDistributedMultivariatePolynomial is somewhat more flexible
in the sense that as well as accepting a list of variables to specify the variable
ordering, it also takes a predicate on exponent vectors to specify the term or-
dering. With this polynomial type the user can experiment with the effect of
using completely arbitrary term orderings. This flexibility is mostly important
for algorithms such as Gröbner basis calculations which can be very sensitive to
term ordering.

Issue the system command) show DistributedMultivariatePolynomial
to display the full list of operations defined by DistributedMultivariatePo-
lynomial.

9.16 EqTable

The EqTable domain provides tables where the keys are compared using eq?.
Keys are considered equal only if they are the same instance of a structure.
This is useful if the keys are themselves updatable structures. Otherwise, all
operations are the same as for type Table. See 9.64 on page 215 for general
information about tables. Issue the system command show EqTable to display
the full list of operations defined by EqTable.

The operation table is here used to create a table where the keys are lists
of integers.

e: EqTable(List Integer, Integer) := table()

table()

62 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: EqTable(List Integer,Integer)

These two lists are equal according to “=”, but not according to eq?.

l1 := [1,2,3]

[1, 2, 3]

Type: List PositiveInteger

l2 := [1,2,3]

[1, 2, 3]

Type: List PositiveInteger

Because the two lists are not eq?, separate values can be stored under each.

e.l1 := 111

111

Type: PositiveInteger

e.l2 := 222

222

Type: PositiveInteger

e.l1

111

Type: PositiveInteger

9.17. EQUATION 63

9.17 Equation

The Equation domain provides equations as mathematical objects. These are
used, for example, as the input to various solve operations.

Equations are created using the equals symbol, “=”.

eq1 := 3*x + 4*y = 5

4 y + 3 x = 5

Type: Equation Polynomial Integer

eq2 := 2*x + 2*y = 3

2 y + 2 x = 3

Type: Equation Polynomial Integer

The left- and right-hand sides of an equation are accessible using the oper-
ations lhs and rhs.

lhs eq1

4 y + 3 x

Type: Polynomial Integer

rhs eq1

5

Type: Polynomial Integer

Arithmetic operations are supported and operate on both sides of the equa-
tion.

eq1 + eq2

6 y + 5 x = 8

Type: Equation Polynomial Integer

eq1 * eq2

8 y2 + 14 x y + 6 x2 = 15

Type: Equation Polynomial Integer

64 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

2*eq2 - eq1

x = 1

Type: Equation Polynomial Integer

Equations may be created for any type so the arithmetic operations will be
defined only when they make sense. For example, exponentiation is not defined
for equations involving non-square matrices.

eq1**2

16 y2 + 24 x y + 9 x2 = 25

Type: Equation Polynomial Integer

Note that an equals symbol is also used to test for equality of values in
certain contexts. For example, x+1 and y are unequal as polynomials.

if x+1 = y then "equal" else "unequal"

"unequal"

Type: String

eqpol := x+1 = y

x + 1 = y

Type: Equation Polynomial Integer

If an equation is used where a Boolean value is required, then it is evaluated
using the equality test from the operand type.

if eqpol then "equal" else "unequal"

"unequal"

Type: String

If one wants a Boolean value rather than an equation, all one has to do is
ask!

eqpol::Boolean

false

Type: Boolean

9.18. EXIT 65

9.18 Exit

A function that does not return directly to its caller has Exit as its return type.
The operation error is an example of one which does not return to its caller.
Instead, it causes a return to top-level.

n := 0

0

Type: NonNegativeInteger

The function gasp is given return type Exit since it is guaranteed never to
return a value to its caller.

gasp(): Exit ==
free n
n := n + 1
error "Oh no!"

Function declaration gasp: ()-> Exit has been added to workspace.

Type: Void

The return type of half is determined by resolving the types of the two
branches of the if.

half(k) ==
if odd? k then gasp()
else k quo 2

Because gasp has the return type Exit, the type of if in half is resolved
to be Integer.

half 4

Compiling function gasp with type () -> Exit
Compiling function half with type PositiveInteger -> Integer

2

Type: PositiveInteger

half 3

66 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Error signalled from user code in function gasp:
Oh no!

n

1

Type: NonNegativeInteger

For functions which return no value at all, use Void.

9.19 Factored

Factored creates a domain whose objects are kept in factored form as long as
possible. Thus certain operations like“*” (multiplication) and gcd are relatively
easy to do. Others, such as addition, require somewhat more work, and the re-
sult may not be completely factored unless the argument domain R provides a
factor operation. Each object consists of a unit and a list of factors, where each
factor consists of a member of R (the base), an exponent, and a flag indicating
what is known about the base. A flag may be one of “nil”, “sqfr”, “irred” or
“prime”, which mean that nothing is known about the base, it is square-free, it
is irreducible, or it is prime, respectively. The current restriction to factored ob-
jects of integral domains allows simplification to be performed without worrying
about multiplication order.

9.19.1 Decomposing Factored Objects

In this section we will work with a factored integer.

g := factor(4312)

23 72 11

Type: Factored Integer

Let’s begin by decomposing g into pieces. The only possible units for integers
are 1 and -1.

unit(g)

1

Type: PositiveInteger

There are three factors.

numberOfFactors(g)

9.19. FACTORED 67

3

Type: PositiveInteger

We can make a list of the bases, . . .

[nthFactor(g,i) for i in 1..numberOfFactors(g)]

[2, 7, 11]

Type: List Integer

and the exponents, . . .

[nthExponent(g,i) for i in 1..numberOfFactors(g)]

[3, 2, 1]

Type: List Integer

and the flags. You can see that all the bases (factors) are prime.

[nthFlag(g,i) for i in 1..numberOfFactors(g)]

["prime", "prime", "prime"]

Type: List Union("nil","sqfr","irred","prime")

A useful operation for pulling apart a factored object into a list of records
of the components is factorList.

factorList(g)

[[flg = "prime", fctr = 2, xpnt = 3],

[flg = "prime", fctr = 7, xpnt = 2],

[flg = "prime", fctr = 11, xpnt = 1]]

Type: List Record(flg: Union("nil","sqfr","irred","prime"),
fctr: Integer,xpnt: Integer)

If you don’t care about the flags, use factors.

factors(g)

[[factor = 2, exponent = 3],

[factor = 7, exponent = 2],

[factor = 11, exponent = 1]]

68 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: List Record(factor: Integer,exponent: Integer)

Neither of these operations returns the unit.

first(%).factor

2

Type: PositiveInteger

9.19.2 Expanding Factored Objects

Recall that we are working with this factored integer.

g := factor(4312)

23 72 11

Type: Factored Integer

To multiply out the factors with their multiplicities, use expand.

expand(g)

4312

Type: PositiveInteger

If you would like, say, the distinct factors multiplied together but with mul-
tiplicity one, you could do it this way.

reduce(*,[t.factor for t in factors(g)])

154

Type: PositiveInteger

9.19.3 Arithmetic with Factored Objects

We’re still working with this factored integer.

g := factor(4312)

23 72 11

Type: Factored Integer

We’ll also define this factored integer.

9.19. FACTORED 69

f := factor(246960)

24 32 5 73

Type: Factored Integer

Operations involving multiplication and division are particularly easy with
factored objects.

f * g

27 32 5 75 11

Type: Factored Integer

f**500

22000 31000 5500 71500

Type: Factored Integer

gcd(f,g)

23 72

Type: Factored Integer

lcm(f,g)

24 32 5 73 11

Type: Factored Integer

If we use addition and subtraction things can slow down because we may
need to compute greatest common divisors.

f + g

23 72 641

Type: Factored Integer

f - g

23 72 619

Type: Factored Integer

70 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Test for equality with 0 and 1 by using zero? and one?, respectively.

zero?(factor(0))

true

Type: Boolean

zero?(g)

false

Type: Boolean

one?(factor(1))

true

Type: Boolean

one?(f)

false

Type: Boolean

Another way to get the zero and one factored objects is to use package
calling.

0$Factored(Integer)

0

Type: Factored Integer

1$Factored(Integer)

1

Type: Factored Integer

9.19. FACTORED 71

9.19.4 Creating New Factored Objects

The map operation is used to iterate across the unit and bases of a factored
object.

The following four operations take a base and an exponent and create a
factored object. They differ in handling the flag component.

nilFactor(24,2)

242

Type: Factored Integer

This factor has no associated information.

nthFlag(%,1)

"nil"

Type: Union("nil",...)

This factor is asserted to be square-free.

sqfrFactor(12,2)

122

Type: Factored Integer

This factor is asserted to be irreducible.

irreducibleFactor(13,10)

1310

Type: Factored Integer

This factor is asserted to be prime.

primeFactor(11,5)

115

Type: Factored Integer

A partial inverse to factorList is makeFR.

h := factor(-720)

−24 32 5

72 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Factored Integer

The first argument is the unit and the second is a list of records as returned
by factorList.

h - makeFR(unit(h),factorList(h))

0

Type: Factored Integer

9.19.5 Factored Objects with Variables

Some of the operations available for polynomials are also available for factored
polynomials.

p := (4*x*x-12*x+9)*y*y + (4*x*x-12*x+9)*y + 28*x*x - 84*x + 63(
4 x2 − 12 x + 9

)
y2 +

(
4 x2 − 12 x + 9

)
y + 28 x2 − 84 x + 63

Type: Polynomial Integer

fp := factor(p)

(2 x− 3)2
(
y2 + y + 7

)
Type: Factored Polynomial Integer

You can differentiate with respect to a variable.

D(p,x)

(8 x− 12) y2 + (8 x− 12) y + 56 x− 84

Type: Polynomial Integer

D(fp,x)

4 (2 x− 3)
(
y2 + y + 7

)
Type: Factored Polynomial Integer

numberOfFactors(%)

3

Type: PositiveInteger

9.20. FACTOREDFUNCTIONS2 73

9.20 FactoredFunctions2

The FactoredFunctions2 package implements one operation, map, for apply-
ing an operation to every base in a factored object and to the unit.

double(x) == x + x

Type: Void

f := factor(720)

24 32 5

Type: Factored Integer

Actually, the map operation used in this example comes from Factored
itself, since double takes an integer argument and returns an integer result.

map(double,f)

2 44 62 10

Type: Factored Integer

If we want to use an operation that returns an object that has a type different
from the operation’s argument, the map in Factored cannot be used and we
use the one in FactoredFunctions2.

makePoly(b) == x + b

Type: Void

In fact, the “2” in the name of the package means that we might be using
factored objects of two different types.

g := map(makePoly,f)

(x + 1) (x + 2)4 (x + 3)2 (x + 5)

Type: Factored Polynomial Integer

It is important to note that both versions of map destroy any information
known about the bases (the fact that they are prime, for instance).

The flags for each base are set to “nil” in the object returned by map.

nthFlag(g,1)

"nil"

Type: Union("nil",...)

74 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.21 File

The File(S) domain provides a basic interface to read and write values of type
S in files.

Before working with a file, it must be made accessible to AXIOM with the
open operation.

ifile:File List Integer:=open("/tmp/jazz1","output")

"/tmp/jazz1"

Type: File List Integer

The open function arguments are a FileName and a String specifying the
mode. If a full pathname is not specified, the current default directory is as-
sumed. The mode must be one of “input” or “output”. If it is not specified,
“input” is assumed. Once the file has been opened, you can read or write data.

The operations read and write are provided.

write!(ifile, [-1,2,3])

[−1, 2, 3]

Type: List Integer

write!(ifile, [10,-10,0,111])

[10,−10, 0, 111]

Type: List Integer

write!(ifile, [7])

[7]

Type: List Integer

You can change from writing to reading (or vice versa) by reopening a file.

reopen!(ifile, "input")

"/tmp/jazz1"

Type: File List Integer

read! ifile

9.21. FILE 75

[−1, 2, 3]

Type: List Integer

read! ifile

[10,−10, 0, 111]

Type: List Integer

The read operation can cause an error if one tries to read more data than
is in the file. To guard against this possibility the readIfCan operation should
be used.

readIfCan! ifile

[7]

Type: Union(List Integer,...)

readIfCan! ifile

"failed"

Type: Union("failed",...)

You can find the current mode of the file, and the file’s name.

iomode ifile

"input"

Type: String

name ifile

"/tmp/jazz1"

Type: FileName

When you are finished with a file, you should close it.

close! ifile

"/tmp/jazz1"

Type: File List Integer

)system rm /tmp/jazz1

A limitation of the underlying LISP system is that not all values can be
represented in a file. In particular, delayed values containing compiled functions
cannot be saved.

For more information on related topics, see 9.65 on page 219, 9.33 on pa-
ge 112, 9.34 on page 116, and 9.22 on page 76. Issue the system command)show
File to the display the full list of operations defined by File.

76 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.22 FileName

The FileName domain provides an interface to the computer’s file system. Func-
tions are provided to manipulate file names and to test properties of files.

The simplest way to use file names in the AXIOM interpreter is to rely on
conversion to and from strings. The syntax of these strings depends on the
operating system.

fn: FileName

Type: Void

On AIX, this is a proper file syntax:

fn := "/spad/src/input/fname.input"

"/spad/src/input/fname.input"

Type: FileName

Although it is very convenient to be able to use string notation for file names
in the interpreter, it is desirable to have a portable way of creating and manip-
ulating file names from within programs.

A measure of portability is obtained by considering a file name to consist of
three parts: the directory, the name, and the extension.

directory fn

"/spad/src/input"

Type: String

name fn

"fname"

Type: String

extension fn

"input"

Type: String

The meaning of these three parts depends on the operating system. For
example, on CMS the file “SPADPROF INPUT M” would have directory “M”, name
“SPADPROF” and extension “INPUT”.

It is possible to create a filename from its parts.

9.22. FILENAME 77

fn := filename("/u/smwatt/work", "fname", "input")

"/u/smwatt/work/fname.input"

Type: FileName

When writing programs, it is helpful to refer to directories via variables.

objdir := "/tmp"

"/tmp"

Type: String

fn := filename(objdir, "table", "spad")

"/tmp/table.spad"

Type: FileName

If the directory or the extension is given as an empty string, then a default
is used. On AIX, the defaults are the current directory and no extension.

fn := filename("", "letter", "")

"letter"

Type: FileName

Three tests provide information about names in the file system.
The exists? operation tests whether the named file exists.

exists? "/etc/passwd"

true

Type: Boolean

The operation readable? tells whether the named file can be read. If the
file does not exist, then it cannot be read.

readable? "/etc/passwd"

true

Type: Boolean

readable? "/etc/security/passwd"

78 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

false

Type: Boolean

readable? "/ect/passwd"

false

Type: Boolean

Likewise, the operation writable? tells whether the named file can be writ-
ten. If the file does not exist, the test is determined by the properties of the
directory.

writable? "/etc/passwd"

false

Type: Boolean

writable? "/dev/null"

true

Type: Boolean

writable? "/etc/DoesNotExist"

false

Type: Boolean

writable? "/tmp/DoesNotExist"

true

Type: Boolean

The new operation constructs the name of a new writable file. The argument
sequence is the same as for filename, except that the name part is actually a
prefix for a constructed unique name.

The resulting file is in the specified directory with the given extension, and
the same defaults are used.

fn := new(objdir, "xxx", "yy")

"/tmp/xxx00007.yy"

Type: FileName

9.23. FLEXIBLEARRAY 79

9.23 FlexibleArray

The FlexibleArray domain constructor creates one-dimensional arrays of ele-
ments of the same type. Flexible arrays are an attempt to provide a data type
that has the best features of both one-dimensional arrays (fast, random access to
elements) and lists (flexibility). They are implemented by a fixed block of stor-
age. When necessary for expansion, a new, larger block of storage is allocated
and the elements from the old storage area are copied into the new block.

Flexible arrays have available most of the operations provided by OneDimen-
sionalArray (see 9.44 on page 158 and 9.69 on page 233). Since flexible
arrays are also of category ExtensibleLinearAggregate, they have opera-
tions concat!, delete!, insert!, merge!, remove!, removeDuplicates!, and
select!. In addition, the operations physicalLength and physicalLength!
provide user-control over expansion and contraction.

A convenient way to create a flexible array is to apply the operation flexible
Array to a list of values.

flexibleArray [i for i in 1..6]

[1, 2, 3, 4, 5, 6]

Type: FlexibleArray PositiveInteger

Create a flexible array of six zeroes.

f : FARRAY INT := new(6,0)

[0, 0, 0, 0, 0, 0]

Type: FlexibleArray Integer

For i = 1 . . . 6 set the i-th element to i. Display f.

for i in 1..6 repeat f.i := i; f

[1, 2, 3, 4, 5, 6]

Type: FlexibleArray Integer

Initially, the physical length is the same as the number of elements.

physicalLength f

6

Type: PositiveInteger

Add an element to the end of f.

80 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

concat!(f,11)

[1, 2, 3, 4, 5, 6, 11]

Type: FlexibleArray Integer

See that its physical length has grown.

physicalLength f

10

Type: PositiveInteger

Make f grow to have room for 15 elements.

physicalLength!(f,15)

[1, 2, 3, 4, 5, 6, 11]

Type: FlexibleArray Integer

Concatenate the elements of f to itself. The physical length allows room for
three more values at the end.

concat!(f,f)

[1, 2, 3, 4, 5, 6, 11, 1, 2, 3, 4, 5, 6, 11]

Type: FlexibleArray Integer

Use insert! to add an element to the front of a flexible array.

insert!(22,f,1)

[22, 1, 2, 3, 4, 5, 6, 11, 1, 2, 3, 4, 5, 6, 11]

Type: FlexibleArray Integer

Create a second flexible array from f consisting of the elements from index
10 forward.

g := f(10..)

[2, 3, 4, 5, 6, 11]

Type: FlexibleArray Integer

Insert this array at the front of f.

9.23. FLEXIBLEARRAY 81

insert!(g,f,1)

[2, 3, 4, 5, 6, 11, 22, 1, 2, 3, 4, 5, 6, 11, 1, 2, 3, 4, 5, 6, 11]

Type: FlexibleArray Integer

Merge the flexible array f into g after sorting each in place.

merge!(sort! f, sort! g)

[1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 11, 11, 11, 11, 22]

Type: FlexibleArray Integer

Remove duplicates in place.

removeDuplicates! f

[1, 2, 3, 4, 5, 6, 11, 22]

Type: FlexibleArray Integer

Remove all odd integers.

select!(i +-> even? i,f)

[2, 4, 6, 22]

Type: FlexibleArray Integer

All these operations have shrunk the physical length of f.

physicalLength f

8

Type: PositiveInteger

To force AXIOM not to shrink flexible arrays call the shrinkable operation
with the argument false. You must package call this operation. The previous
value is returned.

shrinkable(false)$FlexibleArray(Integer)

true

Type: Boolean

82 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.24 Float

AXIOM provides two kinds of floating point numbers. The domain Float (ab-
breviation FLOAT) implements a model of arbitrary precision floating point num-
bers. The domain DoubleFloat (abbreviation DFLOAT) is intended to make
available hardware floating point arithmetic in AXIOM. The actual model of
floating point that DoubleFloat provides is system-dependent. For example,
on the IBM system 370 AXIOM uses IBM double precision which has fourteen
hexadecimal digits of precision or roughly sixteen decimal digits. Arbitrary
precision floats allow the user to specify the precision at which arithmetic op-
erations are computed. Although this is an attractive facility, it comes at a
cost. Arbitrary-precision floating-point arithmetic typically takes twenty to two
hundred times more time than hardware floating point.

9.24.1 Introduction to Float

Scientific notation is supported for input and output of floating point numbers.
A floating point number is written as a string of digits containing a decimal
point optionally followed by the letter “E”, and then the exponent.

We begin by doing some calculations using arbitrary precision floats. The
default precision is twenty decimal digits.

1.234

1.234

Type: Float

A decimal base for the exponent is assumed, so the number 1.234E2 denotes
1.234 · 102.

1.234E2

123.4

Type: Float

The normal arithmetic operations are available for floating point numbers.

sqrt(1.2 + 2.3 / 3.4 ** 4.5)

1.0996972790 671286226

Type: Float

9.24. FLOAT 83

9.24.2 Conversion Functions

You can use conversion to go back and forth between Integer, Fraction
Integer and Float, as appropriate.

i := 3 :: Float

3.0

Type: Float

i :: Integer

3

Type: Integer

i :: Fraction Integer

3

Type: Fraction Integer

Since you are explicitly asking for a conversion, you must take responsibility
for any loss of exactness.

r := 3/7 :: Float

0.4285714285 7142857143

Type: Float

r :: Fraction Integer

3
7

Type: Fraction Integer

This conversion cannot be performed: use truncate or round if that is
what you intend.

r :: Integer

Cannot convert from type Float to Integer for value
0.4285714285 7142857143

The operations truncate and round truncate . . .

84 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

truncate 3.6

3.0

Type: Float

and round to the nearest integral Float respectively.

round 3.6

4.0

Type: Float

truncate(-3.6)

−3.0

Type: Float

round(-3.6)

−4.0

Type: Float

The operation fractionPart computes the fractional part of x, that is, x -
truncate x.

fractionPart 3.6

0.6

Type: Float

The operation digits allows the user to set the precision. It returns the
previous value it was using.

digits 40

20

Type: PositiveInteger

sqrt 0.2

0.4472135954 9995793928 1834733746 2552470881

9.24. FLOAT 85

Type: Float

pi()$Float

3.1415926535 8979323846 2643383279 502884197

Type: Float

The precision is only limited by the computer memory available. Calcula-
tions at 500 or more digits of precision are not difficult.

digits 500

40

Type: PositiveInteger

pi()$Float

3.1415926535 8979323846 2643383279 5028841971 6939937510 5820974944
5923078164 0628620899 8628034825 3421170679 8214808651 3282306647
0938446095 5058223172 5359408128 4811174502 8410270193 8521105559
6446229489 5493038196 4428810975 6659334461 2847564823 3786783165
2712019091 4564856692 3460348610 4543266482 1339360726 0249141273
7245870066 0631558817 4881520920 9628292540 9171536436 7892590360
0113305305 4882046652 1384146951 9415116094 3305727036 5759591953
0921861173 8193261179 3105118548 0744623799 6274956735 1885752724
8912279381 830119491

Type: Float

Reset digits to its default value.

digits 20

500

Type: PositiveInteger

Numbers of type Float are represented as a record of two integers, namely,
the mantissa and the exponent where the base of the exponent is binary. That is,
the floating point number (m,e) represents the number m ·2e. A consequence of
using a binary base is that decimal numbers can not, in general, be represented
exactly.

86 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.24.3 Output Functions

A number of operations exist for specifying how numbers of type Float are to
be displayed. By default, spaces are inserted every ten digits in the output for
readability.3

Output spacing can be modified with the outputSpacing operation. This
inserts no spaces and then displays the value of x.

outputSpacing 0; x := sqrt 0.2

0.44721359549995793928

Type: Float

Issue this to have the spaces inserted every 5 digits.

outputSpacing 5; x

0.44721 35954 99957 93928

Type: Float

By default, the system displays floats in either fixed format or scientific
format, depending on the magnitude of the number.

y := x/10**10

0.44721 35954 99957 93928 E − 10

Type: Float

A particular format may be requested with the operations outputFloating
and outputFixed.

outputFloating(); x

0.44721 35954 99957 93928 E 0

Type: Float

outputFixed(); y

0.00000 00000 44721 35954 99957 93928

Type: Float

Additionally, you can ask for n digits to be displayed after the decimal point.
3Note that you cannot include spaces in the input form of a floating point number, though

you can use underscores.

9.24. FLOAT 87

outputFloating 2; y

0.45 E − 10

Type: Float

outputFixed 2; x

0.45

Type: Float

This resets the output printing to the default behavior.

outputGeneral()

Type: Void

9.24.4 An Example: Determinant of a Hilbert Matrix

Consider the problem of computing the determinant of a 10 by 10 Hilbert ma-
trix. The (i, j)-th entry of a Hilbert matrix is given by 1/(i+j+1).

First do the computation using rational numbers to obtain the exact result.

a: Matrix Fraction Integer := matrix [[1/(i+j+1) for j in 0..9]
for i in 0..9]

1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
19

Type: Matrix Fraction Integer

This version of determinant uses Gaussian elimination.

d:= determinant a

1
46206893947914691316295628839036278726983680000000000

88 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Fraction Integer

d :: Float

0.21641 79226 43149 18691 E − 52

Type: Float

Now use hardware floats. Note that a semicolon (;) is used to prevent the
display of the matrix.

b: Matrix DoubleFloat := matrix [[1/(i+j+1$DoubleFloat) for j
in 0..9] for i in 0..9];

Type: Matrix DoubleFloat

The result given by hardware floats is correct only to four significant digits
of precision. In the jargon of numerical analysis, the Hilbert matrix is said to
be “ill-conditioned.”

determinant b

2.1643677945721411e− 53

Type: DoubleFloat

Now repeat the computation at a higher precision using Float.

digits 40

20

Type: PositiveInteger

c: Matrix Float := matrix [[1/(i+j+1$Float) for j in 0..9] for
i in 0..9];

Type: Matrix Float

determinant c

0.21641 79226 43149 18690 60594 98362 26174 36159 E − 52

Type: Float

Reset digits to its default value.

digits 20

40

Type: PositiveInteger

9.25. FRACTION 89

9.25 Fraction

The Fraction domain implements quotients. The elements must belong to a
domain of category IntegralDomain: multiplication must be commutative and
the product of two non-zero elements must not be zero. This allows you to
make fractions of most things you would think of, but don’t expect to create a
fraction of two matrices! The abbreviation for Fraction is FRAC.

Use “/” to create a fraction.

a := 11/12

11
12

Type: Fraction Integer

b := 23/24

23
24

Type: Fraction Integer

The standard arithmetic operations are available.

3 - a*b**2 + a + b/a

313271
76032

Type: Fraction Integer

Extract the numerator and denominator by using numer and denom, re-
spectively.

numer(a)

11

Type: PositiveInteger

denom(b)

24

Type: PositiveInteger

90 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Operations like max, min, negative?, positive? and zero? are all avail-
able if they are provided for the numerators and denominators. See 9.30 on
page 97 for examples.

Don’t expect a useful answer from factor, gcd or lcm if you apply them to
fractions.

r := (x**2 + 2*x + 1)/(x**2 - 2*x + 1)

x2 + 2 x + 1
x2 − 2 x + 1

Type: Fraction Polynomial Integer

Since all non-zero fractions are invertible, these operations have trivial defi-
nitions.

factor(r)

x2 + 2 x + 1
x2 − 2 x + 1

Type: Factored Fraction Polynomial Integer

Use map to apply factor to the numerator and denominator, which is prob-
ably what you mean.

map(factor,r)

(x + 1)2

(x− 1)2

Type: Fraction Factored Polynomial Integer

Other forms of fractions are available. Use continuedFraction to create a
continued fraction.

continuedFraction(7/12)

1|
|1

+
1|
|1

+
1|
|2

+
1|
|2

Type: ContinuedFraction Integer

Use partialFraction to create a partial fraction. See 9.11 on page 37 and
9.47 on page 170 for additional information and examples.

partialFraction(7,12)

1− 3
22

+
1
3

9.26. GENERALSPARSETABLE 91

Type: PartialFraction Integer

Use conversion to create alternative views of fractions with objects moved
in and out of the numerator and denominator.

g := 2/3 + 4/5*%i

2
3

+
4
5

%i

Type: Complex Fraction Integer

g :: FRAC COMPLEX INT

10 + 12 %i

15
Type: Fraction Complex Integer

9.26 GeneralSparseTable

Sometimes when working with tables there is a natural value to use as the
entry in all but a few cases. The GeneralSparseTable constructor can be
used to provide any table type with a default value for entries. See 9.64 on
page 215 for general information about tables. Issue the system command
) show GeneralSparseTable to display the full list of operations defined by
GeneralSparseTable.

Suppose we launched a fund-raising campaign to raise fifty thousand dollars.
To record the contributions, we want a table with strings as keys (for the names)
and integer entries (for the amount). In a data base of cash contributions, unless
someone has been explicitly entered, it is reasonable to assume they have made
a zero dollar contribution.

This creates a keyed access file with default entry 0.

patrons: GeneralSparseTable(String, Integer,
KeyedAccessFile(Integer), 0) := table() ;

kaf00056.sdata"

Type: GeneralSparseTable(String,Integer,KeyedAccessFile
Integer,0)

Now patrons can be used just as any other table. Here we record two gifts.

patrons."Smith" := 10500

92 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

10500

Type: PositiveInteger

patrons."Jones" := 22000

22000

Type: PositiveInteger

Now let us look up the size of the contributions from Jones and Stingy.

patrons."Jones"

22000

Type: PositiveInteger

patrons."Stingy"

0

Type: NonNegativeInteger

Have we met our seventy thousand dollar goal?

reduce(+, entries patrons)

32500

Type: PositiveInteger

So the project is cancelled and we can delete the data base:

)system rm -r kaf*.sdata

9.27 GroebnerFactorizationPackage

Solving systems of polynomial equations with the Gröbner basis algorithm can
often be very time consuming because, in general, the algorithm has exponen-
tial run-time. These systems, which often come from concrete applications,
frequently have symmetries which are not taken advantage of by the algorithm.
However, it often happens in this case that the polynomials which occur during
the Gröbner calculations are reducible. Since AXIOM has an excellent poly-
nomial factorization algorithm, it is very natural to combine the Gröbner and
factorization algorithms.

9.27. GROEBNERFACTORIZATIONPACKAGE 93

GroebnerFactorizationPackage exports the groebnerFactorize opera-
tion which implements a modified Gröbner basis algorithm. In this algorithm,
each polynomial that is to be put into the partial list of the basis is first factored.
The remaining calculation is split into as many parts as there are irreducible fac-
tors. Call these factors p1, . . . , pn. In the branches corresponding to p2, . . . , pn,
the factor p1 can be divided out, and so on. This package also contains opera-
tions that allow you to specify the polynomials that are not zero on the common
roots of the final Gröbner basis.

Here is an example from chemistry. In a theoretical model of the cyclohexan
C6H12, the six carbon atoms each sit in the center of gravity of a tetrahedron
that has two hydrogen atoms and two carbon atoms at its corners. We first
normalize and set the length of each edge to 1. Hence, the distances of one
fixed carbon atom to each of its immediate neighbours is 1. We will denote the
distances to the other three carbon atoms by x, y and z.

A. Dress developed a theory to decide whether a set of points and distances
between them can be realized in an n-dimensional space. Here, of course, we
have n = 3.

mfzn : SQMATRIX(6,DMP([x,y,z],Fraction INT)) := [[0,1,1,1,1,1],
[1,0,1,8/3,x,8/3], [1,1,0,1,8/3,y], [1,8/3,1,0,1,8/3],
[1,x,8/3,1,0,1], [1,8/3,y,8/3,1,0]]

0 1 1 1 1 1
1 0 1 8

3 x 8
3

1 1 0 1 8
3 y

1 8
3 1 0 1 8

3
1 x 8

3 1 0 1
1 8

3 y 8
3 1 0

Type:

SquareMatrix(6,DistributedMultivariatePolynomial([x,y,z],Fraction
Integer))

For the cyclohexan, the distances have to satisfy this equation.

eq := determinant mfzn

−x2 y2 +
22
3

x2 y − 25
9

x2 +
22
3

x y2 − 388
9

x y−

250
27

x− 25
9

y2 − 250
27

y +
14575

81

Type: DistributedMultivariatePolynomial([x,y,z],Fraction
Integer)

They also must satisfy the equations given by cyclic shifts of the indetermi-
nates.

94 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

groebnerFactorize [eq, eval(eq, [x,y,z], [y,z,x]), eval(eq,
[x,y,z], [z,x,y])]

[(
y + x− 22

3

)
z +

(
x− 22

3

)
y − 22

3
x +

121
3

,(
x2 − 22

3
x +

25
9

)
z +

(
x2 − 22

3
x +

25
9

)
y − 22

3
x2 +

388
9

x +
250
27

,(
x2 − 22

3
x +

25
9

)
y2 +

(
−22

3
x2 +

388
9

x +
250
27

)
y +

25
9

x2 +
250
27

x − 14575
81

 ,

[
z + y − 21994

5625
, y2 − 21994

5625
y +

4427
675

, x− 463
87

]
,

[
z2 +

(
−1

2
x − 11

2

)
z − 5

6
x +

265
18

, y − x , x2 − 38
3

x +
265
9

]
,

[
z − 25

9
, y − 11

3
, x− 11

3

]
,

[
z − 11

3
, y − 11

3
, x− 11

3

]
,

[
z +

5
3
, y +

5
3
, x +

5
3

]
,

[
z − 19

3
, y +

5
3
, x +

5
3

]]
Type: List List

DistributedMultivariatePolynomial([x,y,z],Fraction Integer)

The union of the solutions of this list is the solution of our original problem.
If we impose positivity conditions, we get two relevant ideals. One ideal is zero-
dimensional, namely x = y = z = 11/3, and this determines the “boat” form
of the cyclohexan. The other ideal is one-dimensional, which means that we
have a solution space given by one parameter. This gives the “chair” form of the
cyclohexan. The parameter describes the angle of the “back of the chair.”

groebnerFactorize has an optional Boolean-valued second argument.
When it is true partial results are displayed, since it may happen that the
calculation does not terminate in a reasonable time. See the source code for
GroebnerFactorizationPackage in groebf.spad for more details about the
algorithms used.

9.28. HEAP 95

9.28 Heap

The domain Heap(S) implements a priority queue of objects of type S such
that the operation extract! removes and returns the maximum element. The
implementation represents heaps as flexible arrays (see 9.23 on page 79). The
representation and algorithms give complexity of O(log(n)) for insertion and
extractions, and O(n) for construction.

Create a heap of six elements.

h := heap [-4,9,11,2,7,-7]

[11, 7, 9,−4, 2,−7]

Type: Heap Integer

Use insert! to add an element.

insert!(3,h)

[11, 7, 9,−4, 2,−7, 3]

Type: Heap Integer

The operation extract! removes and returns the maximum element.

extract! h

11

Type: PositiveInteger

The internal structure of h has been appropriately adjusted.

h

[9, 7, 3,−4, 2,−7]

Type: Heap Integer

Now extract! elements repeatedly until none are left, collecting the ele-
ments in a list.

[extract!(h) while not empty?(h)]

[9, 7, 3, 2,−4,−7]

Type: List Integer

Another way to produce the same result is by defining a heapsort function.

96 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

heapsort(x) == (empty? x => []; cons(extract!(x),heapsort x))

Void

Create another sample heap.

h1 := heap [17,-4,9,-11,2,7,-7]

[17, 2, 9,−11,−4, 7,−7]

Type: Heap Integer

Apply heapsort to present elements in order.

heapsort h1

[17, 9, 7, 2,−4,−7,−11]

Type: List Integer

9.29 HexadecimalExpansion

All rationals have repeating hexadecimal expansions. The operation hex returns
these expansions of type HexadecimalExpansion. Operations to access the
individual numerals of a hexadecimal expansion can be obtained by converting
the value to RadixExpansion(16). More examples of expansions are available
in the 9.14 on page 58, 9.3 on page 6, and 9.51 on page 184.

Issue the system command) show HexadecimalExpansion to display the
full list of operations defined by HexadecimalExpansion.

This is a hexadecimal expansion of a rational number.

r := hex(22/7)

3.249

Type: HexadecimalExpansion

Arithmetic is exact.

r + hex(6/7)

4

Type: HexadecimalExpansion

The period of the expansion can be short or long . . .

9.30. INTEGER 97

[hex(1/i) for i in 350..354][
0.00BB3EE721A54D88, 0.00BAB6561, 0.00BA2E8,

0.00B9A7862A0FF465879D5F, 0.00B92143FA36F5E02E4850FE8DBD78
]

Type: List HexadecimalExpansion

or very long!

hex(1/1007)

0.0041149783F0BF2C7D13933192AF6980619EE345E91EC2BB9D5CC
A5C071E40926E54E8DDAE24196C0B2F8A0AAD60DBA57F5D4C8
536262210C74F1

Type: HexadecimalExpansion

These numbers are bona fide algebraic objects.

p := hex(1/4)*x**2 + hex(2/3)*x + hex(4/9)

0.4 x2 + 0.A x + 0.71C

Type: Polynomial HexadecimalExpansion

q := D(p, x)

0.8 x + 0.A

Type: Polynomial HexadecimalExpansion

g := gcd(p, q)

x + 1.5

Type: Polynomial HexadecimalExpansion

9.30 Integer

AXIOM provides many operations for manipulating arbitrary precision integers.
In this section we will show some of those that come from Integer itself plus
some that are implemented in other packages. More examples of using integers
are in the following sections: 9.32 on page 107, 9.14 on page 58, 9.3 on page 6,
9.29 on page 96, and 9.51 on page 184.

98 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.30.1 Basic Functions

The size of an integer in AXIOM is only limited by the amount of computer
storage you have available. The usual arithmetic operations are available.

2**(5678 - 4856 + 2 * 17)

48048107704350081471815409251259243912395261398716822634738556100
88084200076308293086342527091412083743074572278211496076276922026
43343568752733498024953930242542523045817764949544214392905306388
478705146745768073877141698859815495632935288783334250628775936

Type: PositiveInteger

There are a number of ways of working with the sign of an integer. Let’s use
this x as an example.

x := -101

−101

Type: Integer

First of all, there is the absolute value function.

abs(x)

101

Type: PositiveInteger

The sign operation returns -1 if its argument is negative, 0 if zero and 1 if
positive.

sign(x)

−1

Type: Integer

You can determine if an integer is negative in several other ways.

x < 0

true

Type: Boolean

x <= -1

9.30. INTEGER 99

true

Type: Boolean

negative?(x)

true

Type: Boolean

Similarly, you can find out if it is positive.

x > 0

false

Type: Boolean

x >= 1

false

Type: Boolean

positive?(x)

false

Type: Boolean

This is the recommended way of determining whether an integer is zero.

zero?(x)

false

Type: Boolean

Use the zero? operation whenever you are testing a mathematical object
for equality with zero. This is usually substantially more efficient that using
“=” (as an example, think of matrices: it is easier to tell if a matrix is zero
by just checking term by term than constructing another “zero” matrix and
comparing the two matrices term by term) and also avoids the problem that
“=” is used for creating equations.

This is the recommended way of determining whether an integer is equal to
one.

100 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

one?(x)

false

Type: Boolean

This syntax is used to test equality using “=”. It says that you want a
Boolean (true or false) answer rather than an equation.

(x = -101)@Boolean

true

Type: Boolean

The operations odd? and even? determine whether an integer is odd or
even, respectively. They each return a Boolean object.

odd?(x)

true

Type: Boolean

even?(x)

false

Type: Boolean

The operation gcd computes the greatest common divisor of two integers.

gcd(56788,43688)

4

Type: PositiveInteger

The operation lcm computes their least common multiple.

lcm(56788,43688)

620238536

Type: PositiveInteger

To determine the maximum of two integers, use max.

max(678,567)

9.30. INTEGER 101

678

Type: PositiveInteger

To determine the minimum, use min.

min(678,567)

567

Type: PositiveInteger

The reduce operation is used to extend binary operations to more than two
arguments. For example, you can use reduce to find the maximum integer in a
list or compute the least common multiple of all integers in the list.

reduce(max,[2,45,-89,78,100,-45])

100

Type: PositiveInteger

reduce(min,[2,45,-89,78,100,-45])

−89

Type: Integer

reduce(gcd,[2,45,-89,78,100,-45])

1

Type: PositiveInteger

reduce(lcm,[2,45,-89,78,100,-45])

1041300

Type: PositiveInteger

The infix operator “/” is not used to compute the quotient of integers.
Rather, it is used to create rational numbers as described in 9.25 on page 89.

13 / 4

13
4

Type: Fraction Integer

102 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

The infix operation quo computes the integer quotient.

13 quo 4

3

Type: PositiveInteger

The infix operation rem computes the integer remainder.

13 rem 4

1

Type: PositiveInteger

One integer is evenly divisible by another if the remainder is zero. The
operation exquo can also be used.

zero?(167604736446952 rem 2003644)

true

Type: Boolean

The operation divide returns a record of the quotient and remainder and
thus is more efficient when both are needed.

d := divide(13,4)

[quotient = 3, remainder = 1]

Type: Record(quotient: Integer,remainder: Integer)

d.quotient

3

Type: PositiveInteger

d.remainder

1

Type: PositiveInteger

9.30. INTEGER 103

9.30.2 Primes and Factorization

Use the operation factor to factor integers. It returns an object of type Fac-
tored Integer. See 9.19 on page 66 for a discussion of the manipulation of
factored objects.

factor 102400

212 52

Type: Factored Integer

The operation prime? returns true or false depending on whether its
argument is a prime.

prime? 7

true

Type: Boolean

prime? 8

false

Type: Boolean

The operation nextPrime returns the least prime number greater than its
argument.

nextPrime 100

101

Type: PositiveInteger

The operation prevPrime returns the greatest prime number less than its
argument.

prevPrime 100

97

Type: PositiveInteger

To compute all primes between two integers (inclusively), use the operation
primes.

primes(100,175)

104 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[173, 167, 163, 157, 151, 149, 139, 137, 131, 127, 113, 109, 107, 103, 101]

Type: List Integer

You might sometimes want to see the factorization of an integer when it is
considered a Gaussian integer. See 9.10 on page 34 for more details.

factor(2 :: Complex Integer)

−%i (1 + %i)2

Type: Factored Complex Integer

9.30.3 Some Number Theoretic Functions

AXIOM provides several number theoretic operations for integers. More exam-
ples are in 9.32 on page 107.

The operation fibonacci computes the Fibonacci numbers. The algorithm
has running time O (log3(n)) for argument n.

[fibonacci(k) for k in 0..]

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .]

Type: Stream Integer

The operation legendre computes the Legendre symbol for its two integer
arguments where the second one is prime. If you know the second argument to
be prime, use jacobi instead where no check is made.

[legendre(i,11) for i in 0..10]

[0, 1,−1, 1, 1, 1,−1,−1,−1, 1,−1]

Type: List Integer

The operation jacobi computes the Jacobi symbol for its two integer ar-
guments. By convention, 0 is returned if the greatest common divisor of the
numerator and denominator is not 1.

[jacobi(i,15) for i in 0..9]

[0, 1, 1, 0, 1, 0, 0,−1, 1, 0]

Type: List Integer

The operation eulerPhi computes the values of Euler’s φ-function where
φ(n) equals the number of positive integers less than or equal to n that are
relatively prime to the positive integer n.

9.30. INTEGER 105

[eulerPhi i for i in 1..]

[1, 1, 2, 2, 4, 2, 6, 4, 6, 4, . . .]

Type: Stream Integer

The operation moebiusMu computes the Möbius µ function.

[moebiusMu i for i in 1..]

[1,−1,−1, 0,−1, 1,−1, 0, 0, 1, . . .]

Type: Stream Integer

Although they have somewhat limited utility, AXIOM provides Roman nu-
merals.

a := roman(78)

LXXVIII

Type: RomanNumeral

b := roman(87)

LXXXVII

Type: RomanNumeral

a + b

CLXV

Type: RomanNumeral

a * b

MMMMMMDCCLXXXVI

Type: RomanNumeral

b rem a

IX

Type: RomanNumeral

106 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.31 IntegerLinearDependence

The elements v1, . . . , vn of a module M over a ring R are said to be linearly
dependent over R if there exist c1, . . . , cn in R, not all 0, such that c1v1+. . . cnvn =
0. If such ci’s exist, they form what is called a linear dependence relation over
R for the vi’s.

The package IntegerLinearDependence provides functions for testing whet-
her some elements of a module over the integers are linearly dependent over the
integers, and to find the linear dependence relations, if any.

Consider the domain of two by two square matrices with integer entries.

M := SQMATRIX(2,INT)

SquareMatrix(2, Integer)

Type: Domain

Now create three such matrices.

m1: M := squareMatrix matrix [[1, 2], [0, -1]][
1 2
0 −1

]
Type: SquareMatrix(2,Integer)

m2: M := squareMatrix matrix [[2, 3], [1, -2]][
2 3
1 −2

]
Type: SquareMatrix(2,Integer)

m3: M := squareMatrix matrix [[3, 4], [2, -3]][
3 4
2 −3

]
Type: SquareMatrix(2,Integer)

This tells you whether m1, m2 and m3 are linearly dependent over the integers.

linearlyDependentOverZ? vector [m1, m2, m3]

true

Type: Boolean

9.32. INTEGERNUMBERTHEORYFUNCTIONS 107

Since they are linearly dependent, you can ask for the dependence relation.

c := linearDependenceOverZ vector [m1, m2, m3]

[1,−2, 1]

Type: Union(Vector Integer,...)

This means that the following linear combination should be 0.

c.1 * m1 + c.2 * m2 + c.3 * m3[
0 0
0 0

]
Type: SquareMatrix(2,Integer)

When a given set of elements are linearly dependent over R, this also means
that at least one of them can be rewritten as a linear combination of the others
with coefficients in the quotient field of R.

To express a given element in terms of other elements, use the operation
solveLinearlyOverQ.

solveLinearlyOverQ(vector [m1, m3], m2)[
1
2
,
1
2

]
Type: Union(Vector Fraction Integer,...)

9.32 IntegerNumberTheoryFunctions

The IntegerNumberTheoryFunctions package contains a variety of operations
of interest to number theorists. Many of these operations deal with divisibility
properties of integers. (Recall that an integer a divides an integer b if there is
an integer c such that b = a * c.)

The operation divisors returns a list of the divisors of an integer.

div144 := divisors(144)

[1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144]

Type: List Integer

You can now compute the number of divisors of 144 and the sum of the
divisors of 144 by counting and summing the elements of the list we just created.

#(div144)

108 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

15

Type: PositiveInteger

reduce(+,div144)

403

Type: PositiveInteger

Of course, you can compute the number of divisors of an integer n, usually
denoted d(n), and the sum of the divisors of an integer n, usually denoted σ(n),
without ever listing the divisors of n.

In AXIOM, you can simply call the operations numberOfDivisors and
sumOfDivisors.

numberOfDivisors(144)

15

Type: PositiveInteger

sumOfDivisors(144)

403

Type: PositiveInteger

The key is that d(n) and σ(n) are “multiplicative functions.” This means
that when n and m are relatively prime, that is, when n and m have no prime
factor in common, then d(nm) = d(n) d(m) and σ(nm) = σ(n) σ(m). Note
that these functions are trivial to compute when n is a prime power and are
computed for general n from the prime factorization of n. Other examples of
multiplicative functions are σk(n), the sum of the k-th powers of the divisors
of n and ϕ(n), the number of integers between 1 and n which are prime to n.
The corresponding AXIOM operations are called sumOfKthPowerDivisors
and eulerPhi.

An interesting function is µ(n), the Möbius µ function, defined as follows:
µ(1) = 1, µ(n) = 0, when n is divisible by a square, and µ = (−1)k, when
n is the product of k distinct primes. The corresponding AXIOM operation is
moebiusMu. This function occurs in the following theorem:

Theorem (Möbius Inversion Formula):
Let f(n) be a function on the positive integers and let F(n) be defined by

F (n) =
∑
d|n

f(n)

9.32. INTEGERNUMBERTHEORYFUNCTIONS 109

where the sum is taken over the positive divisors of n. Then the values of f(n)
can be recovered from the values of F(n):

f(n) =
∑
d|n

µ(n)F (
n

d
)

where again the sum is taken over the positive divisors of n.
When f(n) = 1, then F(n) = d(n). Thus, if you sum µ(d) ·d(n/d) over the

positive divisors d of n, you should always get 1.

f1(n) == reduce(+,[moebiusMu(d) * numberOfDivisors(quo(n,d)) for
d in divisors(n)])

Void

f1(200)

1

Type: PositiveInteger

f1(846)

1

Type: PositiveInteger

Similarly, when f(n) = n, then F(n) = σ(n). Thus, if you sum µ(d) ·
σ(n/d) over the positive divisors d of n, you should always get n.

f2(n) == reduce(+,[moebiusMu(d) * sumOfDivisors(quo(n,d)) for d
in divisors(n)])

Void

f2(200)

200

Type: PositiveInteger

f2(846)

846

110 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: PositiveInteger

The Möbius inversion formula is derived from the multiplication of formal
Dirichlet series. A Dirichlet series is an infinite series of the form

∞∑
n=1

a(n)n−s

When

∞∑
n=1

a(n)n−s ·
∞∑

n=1

b(n)n−s =
∞∑

n=1

c(n)n−s

then c(n) =
∑

d|n a(d)b(n/d). Recall that the Riemann ζ function is defined
by

ζ(s) =
∏
p

(1− p−s)−1 = σ∞n=1n
−s

where the product is taken over the set of (positive) primes. Thus,

ζ(s)−1 =
∏
p

(1− p−s) = σ∞n=1n
−s

Now if F (n) =
∑

d|n f(d), then∑
f(n)n−s · ζ(s) =

∑
F (n)n−s

Thus,

ζ(s)−1 ·
∑

F (n)n−s =
∑

f(n)n−s

and f(n) =
∑

d|n µ(d)F (n/d).
The Fibonacci numbers are defined by F (1) = F (2) = 1 and F (n) = F (n−

1) + F (n− 2) for n = 3, 4,
The operation fibonacci computes the n-th Fibonacci number.

fibonacci(25)

75025

Type: PositiveInteger

[fibonacci(n) for n in 1..15]

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]

Type: List Integer

9.32. INTEGERNUMBERTHEORYFUNCTIONS 111

Fibonacci numbers can also be expressed as sums of binomial coefficients.

fib(n) == reduce(+,[binomial(n-1-k,k) for k in 0..quo(n-1,2)])

Void

fib(25)

75025

Type: PositiveInteger

[fib(n) for n in 1..15]

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]

Type: List Integer

Quadratic symbols can be computed with the operations legendre and ja-
cobi. The Legendre symbol

(
a
p

)
is defined for integers a and p with p an odd

prime number. By definition,
(

a
p

)
= +1, when a is a square (mod p),

(
a
p

)
=

-1, when a is not a square (mod p), and
(

a
p

)
= 0, when a is divisible by p.

You compute
(

a
p

)
via the command legendre(a,p).

legendre(3,5)

−1

Type: Integer

legendre(23,691)

−1

Type: Integer

The Jacobi symbol
(

a
n

)
is the usual extension of the Legendre symbol, where

n is an arbitrary integer. The most important property of the Jacobi symbol
is the following: if K is a quadratic field with discriminant d and quadratic
character χ, then χ(n) = (d/n). Thus, you can use the Jacobi symbol to
compute, say, the class numbers of imaginary quadratic fields from a standard
class number formula.

This function computes the class number of the imaginary quadratic field
with discriminant d.

112 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

h(d) == quo(reduce(+, [jacobi(d,k) for k in 1..quo(-d, 2)]), 2 -
jacobi(d,2))

Type: Void

h(-163)

1

Type: PositiveInteger

h(-499)

3

Type: PositiveInteger

h(-1832)

26

Type: PositiveInteger

9.33 KeyedAccessFile

The domain KeyedAccessFile(S) provides files which can be used as associative
tables. Data values are stored in these files and can be retrieved according to
their keys. The keys must be strings so this type behaves very much like the
StringTable(S) domain. The difference is that keyed access files reside in
secondary storage while string tables are kept in memory. For more information
on table-oriented operations, see the description of Table.

Before a keyed access file can be used, it must first be opened. A new file
can be created by opening it for output.

ey: KeyedAccessFile(Integer) := open("/tmp/editor.year",
"output")

"/tmp/editor.year"

Type: KeyedAccessFile Integer

Just as for vectors, tables or lists, values are saved in a keyed access file by
setting elements.

ey."Char" := 1986

9.33. KEYEDACCESSFILE 113

1986

Type: PositiveInteger

ey."Caviness" := 1985

1985

Type: PositiveInteger

ey."Fitch" := 1984

1984

Type: PositiveInteger

Values are retrieved using application, in any of its syntactic forms.

ey."Char"

1986

Type: PositiveInteger

ey("Char")

1986

Type: PositiveInteger

ey "Char"

1986

Type: PositiveInteger

Attempting to retrieve a non-existent element in this way causes an error.
If it is not known whether a key exists, you should use the search operation.

search("Char", ey)

1986

Type: Union(Integer,...)

search("Smith", ey)

114 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

"failed"

Type: Union("failed",...)

When an entry is no longer needed, it can be removed from the file.

remove!("Char", ey)

1986

Type: Union(Integer,...)

The keys operation returns a list of all the keys for a given file.

keys ey

["Fitch", "Caviness"]

Type: List String

The # operation gives the number of entries.

#ey

2

Type: PositiveInteger

The table view of keyed access files provides safe operations. That is, if the
AXIOM program is terminated between file operations, the file is left in a con-
sistent, current state. This means, however, that the operations are somewhat
costly. For example, after each update the file is closed.

Here we add several more items to the file, then check its contents.

KE := Record(key: String, entry: Integer)

Record(key: String,entry: Integer)

Type: Domain

reopen!(ey, "output")

"/tmp/editor.year"

Type: KeyedAccessFile Integer

If many items are to be added to a file at the same time, then it is more
efficient to use the write operation.

9.33. KEYEDACCESSFILE 115

write!(ey, ["van Hulzen", 1983]$KE)

[key = "van Hulzen", entry = 1983]

Type: Record(key: String,entry: Integer)

write!(ey, ["Calmet", 1982]$KE)

[key = "Calmet", entry = 1982]

Type: Record(key: String,entry: Integer)

write!(ey, ["Wang", 1981]$KE)

[key = "Wang", entry = 1981]

Type: Record(key: String,entry: Integer)

close! ey

"/tmp/editor.year"

Type: KeyedAccessFile Integer

The read operation is also available from the file view, but it returns ele-
ments in a random order. It is generally clearer and more efficient to use the
keys operation and to extract elements by key.

keys ey

["Wang", "Calmet", "van Hulzen", "Fitch", "Caviness"]

Type: List String

members ey

[1981, 1982, 1983, 1984, 1985]

Type: List Integer

)system rm -r /tmp/editor.year

For more information on related topics, see 9.21 on page 74, 9.65 on page 219,
and 9.34 on page 116. Issue the system command) show KeyedAccessFile to
display the full list of operations defined by KeyedAccessFile.

116 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.34 Library

The Library domain provides a simple way to store AXIOM values in a file.
This domain is similar to KeyedAccessFile but fewer declarations are needed
and items of different types can be saved together in the same file.

To create a library, you supply a file name.

stuff := library "/tmp/Neat.stuff"

"/tmp/Neat.stuff"

Type: Library

Now values can be saved by key in the file. The keys should be mnemonic,
just as the field names are for records. They can be given either as strings or
symbols.

stuff.int := 32**2

1024

Type: PositiveInteger

stuff."poly" := x**2 + 1

x2 + 1

Type: Polynomial Integer

stuff.str := "Hello"

"Hello"

Type: String

You obtain the set of available keys using the keys operation.

keys stuff

["str", "poly", "int"]

Type: List String

You extract values by giving the desired key in this way.

stuff.poly

x2 + 1

9.35. LINEARORDINARYDIFFERENTIALOPERATOR 117

Type: Polynomial Integer

stuff("poly")

x2 + 1

Type: Polynomial Integer

When the file is no longer needed, you should remove it from the file system.

)system rm -rf /tmp/Neat.stuff

For more information on related topics, see 9.21 on page 74, 9.65 on page 219,
and 9.33 on page 112. Issue the system command)show Library to display
the full list of operations defined by Library.

9.35 LinearOrdinaryDifferentialOperator

LinearOrdinaryDifferentialOperator(A, M) is the domain of linear ordi-
nary differential operators with coefficients in the differential ring A and op-
erating on M, an A-module. This includes the cases of operators which are
polynomials in D acting upon scalar or vector expressions of a single vari-
able. The coefficients of the operator polynomials can be integers, rational
functions, matrices or elements of other domains. Issue the system command
)show LinearOrdinaryDifferentialOperator to display the full list of oper-
ations defined by LinearOrdinaryDifferentialOperator.

9.35.1 Differential Operators with Constant Coefficients

This example shows differential operators with rational number coefficients op-
erating on univariate polynomials.

We begin by making type assignments so we can conveniently refer to uni-
variate polynomials in x over the rationals.

Q := Fraction Integer

Fraction Integer

Type: Domain

PQ := UnivariatePolynomial(’x, Q)

UnivariatePolynomial(x,Fraction Integer)

Type: Domain

118 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

x: PQ := ’x

x

Type: UnivariatePolynomial(x,Fraction Integer)

Now we assign Dx to be the differential operator D corresponding to d/dx.

Dx: LODO2(Q, PQ) := D()

D

Type: LinearOrdinaryDifferentialOperator(Fraction Integer,
UnivariatePolynomial(x,Fraction Integer))

New operators are created as polynomials in D().

a := Dx + 1

D + 1

Type: LinearOrdinaryDifferentialOperator(Fraction Integer,
UnivariatePolynomial(x,Fraction Integer))

b := a + 1/2*Dx**2 - 1/2

1
2

D2 + D +
1
2

Type: LinearOrdinaryDifferentialOperator(Fraction Integer,
UnivariatePolynomial(x,Fraction Integer))

To apply the operator a to the value p the usual function call syntax is used.

p := 4*x**2 + 2/3

4 x2 +
2
3

Type: UnivariatePolynomial(x,Fraction Integer)

a p

4 x2 + 8 x +
2
3

Type: UnivariatePolynomial(x,Fraction Integer)

Operator multiplication is defined by the identity (a*b) p = a(b(p))

9.35. LINEARORDINARYDIFFERENTIALOPERATOR 119

(a * b) p = a b p

2 x2 + 12 x +
37
3

= 2 x2 + 12 x +
37
3

Type: Equation UnivariatePolynomial(x,Fraction Integer)

Exponentiation follows from multiplication.

c := (1/9)*b*(a + b)**2

1
72

D6 +
5
36

D5 +
13
24

D4 +
19
18

D3 +
79
72

D2 +
7
12

D +
1
8

Type: LinearOrdinaryDifferentialOperator(Fraction Integer,
UnivariatePolynomial(x,Fraction Integer))

Finally, note that operator expressions may be applied directly.

(a**2 - 3/4*b + c) (p + 1)

3 x2 +
44
3

x +
541
36

Type: UnivariatePolynomial(x,Fraction Integer)

9.35.2 Differential Operators with Rational Function Co-
efficients

This example shows differential operators with rational function coefficients. In
this case operator multiplication is non-commutative and, since the coefficients
form a field, an operator division algorithm exists.

We begin by defining RFZ to be the rational functions in x with integer
coefficients and Dx to be the differential operator for d/dx.

RFZ := Fraction UnivariatePolynomial(’x, Integer)

Fraction UnivariatePolynomial(x,Integer)

Type: Domain

x : RFZ := ’x

x

Type: Fraction UnivariatePolynomial(x,Integer)

Dx : LODO RFZ := D()

120 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

D

Type: LinearOrdinaryDifferentialOperator Fraction
UnivariatePolynomial(x,Integer)

Operators are created using the usual arithmetic operations.

b := 3*x**2*Dx**2 + 2*Dx + 1/x

3 x2 D2 + 2 D +
1
x

Type: LinearOrdinaryDifferentialOperator Fraction
UnivariatePolynomial(x,Integer)

a := b*(5*x*Dx + 7)

15 x3 D3 +
(
51 x2 + 10 x

)
D2 + 29 D +

7
x

Type: LinearOrdinaryDifferentialOperator Fraction
UnivariatePolynomial(x,Integer)

Operator multiplication corresponds to functional composition.

p := x**2 + 1/x**2

x4 + 1
x2

Type: Fraction UnivariatePolynomial(x,Integer)

Since operator coefficients depend on x, the multiplication is not commuta-
tive.

(a*b) p = a(b(p))

612x6 + 510x5 + 180x4 − 972x2 + 1026x− 120
x4

=

612x6 + 510x5 + 180x4 − 972x2 + 1026x− 120
x4

Type: Equation Fraction UnivariatePolynomial(x, Integer)

(b*a) p = b(a(p))

612x6 + 510x5 + 255x4 − 972x2 + 486x− 45
x4

=

612x6 + 510x5 + 255x4 − 972x2 + 486x− 45
x4

9.35. LINEARORDINARYDIFFERENTIALOPERATOR 121

Type: Equation Fraction UnivariatePolynomial(x,Integer)

When the coefficients of operator polynomials come from a field, as in this
case, it is possible to define operator division. Division on the left and division
on the right yield different results when the multiplication is non-commutative.

The results of leftDivide and rightDivide are quotient-remainder pairs
satisfying:

leftDivide(a,b) = [q, r] such that a = b*q + r
rightDivide(a,b) = [q, r] such that a = q*b + r

In both cases, the degree of the remainder, r, is less than the degree of b.

ld := leftDivide(a,b)

[quotient = 5 x D + 7, remainder = 0]

Type: Record(quotient: LinearOrdinaryDifferentialOperator1
Fraction UnivariatePolynomial(x,Integer), remainder:

LinearOrdinaryDifferentialOperator1 Fraction
UnivariatePolynomial(x,Integer))

a = b * ld.quotient + ld.remainder

15 x3 D3 +
(
51 x2 + 10 x

)
D2 + 29 D + 7

x =

15 x3 D3 +
(
51 x2 + 10 x

)
D2 + 29 D +

7
x

Type: Equation LinearOrdinaryDifferentialOperator Fraction
UnivariatePolynomial(x,Integer)

The operations of left and right division are so-called because the quotient
is obtained by dividing a on that side by b.

rd := rightDivide(a,b)[
quotient = 5 x D + 7, remainder = 10 D +

5
x

]
Type: Record(quotient: LinearOrdinaryDifferentialOperator

Fraction UnivariatePolynomial(x,Integer), remainder:
LinearOrdinaryDifferentialOperator Fraction

UnivariatePolynomial(x,Integer))

a = rd.quotient * b + rd.remainder

122 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

15 x3 D3 +
(
51 x2 + 10 x

)
D2 + 29 D + 7

x =

15 x3 D3 +
(
51 x2 + 10 x

)
D2 + 29 D +

7
x

Type: Equation LinearOrdinaryDifferentialOperator Fraction
UnivariatePolynomial(x,Integer)

Operations rightQuotient and rightRemainder are available if only one
of the quotient or remainder are of interest to you. This is the quotient from
right division.

rightQuotient(a,b)

5 x D + 7

Type: LinearOrdinaryDifferentialOperator Fraction
UnivariatePolynomial(x,Integer)

This is the remainder from right division. The corresponding “left” functions
leftQuotient and leftRemainder are also available.

rightRemainder(a,b)

10 D +
5
x

Type: LinearOrdinaryDifferentialOperator Fraction
UnivariatePolynomial(x,Integer)

For exact division, the operations leftExactQuotient and rightExact
Quotient are supplied. These return the quotient but only if the remainder
is zero. The call rightExactQuotient(a,b) would yield an error.

leftExactQuotient(a,b)

5 x D + 7

Type: Union(LinearOrdinaryDifferentialOperator Fraction
UnivariatePolynomial(x,Integer),...)

The division operations allow the computation of left and right greatest
common divisors (leftGcd and rightGcd) via remainder sequences, and con-
sequently the computation of left and right least common multiples (rightLcm
and leftLcm).

e := leftGcd(a,b)

3 x2 D2 + 2 D +
1
x

9.35. LINEARORDINARYDIFFERENTIALOPERATOR 123

Type: LinearOrdinaryDifferentialOperator Fraction
UnivariatePolynomial(x,Integer)

Note that a greatest common divisor doesn’t necessarily divide a and b on
both sides. Here the left greatest common divisor does not divide a on the right.

leftRemainder(a, e)

0

Type: LinearOrdinaryDifferentialOperator Fraction
UnivariatePolynomial(x,Integer)

rightRemainder(a, e)

10 D +
5
x

Type: LinearOrdinaryDifferentialOperator Fraction
UnivariatePolynomial(x,Integer)

Similarly, a least common multiple is not necessarily divisible from both
sides.

f := rightLcm(a,b)

20x5D5 +
684x4 + 80x3

3
D4 +

5832x3 + 1656x2 + 80x

9
D3+

3672x2 + 2040x + 352
9

D2 +
172
9x

D − 28
9x2

Type: LinearOrdinaryDifferentialOperator(Fraction
UnivariatePolynomial(x,Integer),(Fraction

UnivariatePolynomial(x,Integer))

rightRemainder(f, b)

0

Type: LinearOrdinaryDifferentialOperator(Fraction
UnivariatePolynomial(x,Integer),(Fraction

UnivariatePolynomial(x,Integer))

leftRemainder(f, b)

−1176x + 160
9x

D +
312x− 80

9x2

Type: LinearOrdinaryDifferentialOperator(Fraction
UnivariatePolynomial(x,Integer),(Fraction

UnivariatePolynomial(x,Integer))

124 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.35.3 Differential Operators with Series Coefficients

Problem: Find the first few coefficients in x of L3 phi where

L3 = (d/dx)**3 + G*x**2 * d/dx + H*x**3 - exp(x)

phi = sum s[i]*x**i for i = 0..

We work with Taylor series in x.
Solution:

T := UnivariateTaylorSeries(Expression Integer , ’x,0)

UnivariateTaylorSeries(Expression Integer , ’x,0)

Type: Domain

x: T: ’x

x

Type: UnivariateTaylorSeries(Expression Integer , ’x,0)

Define the operator L3 and the series phi with undetermined coefficents.

Dx: LODO(T,T) := D()

D

Type: LinearOrdinaryDifferentialOperator

(UnivariateTaylorSeries(ExpressionInteger,x,0),

UnivariateTaylorSeries(ExpressionInteger,x,0))

L3 := Dx**3 + G * x**2 * Dx + x**3 * H - exp(x)

D3+Gx2D−1−x− 1
2
x2+

6H − 1
6

x3− 1
24

x4− 1
120

x5− 1
720

x6− 1
5040

x7+O(x8)

Type: LinearOrdinaryDifferentialOperator

(UnivariateTaylorSeries(ExpressionInteger,x,0),

UnivariateTaylorSeries(ExpressionInteger,x,0))

9.35. LINEARORDINARYDIFFERENTIALOPERATOR 125

s: Symbol := ’s

s

Type: Symbol

phi: T := series([s[i] for i in 0..])

s0 + s1x + s2x
2 + s3x

3 + s4x
4 + s5x

5 + s6x
6 + s7x

7 + O(x8)

UnivariateTaylorSeries(ExpressionInteger,x,0))

Apply the operator to get the solution

L3 phi

6s3 − s0 + (24s4 − s1 − s0)x+

120s5 − 2s2 + (2G− 2)s1 − s0

2
x2+

720s6 − 6s3 + (12G− 6)s2 − 3s1 + (6H − 1)s0

6
x3+

 5040s7 − 24s4 + (72G− 24)s3 − 12s2+

(24H − 4)s1 − s0

24

x4+

 40320s8 − 120s5 + (480G− 120)s4 − 60s3+

(120H − 20)s2 − 5s1 − s0

120

x5+

 362880s9 − 720s6 + (3600G− 720)s5 − 360s4+

(720H − 120)s3 − 30s2 − 6s1 − s0

720

x6+

3628800s10 − 5040s7 + (30240G− 5040)s6−

2520s5 + (5040H − 840)s4 − 210s3 − 42s2 − 7s1−

s0

5040

x7+

O(x8)

126 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.35.4 Differential Operators with Matrix Coefficients
Operating on Vectors

This is another example of linear ordinary differential operators with non-
commutative multiplication. Unlike the rational function case, the differential
ring of square matrices (of a given dimension) with univariate polynomial entries
does not form a field. Thus the number of operations available is more limited.

In this section, the operators have three by three matrix coefficients with
polynomial entries.
PZ := UnivariatePolynomial(x,Integer)

UnivariatePolynomial(x, Integer)

Type: Domain

x:PZ := ’x

x

Type: UnivariatePolynomial(x,Integer)

Mat := SquareMatrix(3,PZ)

SquareMatrix(3, UnivariatePolynomial(x, Integer))

Type: Domain

The operators act on the vectors considered as a Mat-module.

Vect := DPMM(3, PZ, Mat, PZ)

Type: Domain

Modo := LODO(Mat, Vect)

Type: Domain

The matrix m is used as a coefficient and the vectors p and q are operated
upon.

m:Mat := matrix [[x**2,1,0],[1,x**4,0],[0,0,4*x**2]] x2 1 0
1 x4 0
0 0 4 x2

9.35. LINEARORDINARYDIFFERENTIALOPERATOR 127

Type: SquareMatrix(3,UnivariatePolynomial(x,Integer))

p:Vect := directProduct [3*x**2+1,2*x,7*x**3+2*x][
3 x2 + 1, 2 x, 7 x3 + 2 x

]
Type: DirectProductMatrixModule(3,

UnivariatePolynomial(x,Integer),
SquareMatrix(3,UnivariatePolynomial(x,Integer)),

UnivariatePolynomial(x,Integer))

q: Vect := m * p[
3 x4 + x2 + 2 x, 2 x5 + 3 x2 + 1, 28 x5 + 8 x3

]
Type: DirectProductMatrixModule(3,

UnivariatePolynomial(x,Integer),
SquareMatrix(3,UnivariatePolynomial(x,Integer)),

UnivariatePolynomial(x,Integer))

Now form a few operators.

Dx : Modo := D()

D

Type: LinearOrdinaryDifferentialOperator2(
SquareMatrix(3,UnivariatePolynomial(x,Integer)),

DirectProductMatrixModule(3, UnivariatePolynomial(x,Integer),
SquareMatrix(3,UnivariatePolynomial(x,Integer)),

UnivariatePolynomial(x,Integer)))

a : Modo := Dx + m

D +

 x2 1 0
1 x4 0
0 0 4 x2

Type: LinearOrdinaryDifferentialOperator2(

SquareMatrix(3,UnivariatePolynomial(x,Integer)),
DirectProductMatrixModule(3, UnivariatePolynomial(x,Integer),

SquareMatrix(3, UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer)))

b : Modo := m*Dx + 1

128 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES x2 1 0
1 x4 0
0 0 4 x2

 D +

 1 0 0
0 1 0
0 0 1

Type: LinearOrdinaryDifferentialOperator2(SquareMatrix(3,

UnivariatePolynomial(x,Integer)), DirectProductMatrixModule(3,
UnivariatePolynomial(x,Integer), SquareMatrix(3,

UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer)))

c := a*b x2 1 0
1 x4 0
0 0 4 x2

 D2+

 x4 + 2 x + 2 x4 + x2 0
x4 + x2 x8 + 4 x3 + 2 0

0 0 16 x4 + 8 x + 1

 D+

 x2 1 0
1 x4 0
0 0 4 x2

Type: LinearOrdinaryDifferentialOperator2(SquareMatrix(3,

UnivariatePolynomial(x,Integer)), DirectProductMatrixModule(3,
UnivariatePolynomial(x,Integer), SquareMatrix(3,

UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer)))

These operators can be applied to vector values.

a p [
3 x4 + x2 + 8 x, 2 x5 + 3 x2 + 3, 28 x5 + 8 x3 + 21 x2 + 2

]
Type: DirectProductMatrixModule(3,

UnivariatePolynomial(x,Integer), SquareMatrix(3,
UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer))

b p [
6 x3 + 3 x2 + 3, 2 x4 + 8 x, 84 x4 + 7 x3 + 8 x2 + 2 x

]
Type: DirectProductMatrixModule(3,

UnivariatePolynomial(x,Integer), SquareMatrix(3,
UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer))

9.36. LIST 129

(a + b + c) (p + q)[
10 x8 + 12 x7 + 16 x6 + 30 x5 + 85 x4 + 94 x3 + 40 x2 + 40 x + 17,

10 x12 + 10 x9 + 12 x8 + 92 x7 + 6 x6 + 32 x5 + 72 x4 + 28 x3 + 49 x2+
32 x + 19,

2240 x8 + 224 x7 + 1280 x6 + 3508 x5 + 492 x4 + 751 x3 + 98 x2 + 18 x + 4
]

Type: DirectProductMatrixModule(3,
UnivariatePolynomial(x,Integer), SquareMatrix(3,

UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer))

9.36 List

A is a finite collection of elements in a specified order that can contain duplicates.
A list is a convenient structure to work with because it is easy to add or remove
elements and the length need not be constant. There are many different kinds of
lists in AXIOM, but the default types (and those used most often) are created
by the List constructor. For example, there are objects of type List Integer,
List Float and List Polynomial Fraction Integer. Indeed, you can even
have List List List Boolean (that is, lists of lists of lists of Boolean values).
You can have lists of any type of AXIOM object.

9.36.1 Creating Lists

The easiest way to create a list with, for example, the elements 2, 4, 5, 6
is to enclose the elements with square brackets and separate the elements with
commas.

The spaces after the commas are optional, but they do improve the read-
ability.

[2, 4, 5, 6]

[2, 4, 5, 6]

Type: List PositiveInteger

To create a list with the single element 1, you can use either [1] or the
operation list.

[1]

[1]

130 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: List PositiveInteger

list(1)

[1]

Type: List PositiveInteger

Once created, two lists k and m can be concatenated by issuing append(k,m).
append does not physically join the lists, but rather produces a new list with
the elements coming from the two arguments.

append([1,2,3],[5,6,7])

[1, 2, 3, 5, 6, 7]

Type: List PositiveInteger

Use cons to append an element onto the front of a list.

cons(10,[9,8,7])

[10, 9, 8, 7]

Type: List PositiveInteger

9.36.2 Accessing List Elements

To determine whether a list has any elements, use the operation empty?.

empty? [x+1]

false

Type: Boolean

Alternatively, equality with the list constant nil can be tested.

([] = nil)@Boolean

true

Type: Boolean

We’ll use this in some of the following examples.

k := [4,3,7,3,8,5,9,2]

9.36. LIST 131

[4, 3, 7, 3, 8, 5, 9, 2]

Type: List PositiveInteger

Each of the next four expressions extracts the first element of k.

first k

4

Type: PositiveInteger

k.first

4

Type: PositiveInteger

k.1

4

Type: PositiveInteger

k(1)

4

Type: PositiveInteger

The last two forms generalize to k.i and k(i), respectively, where 1 ≤ i ≤ n
and n equals the length of k.

This length is calculated by “#”.

n := #k

8

Type: PositiveInteger

Performing an operation such as k.i is sometimes referred to as indexing
into k or elting into k. The latter phrase comes about because the name of the
operation that extracts elements is called elt. That is, k.3 is just alternative
syntax for elt(k,3). It is important to remember that list indices begin with
1. If we issue k := [1,3,2,9,5] then k.4 returns 9. It is an error to use an
index that is not in the range from 1 to the length of the list.

The last element of a list is extracted by any of the following three expres-
sions.

132 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

last k

2

Type: PositiveInteger

k.last

2

Type: PositiveInteger

This form computes the index of the last element and then extracts the
element from the list.

k.(#k)

2

Type: PositiveInteger

9.36.3 Changing List Elements

We’ll use this in some of the following examples.

k := [4,3,7,3,8,5,9,2]

[4, 3, 7, 3, 8, 5, 9, 2]

Type: List PositiveInteger

List elements are reset by using the k.i form on the left-hand side of an
assignment. This expression resets the first element of k to 999.

k.1 := 999

999

Type: PositiveInteger

As with indexing into a list, it is an error to use an index that is not within
the proper bounds. Here you see that k was modified.

k

[999, 3, 7, 3, 8, 5, 9, 2]

Type: List PositiveInteger

9.36. LIST 133

The operation that performs the assignment of an element to a particular
position in a list is called setelt. This operation is destructive in that it changes
the list. In the above example, the assignment returned the value 999 and k
was modified. For this reason, lists are called objects: it is possible to change
part of a list (mutate it) rather than always returning a new list reflecting the
intended modifications.

Moreover, since lists can share structure, changes to one list can sometimes
affect others.

k := [1,2]

[1, 2]

Type: List PositiveInteger

m := cons(0,k)

[0, 1, 2]

Type: List Integer

Change the second element of m.

m.2 := 99

99

Type: PositiveInteger

See, m was altered.

m

[0, 99, 2]

Type: List Integer

But what about k? It changed too!

k

[99, 2]

Type: List PositiveInteger

134 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.36.4 Other Functions

An operation that is used frequently in list processing is that which returns all
elements in a list after the first element.

k := [1,2,3]

[1, 2, 3]

Type: List PositiveInteger

Use the rest operation to do this.

rest k

[2, 3]

Type: List PositiveInteger

To remove duplicate elements in a list k, use removeDuplicates.

removeDuplicates [4,3,4,3,5,3,4]

[4, 3, 5]

Type: List PositiveInteger

To get a list with elements in the order opposite to those in a list k, use
reverse.

reverse [1,2,3,4,5,6]

[6, 5, 4, 3, 2, 1]

Type: List PositiveInteger

To test whether an element is in a list, use member?: member?(a,k) returns
true or false depending on whether a is in k or not.

member?(1/2,[3/4,5/6,1/2])

true

Type: Boolean

member?(1/12,[3/4,5/6,1/2])

false

Type: Boolean

As an exercise, the reader should determine how to get a list containing all
but the last of the elements in a given non-empty list k.4

4reverse(rest(reverse(k))) works.

9.37. MAKEFUNCTION 135

9.36.5 Dot, Dot

Certain lists are used so often that AXIOM provides an easy way of constructing
them. If n and m are integers, then expand [n..m] creates a list containing n,
n+1, ... m. If n > m then the list is empty. It is actually permissible to leave
off the m in the dot-dot construction (see below).

The dot-dot notation can be used more than once in a list construction and
with specific elements being given. Items separated by dots are called segments.

[1..3,10,20..23]

[1..3, 10..10, 20..23]

Type: List Segment PositiveInteger

Segments can be expanded into the range of items between the endpoints by
using expand.

expand [1..3,10,20..23]

[1, 2, 3, 10, 20, 21, 22, 23]

Type: List Integer

What happens if we leave off a number on the right-hand side of “..”?

expand [1..]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .]

Type: Stream Integer

What is created in this case is a Stream which is a generalization of a list.
See 9.60 on page 202 for more information.

9.37 MakeFunction

It is sometimes useful to be able to define a function given by the result of a
calculation.

Suppose that you have obtained the following expression after several com-
putations and that you now want to tabulate the numerical values of f for x
between -1 and +1 with increment 0.1.

expr := (x - exp x + 1)**2 * (sin(x**2) * x + 1)**3

136 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES(
x3 %ex2 +

(
−2 x4 − 2 x3

)
%ex + x5 + 2 x4 + x3

)
sin

(
x2

)3+

(
3 x2 %ex2 +

(
−6 x3 − 6 x2

)
%ex + 3 x4 + 6 x3 + 3 x2

)
sin

(
x2

)2
+

(
3 x %ex2 +

(
−6 x2 − 6 x

)
%ex + 3 x3 + 6 x2 + 3 x

)
sin

(
x2

)
+ %ex2+

(−2 x− 2) %ex + x2 + 2 x + 1

Type: Expression Integer

You could, of course, use the function eval within a loop and evaluate expr
twenty-one times, but this would be quite slow. A better way is to create a
numerical function f such that f(x) is defined by the expression expr above,
but without retyping expr! The package MakeFunction provides the operation
function which does exactly this.

Issue this to create the function f(x) given by expr.

function(expr, f, x)

f

Type: Symbol

To tabulate expr, we can now quickly evaluate f 21 times.

tbl := [f(0.1 * i - 1) for i in 0..20];

Compiling function f with type Float -> Float

Type: List Float

Use the list [x1,...,xn] as the third argument to function to create a
multivariate function f(x1,...,xn).

e := (x - y + 1)**2 * (x**2 * y + 1)**2

x4 y4 +
(
−2 x5 − 2 x4 + 2 x2

)
y3 +

(
x6 + 2 x5 + x4 − 4 x3 − 4 x2 + 1

)
y2+(

2 x4 + 4 x3 + 2 x2 − 2 x− 2
)

y + x2 + 2 x + 1

Type: Polynomial Integer

function(e, g, [x, y])

g

9.37. MAKEFUNCTION 137

Type: Symbol

In the case of just two variables, they can be given as arguments without
making them into a list.

function(e, h, x, y)

h

Type: Symbol

Note that the functions created by function are not limited to floating point
numbers, but can be applied to any type for which they are defined.

m1 := squareMatrix [[1, 2], [3, 4]]

[
1 2
3 4

]
Type: SquareMatrix(2,Integer)

m2 := squareMatrix [[1, 0], [-1, 1]]

[
1 0
−1 1

]
Type: SquareMatrix(2,Integer)

h(m1, m2)

Compiling function h with type(SquareMatrix(2,Integer), squareMat-
rix(2,Integer)) -> SquareMatrix(2,Integer)[

−7836 8960
−17132 19588

]
Type: SquareMatrix(2,Integer)

Issue the system command)show MakeFunction to display the full list of
operations defined by MakeFunction.

138 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.38 MappingPackage1

Function are objects of type Mapping. In this section we demonstrate some
library operations from the packages MappingPackage1, MappingPackage2, and
MappingPackage3 that manipulate and create functions. Some terminology: a
nullary function takes no arguments, a unary function takes one argument, and
a binary function takes two arguments.

We begin by creating an example function that raises a rational number to
an integer exponent.

power(q: FRAC INT, n: INT): FRAC INT == q**n

Function declaration power : (Fraction Integer,Integer) ->
Fraction Integer has been added to workspace.

Type : Void

power(2,3)

Compiling function power with type (Fraction Integer,Integer) ->
Fraction Integer

8

Type: Fraction Integer

The twist operation transposes the arguments of a binary function. Here
rewop(a, b) is power(b, a).

rewop := twist power

theMap(...)

Type: ((Integer,Fraction Integer) -> Fraction Integer)

This is 23.

rewop(3, 2)

8

Type: Fraction Integer

Now we define square in terms of power.

square: FRAC INT -> FRAC INT

9.38. MAPPINGPACKAGE1 139

Type: Void

The curryRight operation creates a unary function from a binary one by
providing a constant argument on the right.

square:= curryRight(power, 2)

theMap(...)

Type: (Fraction Integer -> Fraction Integer)

Likewise, the curryLeft operation provides a constant argument on the left.

square 4

16

Type: Fraction Integer

The constantRight operation creates (in a trivial way) a binary function
from a unary one: constantRight(f) is the function g such that g(a,b)=
f(a).

squirrel:= constantRight(square)$MAPPKG3(FRAC INT,FRAC INT,FRAC
INT)

theMap(...)

Type: ((Fraction Integer,Fraction Integer) -> Fraction Integer)

Likewise, constantLeft(f) is the function g such that g(a,b)= f(b).

squirrel(1/2, 1/3)

1
4

Type: Fraction Integer

The curry operation makes a unary function nullary.

sixteen := curry(square, 4/1)

theMap(...)

Type: (() -> Fraction Integer)

sixteen()

140 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

16

Type: Fraction Integer

The “*” operation constructs composed functions.

square2:=square*square

theMap(...)

Type: (Fraction Integer -> Fraction Integer)

square2 3

81

Type: Fraction Integer

Use the “**” operation to create functions that are n-fold iterations of other
functions.

sc(x: FRAC INT): FRAC INT == x + 1

Function declaration sc : Fraction Integer ->
Fraction Integer has been added to workspace.

Type: Void

This is a list of Mapping objects.

incfns := [sc**i for i in 0..10]

[theMap(...), theMap(...), theMap(...), theMap(...), theMap(...), theMap(...),
theMap(...), theMap(...), theMap(...), theMap(...), theMap(...)]

Type: List (Fraction Integer -> Fraction Integer)

This is a list of applications of those functions.

[f 4 for f in incfns]

[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

Type: List Fraction Integer

Use the recur operation for recursion:
g := recur f means g(n,x) == f(n,f(n-1,...f(1,x))).

times(n:NNI, i:INT):INT == n*i

9.38. MAPPINGPACKAGE1 141

Function declaration times : (NonNegativeInteger,Integer) ->
Integer has been added to workspace.

Type: Void

r := recur(times)

Compiling function times with type(NonNegativeInteger, Integer)->
Integer

theMap(...)

Type: ((NonNegativeInteger,Integer) -> Integer)

This is a factorial function.

fact := curryRight(r, 1)

theMap(...)

Type: (NonNegativeInteger -> Integer)

fact 4

24

Type: PositiveInteger

Constructed functions can be used within other functions.

mto2ton(m, n) ==
raiser := square**n
raiser m

Type: Void

This is 323
.

mto2ton(3, 3)

Compiling function mto2ton with type (PositiveInteger,
PositiveInteger) -> Fraction Integer

6561

Type: Fraction Integer

Here shiftfib is a unary function that modifies its argument.

142 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

shiftfib(r: List INT) : INT ==
t := r.1
r.1 := r.2
r.2 := r.2 + t
t

Function declaration shiftfib : List Integer -> Integer
has been added to workspace.

Type: Void

By currying over the argument we get a function with private state.

fibinit: List INT := [0, 1]

[0, 1]

Type: List Integer

fibs := curry(shiftfib, fibinit)

Compiling function shiftlib with type List Integer -> Integer

theMap(...)

Type: (() -> Integer)

[fibs() for i in 0..30]

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418,
317811, 514229, 832040]

Type: List Integer

9.39 Matrix

The Matrix domain provides arithmetic operations on matrices and standard
functions from linear algebra. This domain is similar to the TwoDimensional
Array domain, except that the entries for Matrix must belong to a Ring.

9.39. MATRIX 143

9.39.1 Creating Matrices

There are many ways to create a matrix from a collection of values or from
existing matrices.

If the matrix has almost all items equal to the same value, use new to create
a matrix filled with that value and then reset the entries that are different.

m : Matrix(Integer) := new(3,3,0) 0 0 0
0 0 0
0 0 0

Type: Matrix Integer

To change the entry in the second row, third column to 5, use setelt.

setelt(m,2,3,5)

5

Type: PositiveInteger

An alternative syntax is to use assignment.

m(1,2) := 10

10

Type: PositiveInteger

The matrix was destructively modified.

m 0 10 0
0 0 5
0 0 0

Type: Matrix Integer

If you already have the matrix entries as a list of lists, use matrix.

matrix [[1,2,3,4],[0,9,8,7]][
1 2 3 4
0 9 8 7

]
Type: Matrix Integer

If the matrix is diagonal, use diagonalMatrix.

144 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

dm := diagonalMatrix [1,x**2,x**3,x**4,x**5]
1 0 0 0 0
0 x2 0 0 0
0 0 x3 0 0
0 0 0 x4 0
0 0 0 0 x5

Type: Matrix Polynomial Integer

Use setRow and setColumn to change a row or column of a matrix.

setRow!(dm,5,vector [1,1,1,1,1])
1 0 0 0 0
0 x2 0 0 0
0 0 x3 0 0
0 0 0 x4 0
1 1 1 1 1

Type: Matrix Polynomial Integer

setColumn!(dm,2,vector [y,y,y,y,y])
1 y 0 0 0
0 y 0 0 0
0 y x3 0 0
0 y 0 x4 0
1 y 1 1 1

Type: Matrix Polynomial Integer

Use copy to make a copy of a matrix.

cdm := copy(dm)
1 y 0 0 0
0 y 0 0 0
0 y x3 0 0
0 y 0 x4 0
1 y 1 1 1

Type: Matrix Polynomial Integer

This is useful if you intend to modify a matrix destructively but want a copy
of the original.

setelt(dm,4,1,1-x**7)

9.39. MATRIX 145

−x7 + 1

Type: Polynomial Integer

[dm,cdm]

1 y 0 0 0
0 y 0 0 0
0 y x3 0 0

−x7 + 1 y 0 x4 0
1 y 1 1 1

,

1 y 0 0 0
0 y 0 0 0
0 y x3 0 0
0 y 0 x4 0
1 y 1 1 1

Type: List Matrix Polynomial Integer

Use subMatrix to extract part of an existing matrix. The syntax is subMat-
rix(m, firstrow, lastrow, firstcol, lastcol).

subMatrix(dm,2,3,2,4) [
y 0 0
y x3 0

]
Type: Matrix Polynomial Integer

To change a submatrix, use setsubMatrix.

d := diagonalMatrix [1.2,-1.3,1.4,-1.5]
1.2 0.0 0.0 0.0
0.0 −1.3 0.0 0.0
0.0 0.0 1.4 0.0
0.0 0.0 0.0 −1.5

Type: Matrix Float

If e is too big to fit where you specify, an error message is displayed. Use
subMatrix to extract part of e, if necessary.

e := matrix [[6.7,9.11],[-31.33,67.19]][
6.7 9.11

−31.33 67.19

]
Type: Matrix Float

This changes the submatrix of d whose upper left corner is at the first row
and second column and whose size is that of e.

setsubMatrix!(d,1,2,e)

146 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES
1.2 6.7 9.11 0.0
0.0 −31.33 67.19 0.0
0.0 0.0 1.4 0.0
0.0 0.0 0.0 −1.5

Type: Matrix Float

d
1.2 6.7 9.11 0.0
0.0 −31.33 67.19 0.0
0.0 0.0 1.4 0.0
0.0 0.0 0.0 −1.5

Type: Matrix Float

Matrices can be joined either horizontally or vertically to make new matrices.

a := matrix [[1/2,1/3,1/4],[1/5,1/6,1/7]][
1
2

1
3

1
4

1
5

1
6

1
7

]
Type: Matrix Fraction Integer

b := matrix [[3/5,3/7,3/11],[3/13,3/17,3/19]][
3
5

3
7

3
11

3
13

3
17

3
19

]
Type: Matrix Fraction Integer

Use horizConcat to append them side to side. The two matrices must have
the same number of rows.

horizConcat(a,b) [
1
2

1
3

1
4

3
5

3
7

3
11

1
5

1
6

1
7

3
13

3
17

3
19

]
Type: Matrix Fraction Integer

Use vertConcat to stack one upon the other. The two matrices must have
the same number of columns.

vab := vertConcat(a,b)

9.39. MATRIX 147
1
2

1
3

1
4

1
5

1
6

1
7

3
5

3
7

3
11

3
13

3
17

3
19

Type: Matrix Fraction Integer

The operation transpose is used to create a new matrix by reflection across
the main diagonal.

transpose vab 1
2

1
5

3
5

3
13

1
3

1
6

3
7

3
17

1
4

1
7

3
11

3
19

Type: Matrix Fraction Integer

9.39.2 Operations on Matrices

AXIOM provides both left and right scalar multiplication.

m := matrix [[1,2],[3,4]] [
1 2
3 4

]
Type: Matrix Integer

4 * m * (-5) [
−20 −40
−60 −80

]
Type: Matrix Integer

You can add, subtract, and multiply matrices provided, of course, that the
matrices have compatible dimensions. If not, an error message is displayed.

n := matrix([[1,0,-2],[-3,5,1]])[
1 0 −2
−3 5 1

]
Type: Matrix Integer

This following product is defined but n * m is not.

m * n

148 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES[
−5 10 0
−9 20 −2

]
Type: Matrix Integer

The operations nrows and ncols return the number of rows and columns of
a matrix. You can extract a row or a column of a matrix using the operations
row and column. The object returned is a Vector.

Here is the third column of the matrix n.

vec := column(n,3)

[−2, 1]

Type: Vector Integer

You can multiply a matrix on the left by a “row vector” and on the right by
a “column vector.”

vec * m

[1, 0]

Type: Vector Integer

Of course, the dimensions of the vector and the matrix must be compatible
or an error message is returned.

m * vec

[0,−2]

Type: Vector Integer

The operation inverse computes the inverse of a matrix if the matrix is
invertible, and returns "failed" if not.

This Hilbert matrix is invertible.

hilb := matrix([[1/(i + j) for i in 1..3] for j in 1..3]) 1
2

1
3

1
4

1
3

1
4

1
5

1
4

1
5

1
6

Type: Matrix Fraction Integer

inverse(hilb)

9.39. MATRIX 149 72 −240 180
−240 900 −720
180 −720 600

Type: Union(Matrix Fraction Integer,...)

This matrix is not invertible.

mm := matrix([[1,2,3,4], [5,6,7,8], [9,10,11,12], [13,14,15,16]
])

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Type: Matrix Integer

inverse(mm)

"failed"

Type: Union("failed",...)

The operation determinant computes the determinant of a matrix provided
that the entries of the matrix belong to a CommutativeRing.

The above matrix mm is not invertible and, hence, must have determinant 0.

determinant(mm)

0

Type: NonNegativeInteger

The operation trace computes the trace of a square matrix.

trace(mm)

34

Type: PositiveInteger

The operation rank computes the rank of a matrix: the maximal number of
linearly independent rows or columns.

rank(mm)

2

150 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: PositiveInteger

The operation nullity computes the nullity of a matrix: the dimension of
its null space.

nullity(mm)

2

Type: PositiveInteger

The operation nullSpace returns a list containing a basis for the null space
of a matrix. Note that the nullity is the number of elements in a basis for the
null space.

nullSpace(mm)

[[1,−2, 1, 0], [2,−3, 0, 1]]

Type: List Vector Integer

The operation rowEchelon returns the row echelon form of a matrix. It is
easy to see that the rank of this matrix is two and that its nullity is also two.

rowEchelon(mm)
1 2 3 4
0 4 8 12
0 0 0 0
0 0 0 0

Type: Matrix Integer

For more information on related topics, see 9.48 on page 173, 9.69 on pa-
ge 233, 9.44 on page 158, and 9.66 on page 221. Issue the system command
)show Matrix to display the full list of operations defined by Matrix.

9.40 MultiSet

The domain Multiset(R) is similar to Set(R) except that multiplicities (counts
of duplications) are maintained and displayed. Use the operation multiset to
create multisets from lists. All the standard operations from sets are available
for multisets. An element with multiplicity greater than one has the multiplicity
displayed first, then a colon, and then the element.

Create a multiset of integers.

s := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10]

9.40. MULTISET 151

{1, 2 : 2, 3 : 3, 4 : 4, 2 : 5, 6, 7, 10}

Type: Multiset PositiveInteger

The operation insert! adds an element to a multiset.

insert!(3,s)

{1, 2 : 2, 4 : 3, 4 : 4, 2 : 5, 6, 7, 10}

Type: Multiset PositiveInteger

Use remove! to remove an element. If a third argument is present, it
specifies how many instances to remove. Otherwise all instances of the element
are removed. Display the resulting multiset.

remove!(5,s); s

{1, 2 : 2, 3 : 3, 4 : 4, 5, 6, 7, 10}

Type: Multiset PositiveInteger

The operation count returns the number of copies of a given value.

count(5,s)

1

Type: NonNegativeInteger

A second multiset.

t := multiset [2,2,2,-9]

{3: 2,−9}

Type: Multiset Integer

The union of two multisets is additive.

U := union(s,t)

{1, 5 : 2, 4 : 3, 4 : 4, 5, 6, 7, 10,−9}

Type: Multiset Integer

The intersect operation gives the elements that are in common, with ad-
ditive multiplicity.

I := intersect(s,t)

152 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

{5: 2}

Type: Multiset Integer

The difference of s and t consists of the elements that s has but t does
not. Elements are regarded as indistinguishable, so that if s and t have any
element in common, the difference does not contain that element.

difference(s,t)

{1, 4 : 3, 4 : 4, 5, 6, 7, 10}

Type: Multiset Integer

The symmetricDifference is the union of difference(s, t) and differ
ence(t, s).

S := symmetricDifference(s,t)

{1, 4 : 3, 4 : 4, 5, 6, 7, 10,−9}

Type: Multiset Integer

Check that the union of the symmetricDifference and the intersect
equals the union of the elements.

(U = union(S,I))@Boolean

true

Type: Boolean

Check some inclusion relations.

t1 := multiset [1,2,2,3]; [t1 < t, t1 < s, t < s, t1 <= s]

[false, true, false, true]

Type: List Boolean

9.41. MULTIVARIATEPOLYNOMIAL 153

9.41 MultivariatePolynomial

The domain constructor MultivariatePolynomial is similar to Polynomial
except that it specifies the variables to be used. Polynomial are available for
MultivariatePolynomial. The abbreviation for MultivariatePolynomial is
MPOLY. The type expressions MultivariatePolynomial([x,y],Integer) and

MPOLY([x,y],INT)
refer to the domain of multivariate polynomials in the variables x and y where
the coefficients are restricted to be integers. The first variable specified is the
main variable and the display of the polynomial reflects this.

This polynomial appears with terms in descending powers of the variable x.

m : MPOLY([x,y],INT) := (x**2 - x*y**3 +3*y)**2

x4 − 2 y3 x3 +
(
y6 + 6 y

)
x2 − 6 y4 x + 9 y2

Type: MultivariatePolynomial([x,y],Integer)

It is easy to see a different variable ordering by doing a conversion.

m :: MPOLY([y,x],INT)

x2 y6 − 6 x y4 − 2 x3 y3 + 9 y2 + 6 x2 y + x4

Type: MultivariatePolynomial([y,x],Integer)

You can use other, unspecified variables, by using Polynomial in the coeffi-
cient type of MPOLY.

p : MPOLY([x,y],POLY INT)

Type: Void

p := (a**2*x - b*y**2 + 1)**2

a4 x2 +
(
−2 a2 b y2 + 2 a2

)
x + b2 y4 − 2 b y2 + 1

Type: MultivariatePolynomial([x,y],Polynomial Integer)

Conversions can be used to re-express such polynomials in terms of the other
variables. For example, you can first push all the variables into a polynomial
with integer coefficients.

p :: POLY INT

b2 y4 +
(
−2 a2 b x− 2 b

)
y2 + a4 x2 + 2 a2 x + 1

Type: Polynomial Integer

154 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Now pull out the variables of interest.

% :: MPOLY([a,b],POLY INT)

x2 a4 +
(
−2 x y2 b + 2 x

)
a2 + y4 b2 − 2 y2 b + 1

Type: MultivariatePolynomial([a,b],Polynomial Integer)

Restriction:

AXIOM does not allow you to create types where Multivariate
Polynomial is contained in the coefficient type of Polynomial.
Therefore, MPOLY([x,y],POLY INT) is legal but POLY MPOLY
([x,y],INT) is not.

.

Multivariate polynomials may be combined with univariate polynomials to
create types with special structures.

q : UP(x, FRAC MPOLY([y,z],INT))

Void

This is a polynomial in x whose coefficients are quotients of polynomials in
y and z.

q := (x**2 - x*(z+1)/y +2)**2

x4 +
−2 z − 2

y
x3 +

4 y2 + z2 + 2 z + 1
y2

x2 +
−4 z − 4

y
x + 4

Type: UnivariatePolynomial(x,Fraction
MultivariatePolynomial([y,z],Integer))

Use conversions for structural rearrangements. z does not appear in a de-
nominator and so it can be made the main variable.

q :: UP(z, FRAC MPOLY([x,y],INT))

x2

y2
z2 +

−2 y x3 + 2 x2 − 4 y x

y2
z+

y2 x4 − 2 y x3 +
(
4 y2 + 1

)
x2 − 4 y x + 4 y2

y2

Type: UnivariatePolynomial(z,Fraction
MultivariatePolynomial([x,y],Integer))

9.42. NONE 155

Or you can make a multivariate polynomial in x and z whose coefficients are
fractions in polynomials in y.

q :: MPOLY([x,z], FRAC UP(y,INT))

x4 +
(
− 2

y z − 2
y

)
x3 +

(
1
y2 z2 + 2

y2 z + 4 y2+1
y2

)
x2+

(
−4

y
z − 4

y

)
x + 4

Type: MultivariatePolynomial([x,z],Fraction
UnivariatePolynomial(y,Integer))

A conversion like q :: MPOLY([x,y], FRAC UP(z,INT)) is not possible in
this example because y appears in the denominator of a fraction. As you can
see, AXIOM provides extraordinary flexibility in the manipulation and display
of expressions via its conversion facility.

For more information on related topics, see 9.49 on page 174, 9.67 on pa-
ge 225, and 9.15 on page 59.

9.42 None

The None domain is not very useful for interactive work but it is provided
nevertheless for completeness of the AXIOM type system.

Probably the only place you will ever see it is if you enter an empty list with
no type information.

[]

[]

Type: List None

Such an empty list can be converted into an empty list of any other type.

[] :: List Float

[]

Type: List Float

If you wish to produce an empty list of a particular type directly, such as
List NonNegativeInteger, do it this way.

[]$List(NonNegativeInteger)

[]

Type: List NonNegativeInteger

156 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.43 Octonion

The Octonions, also called the Cayley-Dixon algebra, defined over a commuta-
tive ring are an eight-dimensional non-associative algebra. Their construction
from quaternions is similar to the construction of quaternions from complex
numbers (see 9.50 on page 182).

As Octonion creates an eight-dimensional algebra, you have to give eight
components to construct an octonion.

oci1 := octon(1,2,3,4,5,6,7,8)

1 + 2 i + 3 j + 4 k + 5 E + 6 I + 7 J + 8 K

Type: Octonion Integer

oci2 := octon(7,2,3,-4,5,6,-7,0)

7 + 2 i + 3 j − 4 k + 5 E + 6 I − 7 J

Type: Octonion Integer

Or you can use two quaternions to create an octonion.

oci3 := octon(quatern(-7,-12,3,-10), quatern(5,6,9,0))

−7− 12 i + 3 j − 10 k + 5 E + 6 I + 9 J

Type: Octonion Integer

You can easily demonstrate the non-associativity of multiplication.

(oci1 * oci2) * oci3 - oci1 * (oci2 * oci3)

2696 i− 2928 j − 4072 k + 16 E − 1192 I + 832 J + 2616 K

Type: Octonion Integer

As with the quaternions, we have a real part, the imaginary parts i, j, k,
and four additional imaginary parts E, I, J and K. These parts correspond to
the canonical basis (1,i,j,k,E,I,J,K).

For each basis element there is a component operation to extract the coeffi-
cient of the basis element for a given octonion.

[real oci1, imagi oci1, imagj oci1, imagk oci1, imagE oci1, imagI
oci1, imagJ oci1, imagK oci1]

[1, 2, 3, 4, 5, 6, 7, 8]

Type: List PositiveInteger

9.43. OCTONION 157

A basis with respect to the quaternions is given by (1,E). However, you
might ask, what then are the commuting rules? To answer this, we create some
generic elements.

We do this in AXIOM by simply changing the ground ring from Integer to
Polynomial Integer.

q : Quaternion Polynomial Integer := quatern(q1, qi, qj, qk)

q1 + qi i + qj j + qk k

Type: Quaternion Polynomial Integer

E : Octonion Polynomial Integer:= octon(0,0,0,0,1,0,0,0)

E

Type: Octonion Polynomial Integer

Note that quaternions are automatically converted to octonions in the obvi-
ous way.

q * E

q1 E + qi I + qj J + qk K

Type: Octonion Polynomial Integer

E * q

q1 E − qi I − qj J − qk K

Type: Octonion Polynomial Integer

q * 1$(Octonion Polynomial Integer)

q1 + qi i + qj j + qk k

Type: Octonion Polynomial Integer

1$(Octonion Polynomial Integer) * q

q1 + qi i + qj j + qk k

Type: Octonion Polynomial Integer

Finally, we check that the norm, defined as the sum of the squares of the
coefficients, is a multiplicative map.

158 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

o : Octonion Polynomial Integer := octon(o1, oi, oj, ok, oE, oI,
oJ, oK)

o1 + oi i + oj j + ok k + oE E + oI I + oJ J + oK K

Type: Octonion Polynomial Integer

norm o

ok2 + oj2 + oi2 + oK2 + oJ2 + oI2 + oE2 + o12

Type: Polynomial Integer

p : Octonion Polynomial Integer := octon(p1, pi, pj, pk, pE, pI,
pJ, pK)

p1 + pi i + pj j + pk k + pE E + pI I + pJ J + pK K

Type: Octonion Polynomial Integer

Since the result is 0, the norm is multiplicative.

norm(o*p)-norm(p)*norm(o)

0

Type: Polynomial Integer

9.44 OneDimensionalArray

The OneDimensionalArray domain is used for storing data in a one-dimensional
indexed data structure. Such an array is a homogeneous data structure in that
all the entries of the array must belong to the same AXIOM domain. Each
array has a fixed length specified by the user and arrays are not extensible. The
indexing of one-dimensional arrays is one-based. This means that the “first”
element of an array is given the index 1. See also 9.69 on page 233 and 9.23 on
page 79.

To create a one-dimensional array, apply the operation oneDimensional
Array to a list.

oneDimensionalArray [i**2 for i in 1..10]

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Type: OneDimensionalArray PositiveInteger

9.44. ONEDIMENSIONALARRAY 159

Another approach is to first create a, a one-dimensional array of 10 0’s.
OneDimensionalArray has the convenient abbreviation ARRAY1.

a : ARRAY1 INT := new(10,0)

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Type: OneDimensionalArray Integer

Set each ith element to i, then display the result.

for i in 1..10 repeat a.i := i; a

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Type: OneDimensionalArray Integer

Square each element by mapping the function i 7→ i2 onto each element.

map!(i +-> i ** 2,a); a

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Type: OneDimensionalArray Integer

Reverse the elements in place.

reverse! a

[100, 81, 64, 49, 36, 25, 16, 9, 4, 1]

Type: OneDimensionalArray Integer

Swap the 4th and 5th element.

swap!(a,4,5); a

[100, 81, 64, 36, 49, 25, 16, 9, 4, 1]

Type: OneDimensionalArray Integer

Sort the elements in place.

sort! a

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Type: OneDimensionalArray Integer

Create a new one-dimensional array b containing the last 5 elements of a.

160 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

b := a(6..10)

[36, 49, 64, 81, 100]

Type: OneDimensionalArray Integer

Replace the first 5 elements of a with those of b.

copyInto!(a,b,1)

[36, 49, 64, 81, 100, 36, 49, 64, 81, 100]

Type: OneDimensionalArray Integer

9.45 Operator

Given any ring R, the ring of the Integer-linear operators over R is called
Operator(R). To create an operator over R, first create a basic operator us-
ing the operation operator, and then convert it to Operator(R) for the R you
want.

We choose R to be the two by two matrices over the integers.

R := SQMATRIX(2, INT)

SquareMatrix(2, Integer)

Type: Domain

Create the operator tilde on R.

t := operator("tilde") :: OP(R)

tilde

Type: Operator SquareMatrix(2,Integer)

To attach an evaluation function (from R to R) to an operator over R, use
evaluate(op, f) where op is an operator over R and f is a function R -> R.
This needs to be done only once when the operator is defined. Note that f must
be Integer-linear (that is, f(ax+y) = a f(x) + f(y) for any integer a, and
any x and y in R).

We now attach the transpose map to the above operator t.

evaluate(t, m +-> transpose m)

tilde

Type: Operator SquareMatrix(2,Integer)

9.45. OPERATOR 161

Operators can be manipulated formally as in any ring: + is the pointwise
addition and * is composition. Any element x of R can be converted to an
operator opx over R, and the evaluation function of opx is left-multiplication by
x.

Multiplying on the left by this matrix swaps the two rows.

s : R := matrix [[0, 1], [1, 0]][
0 1
1 0

]
Type: SquareMatrix(2,Integer)

Can you guess what is the action of the following operator?

rho := t * s

tilde

[
0 1
1 0

]
Type: Operator SquareMatrix(2,Integer)

Hint: applying rho four times gives the identity, so rho**4-1 should return
0 when applied to any two by two matrix.

z := rho**4 - 1

−1 + tilde

[
0 1
1 0

]
tilde

[
0 1
1 0

]
tilde

[
0 1
1 0

]
tilde

[
0 1
1 0

]
Type: Operator SquareMatrix(2,Integer)

Now check with this matrix.

m:R := matrix [[1, 2], [3, 4]][
1 2
3 4

]
Type: SquareMatrix(2,Integer)

z m [
0 0
0 0

]
Type: SquareMatrix(2,Integer)

As you have probably guessed by now, rho acts on matrices by rotating the
elements clockwise.

162 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

rho m [
3 1
4 2

]
Type: SquareMatrix(2,Integer)

rho rho m [
4 3
2 1

]
Type: SquareMatrix(2,Integer)

(rho**3) m [
2 4
1 3

]
Type: SquareMatrix(2,Integer)

Do the swapping of rows and transposition commute? We can check by
computing their bracket.

b := t * s - s * t

−
[

0 1
1 0

]
tilde + tilde

[
0 1
1 0

]
Type: Operator SquareMatrix(2,Integer)

Now apply it to m.

b m [
1 −3
3 −1

]
Type: SquareMatrix(2,Integer)

Next we demonstrate how to define a differential operator on a polynomial
ring.

This is the recursive definition of the n-th Legendre polynomial.

L n ==
n = 0 => 1
n = 1 => x
(2*n-1)/n * x * L(n-1) - (n-1)/n * L(n-2)

9.45. OPERATOR 163

Type: Void

Create the differential operator d
dx on polynomials in x over the rational

numbers.

dx := operator("D") :: OP(POLY FRAC INT)

D

Type: Operator Polynomial Fraction Integer

Now attach the map to it.

evaluate(dx, p +-> D(p, ’x))

D

Type: Operator Polynomial Fraction Integer

This is the differential equation satisfied by the n-th Legendre polynomial.

E n == (1 - x**2) * dx**2 - 2 * x * dx + n*(n+1)

Void

Now we verify this for n = 15. Here is the polynomial.

L 15

9694845
2048

x15 − 35102025
2048

x13 +
50702925

2048
x11 − 37182145

2048
x9+

14549535
2048

x7 − 2909907
2048

x5 +
255255
2048

x3 − 6435
2048

x

Type: Polynomial Fraction Integer

Here is the operator.

E 15

240− 2 x D +
(
−x2 + 1

)
D2

Type: Operator Polynomial Fraction Integer

Here is the evaluation.

(E 15)(L 15)

0

Type: Polynomial Fraction Integer

164 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.46 OrderlyDifferentialPolynomial

Many systems of differential equations may be transformed to equivalent systems
of ordinary differential equations where the equations are expressed polynomi-
ally in terms of the unknown functions. In AXIOM, the domain constructors
OrderlyDifferentialPolynomial (abbreviated ODPOL) and SequentialDiffe
rentialPolynomial (abbreviation SDPOL) implement two domains of ordinary
differential polynomials over any differential ring. In the simplest case, this
differential ring is usually either the ring of integers, or the field of rational
numbers. However, AXIOM can handle ordinary differential polynomials over
a field of rational functions in a single indeterminate.

The two domains ODPOL and SDPOL are almost identical, the only difference
being the choice of a different ranking, which is an ordering of the derivatives of
the indeterminates. The first domain uses an orderly ranking, that is, derivatives
of higher order are ranked higher, and derivatives of the same order are ranked
alphabetically. The second domain uses a sequential ranking, where derivatives
are ordered first alphabetically by the differential indeterminates, and then by
order. A more general domain constructor, DifferentialSparseMultivariate
Polynomial (abbreviation DSMP) allows both a user-provided list of differential
indeterminates as well as a user-defined ranking. We shall illustrate ODPOL(FRAC
INT), which constructs a domain of ordinary differential polynomials in an arbi-
trary number of differential indeterminates with rational numbers as coefficients.

dpol:= ODPOL(FRAC INT)

OrderlyDifferentialPolynomial Fraction Integer

Type: Domain

A differential indeterminate w may be viewed as an infinite sequence of al-
gebraic indeterminates, which are the derivatives of w. To facilitate referencing
these, AXIOM provides the operation makeVariable to convert an element of
type Symbol to a map from the natural numbers to the differential polynomial
ring.

w := makeVariable(’w)$dpol

theMap(...)

Type: (NonNegativeInteger -> OrderlyDifferentialPolynomial
Fraction Integer)

z := makeVariable(’z)$dpol

theMap(...)

Type: (NonNegativeInteger -> OrderlyDifferentialPolynomial
Fraction Integer)

9.46. ORDERLYDIFFERENTIALPOLYNOMIAL 165

The fifth derivative of w can be obtained by applying the map w to the
number 5. Note that the order of differentiation is given as a subscript (except
when the order is 0).

w.5

w5

Type: OrderlyDifferentialPolynomial Fraction Integer

w 0

w

Type: OrderlyDifferentialPolynomial Fraction Integer

The first five derivatives of z can be generated by a list.

[z.i for i in 1..5]

[z1, z2, z3, z4, z5]

Type: List OrderlyDifferentialPolynomial Fraction Integer

The usual arithmetic can be used to form a differential polynomial from the
derivatives.

f:= w.4 - w.1 * w.1 * z.3

w4 − w1
2 z3

Type: OrderlyDifferentialPolynomial Fraction Integer

g:=(z.1)**3 * (z.2)**2 - w.2

z1
3 z2

2 − w2

Type: OrderlyDifferentialPolynomial Fraction Integer

The operation D computes the derivative of any differential polynomial.

D(f)

w5 − w1
2 z4 − 2 w1 w2 z3

Type: OrderlyDifferentialPolynomial Fraction Integer

The same operation can compute higher derivatives, like the fourth deriva-
tive.

166 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

D(f,4)

w8 − w1
2 z7 − 8 w1 w2 z6 +

(
−12 w1 w3 − 12 w2

2
)

z5 − 2 w1 z3 w5+

(−8 w1 w4 − 24 w2 w3) z4 − 8 w2 z3 w4 − 6 w3
2 z3

Type: OrderlyDifferentialPolynomial Fraction Integer

The operation makeVariable creates a map to facilitate referencing the
derivatives of f, similar to the map w.

df:=makeVariable(f)$dpol

theMap(...)

Type: (NonNegativeInteger -> OrderlyDifferentialPolynomial
Fraction Integer)

The fourth derivative of f may be referenced easily.

df.4

w8 − w1
2 z7 − 8 w1 w2 z6 +

(
−12 w1 w3 − 12 w2

2
)

z5 − 2 w1 z3 w5+

(−8 w1 w4 − 24 w2 w3) z4 − 8 w2 z3 w4 − 6 w3
2 z3

Type: OrderlyDifferentialPolynomial Fraction Integer

The operation order returns the order of a differential polynomial, or the
order in a specified differential indeterminate.

order(g)

2

Type: PositiveInteger

order(g, ’w)

2

Type: PositiveInteger

The operation differentialVariables returns a list of differential indeter-
minates occurring in a differential polynomial.

differentialVariables(g)

[z, w]

9.46. ORDERLYDIFFERENTIALPOLYNOMIAL 167

Type: List Symbol

The operation degree returns the degree, or the degree in the differential
indeterminate specified.

degree(g)

z2
2 z1

3

Type: IndexedExponents OrderlyDifferentialVariable Symbol

degree(g, ’w)

1

Type: PositiveInteger

The operation weights returns a list of weights of differential monomials
appearing in differential polynomial, or a list of weights in a specified differential
indeterminate.

weights(g)

[7, 2]

Type: List NonNegativeInteger

weights(g,’w)

[2]

Type: List NonNegativeInteger

The operation weight returns the maximum weight of all differential mono-
mials appearing in the differential polynomial.

weight(g)

7

Type: PositiveInteger

A differential polynomial is isobaric if the weights of all differential monomi-
als appearing in it are equal.

isobaric?(g)

false

168 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Boolean

To substitute differentially, use eval. Note that we must coerce ’w to Symbol,
since in ODPOL, differential indeterminates belong to the domain Symbol. Com-
pare this result to the next, which substitutes algebraically (no substitution is
done since w.0 does not appear in g).

eval(g,[’w::Symbol],[f])

−w6 + w1
2 z5 + 4 w1 w2 z4 +

(
2 w1 w3 + 2 w2

2
)

z3 + z1
3 z2

2

Type: OrderlyDifferentialPolynomial Fraction Integer

eval(g,[’w],[f])

z1
3 z2

2 − w2

Type: OrderlyDifferentialPolynomial Fraction Integer

Since OrderlyDifferentialPolynomial belongs to PolynomialCategory,
all the operations defined in the latter category, or in packages for the latter
category, are available.

monomials(g) [
z1

3 z2
2,−w2

]
Type: List OrderlyDifferentialPolynomial Fraction Integer

variables(g)

[z2, w2, z1]

Type: List OrderlyDifferentialVariable Symbol

gcd(f,g)

1

Type: OrderlyDifferentialPolynomial Fraction Integer

groebner([f,g]) [
w4 − w1

2 z3, z1
3 z2

2 − w2

]
Type: List OrderlyDifferentialPolynomial Fraction Integer

9.46. ORDERLYDIFFERENTIALPOLYNOMIAL 169

The next three operations are essential for elimination procedures in differ-
ential polynomial rings. The operation leader returns the leader of a differential
polynomial, which is the highest ranked derivative of the differential indetermi-
nates that occurs.

lg:=leader(g)

z2

Type: OrderlyDifferentialVariable Symbol

The operation separant returns the separant of a differential polynomial,
which is the partial derivative with respect to the leader.

sg:=separant(g)

2 z1
3 z2

Type: OrderlyDifferentialPolynomial Fraction Integer

The operation initial returns the initial, which is the leading coefficient when
the given differential polynomial is expressed as a polynomial in the leader.

ig:=initial(g)

z1
3

Type: OrderlyDifferentialPolynomial Fraction Integer

Using these three operations, it is possible to reduce f modulo the differential
ideal generated by g. The general scheme is to first reduce the order, then reduce
the degree in the leader. First, eliminate z.3 using the derivative of g.

g1 := D g

2 z1
3 z2 z3 − w3 + 3 z1

2 z2
3

Type: OrderlyDifferentialPolynomial Fraction Integer

Find its leader.

lg1:= leader g1

z3

Type: OrderlyDifferentialVariable Symbol

Differentiate f partially with respect to this leader.

pdf:=D(f, lg1)

170 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

−w1
2

Type: OrderlyDifferentialPolynomial Fraction Integer

Compute the partial remainder of f with respect to g.

prf:=sg * f- pdf * g1

2 z1
3 z2 w4 − w1

2 w3 + 3 w1
2 z1

2 z2
3

Type: OrderlyDifferentialPolynomial Fraction Integer

Note that high powers of lg still appear in prf. Compute the leading coef-
ficient of prf as a polynomial in the leader of g.

lcf:=leadingCoefficient univariate(prf, lg)

3 w1
2 z1

2

Type: OrderlyDifferentialPolynomial Fraction Integer

Finally, continue eliminating the high powers of lg appearing in prf to obtain
the (pseudo) remainder of f modulo g and its derivatives.

ig * prf - lcf * g * lg

2 z1
6 z2 w4 − w1

2 z1
3 w3 + 3 w1

2 z1
2 w2 z2

Type: OrderlyDifferentialPolynomial Fraction Integer

9.47 PartialFraction

A partial fraction is a decomposition of a quotient into a sum of quotients where
the denominators of the summands are powers of primes.5 For example, the ra-
tional number 1/6 is decomposed into 1/2 -1/3. You can compute partial frac-
tions of quotients of objects from domains belonging to the category Euclidean
Domain. For example, Integer, Complex Integer, and UnivariatePolyno-
mial (x, Fraction Integer) all belong to EuclideanDomain. In the examples
following, we demonstrate how to decompose quotients of each of these kinds of
object into partial fractions. Issue the system command)show PartialFrac-
tion to display the full list of operations defined by PartialFraction.

It is necessary that we know how to factor the denominator when we want
to compute a partial fraction. Although the interpreter can often do this au-
tomatically, it may be necessary for you to include a call to factor. In these
examples, it is not necessary to factor the denominators explicitly.

5Most people first encounter partial fractions when they are learning integral calculus. For
a technical discussion of partial fractions, see, for example, Lang’s Algebra.

9.47. PARTIALFRACTION 171

The main operation for computing partial fractions is called partialFrac-
tion and we use this to compute a decomposition of 1 / 10!. The first argument
to partialFraction is the numerator of the quotient and the second argument
is the factored denominator.

partialFraction(1,factorial 10)

159
28

− 23
34

− 12
52

+
1
7

Type: PartialFraction Integer

Since the denominators are powers of primes, it may be possible to ex-
pand the numerators further with respect to those primes. Use the operation
padicFraction to do this.

f := padicFraction(%)

1
2

+
1
24

+
1
25

+
1
26

+
1
27

+
1
28

− 2
32

− 1
33

− 2
34

− 2
5
− 2

52
+

1
7

Type: PartialFraction Integer

The operation compactFraction returns an expanded fraction into the
usual form. The compacted version is used internally for computational effi-
ciency.

compactFraction(f)

159
28

− 23
34

− 12
52

+
1
7

Type: PartialFraction Integer

You can add, subtract, multiply and divide partial fractions. In addition,
you can extract the parts of the decomposition. numberOfFractionalTerms
computes the number of terms in the fractional part. This does not include
the whole part of the fraction, which you get by calling wholePart. In this
example, the whole part is just 0.

numberOfFractionalTerms(f)

12

Type: PositiveInteger

The operation nthFractionalTerm returns the individual terms in the de-
composition. Notice that the object returned is a partial fraction itself. first-
Numer and firstDenom extract the numerator and denominator of the first
term of the fraction.

172 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

nthFractionalTerm(f,3)

1
25

Type: PartialFraction Integer

Given two gaussian integers (see 9.10 on page 34), you can decompose their
quotient into a partial fraction.

partialFraction(1,- 13 + 14 * %i)

− 1
1 + 2 %i

+
4

3 + 8 %i

Type: PartialFraction Complex Integer

To convert back to a quotient, simply use a conversion.

% :: Fraction Complex Integer

− %i

14 + 13 %i

Type: Fraction Complex Integer

To conclude this section, we compute the decomposition of

1
(x + 1)(x + 2)2(x + 3)3(x + 4)4

The polynomials in this object have type UnivariatePolynomial(x, Frac
tion Integer).

We use the primeFactor operation (see 9.19 on page 66) to create the
denominator in factored form directly.

u : FR UP(x, FRAC INT) := reduce(*,[primeFactor(x+i,i) for i in
1..4])

(x + 1) (x + 2)2 (x + 3)3 (x + 4)4

Type: Factored UnivariatePolynomial(x,Fraction Integer)

These are the compact and expanded partial fractions for the quotient.

partialFraction(1,u)

1
648
x+1 +

1
4 x+ 7

16
(x+2)2

+ − 17
8 x2−12 x− 139

8
(x+3)3

+

607
324 x3 + 10115

432 x2 + 391
4 x + 44179

324

(x + 4)4

9.48. PERMANENT 173

Type: PartialFraction UnivariatePolynomial(x,Fraction Integer)

padicFraction %

1
648
x+1 +

1
4

x+2 −
1
16

(x+2)2
−

17
8

x+3 +
3
4

(x+3)2
−

1
2

(x+3)3
+

607
324
x+4+

403
432

(x + 4)2
+

13
36

(x + 4)3
+

1
12

(x + 4)4

Type: PartialFraction UnivariatePolynomial(x,Fraction Integer)

9.48 Permanent

The package Permanent provides the function permanent for square matrices.
The permanent of a square matrix can be computed in the same way as the
determinant by expansion of minors except that for the permanent the sign
for each element is 1, rather than being 1 if the row plus column indices is
positive and -1 otherwise. This function is much more difficult to compute
efficiently than the determinant. An example of the use of permanent is
the calculation of the n-th derangement number, defined to be the number of
different possibilities for n couples to dance but never with their own spouse.

Consider an n by n matrix with entries 0 on the diagonal and 1 elsewhere.
Think of the rows as one-half of each couple (for example, the males) and the
columns the other half. The permanent of such a matrix gives the desired
derangement number.

kn n ==
r : MATRIX INT := new(n,n,1)
for i in 1..n repeat
r.i.i := 0

r

Type: Void

Here are some derangement numbers, which you see grow quite fast.

permanent(kn(5) :: SQMATRIX(5,INT))

Compiling function kn with type PositiveInteger -> Matrix Integer

44

Type: PositiveInteger

[permanent(kn(n) :: SQMATRIX(n,INT)) for n in 1..13]

[0, 1, 2, 9, 44, 265, 1854, 14833, 133496,
1334961, 14684570, 176214841, 2290792932]

Type: List NonNegativeInteger

174 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.49 Polynomial

The domain constructor Polynomial (abbreviation: POLY) provides polynomials
with an arbitrary number of unspecified variables.

It is used to create the default polynomial domains in AXIOM. Here the
coefficients are integers.

x + 1

x + 1

Type: Polynomial Integer

Here the coefficients have type Float.

z - 2.3

z − 2.3

Type: Polynomial Float

And here we have a polynomial in two variables with coefficients which have
type Fraction Integer.

y**2 - z + 3/4

−z + y2 +
3
4

Type: Polynomial Fraction Integer

The representation of objects of domains created by Polynomial is that of
recursive univariate polynomials.6

This recursive structure is sometimes obvious from the display of a polyno-
mial.

y **2 + x*y + y

y2 + (x + 1) y

Type: Polynomial Integer

In this example, you see that the polynomial is stored as a polynomial in y
with coefficients that are polynomials in x with integer coefficients. In fact, you
really don’t need to worry about the representation unless you are working on
an advanced application where it is critical. The polynomial types created from
DistributedMultivariatePolynomial and NewDistributedMultivariatePo
lynomial (discussed in 9.15 on page 59) are stored and displayed in a non-
recursive manner.

You see a“flat”display of the above polynomial by converting to one of those
types.

6The term univariate means “one variable.” multivariate means “possibly more than
one variable.”

9.49. POLYNOMIAL 175

% :: DMP([y,x],INT)

y2 + y x + y

Type: DistributedMultivariatePolynomial([y,x],Integer)

We will demonstrate many of the polynomial facilities by using two polyno-
mials with integer coefficients.

By default, the interpreter expands polynomial expressions, even if they are
written in a factored format.

p := (y-1)**2 * x * z (
x y2 − 2 x y + x

)
z

Type: Polynomial Integer

See ’Factored’ on page 66 to see how to create objects in factored form
directly.

q := (y-1) * x * (z+5)

(x y − x) z + 5 x y − 5 x

Type: Polynomial Integer

The fully factored form can be recovered by using factor.

factor(q)

x (y − 1) (z + 5)

Type: Factored Polynomial Integer

This is the same name used for the operation to factor integers. Such reuse of
names is called and makes it much easier to think of solving problems in general
ways. AXIOM facilities for factoring polynomials created with Polynomial are
currently restricted to the integer and rational number coefficient cases.

The standard arithmetic operations are available for polynomials.

p - q**2 (
−x2 y2 + 2 x2 y − x2

)
z2+((

−10 x2 + x
)

y2 +
(
20 x2 − 2 x

)
y − 10 x2 + x

)
z−

25 x2 y2 + 50 x2 y − 25 x2

Type: Polynomial Integer

176 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

The operation gcd is used to compute the greatest common divisor of two
polynomials.

gcd(p,q)

x y − x

Type: Polynomial Integer

In the case of p and q, the gcd is obvious from their definitions. We factor
the gcd to show this relationship better.

factor %

x (y − 1)

Type: Factored Polynomial Integer

The least common multiple is computed by using lcm.

lcm(p,q) (
x y2 − 2 x y + x

)
z2 +

(
5 x y2 − 10 x y + 5 x

)
z

Type: Polynomial Integer

Use content to compute the greatest common divisor of the coefficients of
the polynomial.

content p

1

Type: PositiveInteger

Many of the operations on polynomials require you to specify a variable. For
example, resultant requires you to give the variable in which the polynomials
should be expressed.

This computes the resultant of the values of p and q, considering them as
polynomials in the variable z. They do not share a root when thought of as
polynomials in z.

resultant(p,q,z)

5 x2 y3 − 15 x2 y2 + 15 x2 y − 5 x2

Type: Polynomial Integer

This value is 0 because as polynomials in x the polynomials have a common
root.

9.49. POLYNOMIAL 177

resultant(p,q,x)

0

Type: Polynomial Integer

The data type used for the variables created by Polynomial is Symbol. As
mentioned above, the representation used by Polynomial is recursive and so
there is a main variable for nonconstant polynomials.

The operation mainVariable returns this variable. The return type is ac-
tually a union of Symbol and "failed".

mainVariable p

z

Type: Union(Symbol,...)

The latter branch of the union is be used if the polynomial has no variables,
that is, is a constant.

mainVariable(1 :: POLY INT)

"failed"

Type: Union("failed",...)

You can also use the predicate ground? to test whether a polynomial is in
fact a member of its ground ring.

ground? p

false

Type: Boolean

ground?(1 :: POLY INT)

true

Type: Boolean

The complete list of variables actually used in a particular polynomial is
returned by variables. For constant polynomials, this list is empty.

variables p

[z, y, x]

178 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: List Symbol

The degree operation returns the degree of a polynomial in a specific vari-
able.

degree(p,x)

1

Type: PositiveInteger

degree(p,y)

2

Type: PositiveInteger

degree(p,z)

1

Type: PositiveInteger

If you give a list of variables for the second argument, a list of the degrees
in those variables is returned.

degree(p,[x,y,z])

[1, 2, 1]

Type: List NonNegativeInteger

The minimum degree of a variable in a polynomial is computed using min-
imumDegree.

minimumDegree(p,z)

1

Type: PositiveInteger

The total degree of a polynomial is returned by totalDegree.

totalDegree p

4

Type: PositiveInteger

9.49. POLYNOMIAL 179

It is often convenient to think of a polynomial as a leading monomial plus
the remaining terms.

leadingMonomial p

x y2 z

Type: Polynomial Integer

The reductum operation returns a polynomial consisting of the sum of the
monomials after the first.

reductum p

(−2 x y + x) z

Type: Polynomial Integer

These have the obvious relationship that the original polynomial is equal to
the leading monomial plus the reductum.

p - leadingMonomial p - reductum p

0

Type: Polynomial Integer

The value returned by leadingMonomial includes the coefficient of that
term. This is extracted by using leadingCoefficient on the original polyno-
mial.

leadingCoefficient p

1

Type: PositiveInteger

The operation eval is used to substitute a value for a variable in a polyno-
mial.

p (
x y2 − 2 x y + x

)
z

Type: Polynomial Integer

This value may be another variable, a constant or a polynomial.

eval(p,x,w)

180 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

(
w y2 − 2 w y + w

)
z

Type: Polynomial Integer

eval(p,x,1) (
y2 − 2 y + 1

)
z

Type: Polynomial Integer

Actually, all the things being substituted are just polynomials, some more
trivial than others.

eval(p,x,y**2 - 1) (
y4 − 2 y3 + 2 y − 1

)
z

Type: Polynomial Integer

Derivatives are computed using the D operation.

D(p,x) (
y2 − 2 y + 1

)
z

Type: Polynomial Integer

The first argument is the polynomial and the second is the variable.

D(p,y)

(2 x y − 2 x) z

Type: Polynomial Integer

Even if the polynomial has only one variable, you must specify it.

D(p,z)

x y2 − 2 x y + x

Type: Polynomial Integer

Integration of polynomials is similar and the integrate operation is used.
Integration requires that the coefficients support division. Consequently,

AXIOM converts polynomials over the integers to polynomials over the rational
numbers before integrating them.

integrate(p,y)

9.49. POLYNOMIAL 181(
1
3

x y3 − x y2 + x y

)
z

Type: Polynomial Fraction Integer

It is not possible, in general, to divide two polynomials. In our example using
polynomials over the integers, the operation monicDivide divides a polynomial
by a monic polynomial (that is, a polynomial with leading coefficient equal to
1). The result is a record of the quotient and remainder of the division.

You must specify the variable in which to express the polynomial.

qr := monicDivide(p,x+1,x)[
quotient =

(
y2 − 2 y + 1

)
z, remainder =

(
−y2 + 2 y − 1

)
z
]

Type: Record(quotient: Polynomial Integer,remainder:
Polynomial Integer)

The selectors of the components of the record are quotient and remainder.
Issue this to extract the remainder.

qr.remainder (
−y2 + 2 y − 1

)
z

Type: Polynomial Integer

Now that we can extract the components, we can demonstrate the relation-
ship among them and the arguments to our original expression qr := monicDi-
vide(p,x+1,x).

p - ((x+1) * qr.quotient + qr.remainder)

0

Type: Polynomial Integer

If the “/” operator is used with polynomials, a fraction object is created. In
this example, the result is an object of type Fraction Polynomial Integer.

p/q

(y − 1) z

z + 5

Type: Fraction Polynomial Integer

If you use rational numbers as polynomial coefficients, the resulting object
is of type Polynomial Fraction Integer.

182 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

(2/3) * x**2 - y + 4/5

−y +
2
3

x2 +
4
5

Type: Polynomial Fraction Integer

This can be converted to a fraction of polynomials and back again, if re-
quired.

% :: FRAC POLY INT

−15 y + 10 x2 + 12
15

Type: Fraction Polynomial Integer

% :: POLY FRAC INT

−y +
2
3

x2 +
4
5

Type: Polynomial Fraction Integer

To convert the coefficients to floating point, map the numeric operation on
the coefficients of the polynomial.

map(numeric,%)

−1.0 y + 0.66666666666666666667 x2 + 0.8

Type: Polynomial Float

For more information on related topics, see 9.67 on page 225, 9.41 on pa-
ge 153, and 9.15 on page 59. You can also issue the system command)show
Polynomi- al to display the full list of operations defined by Polynomial.

9.50 Quaternion

The domain constructor Quaternion implements quaternions over commuta-
tive rings. For information on related topics, see 9.10 on page 34 and 9.43 on
page 156. You can also issue the system command)show Quaternion to display
the full list of operations defined by Quaternion.

The basic operation for creating quaternions is quatern. This is a quater-
nion over the rational numbers.

q := quatern(2/11,-8,3/4,1)

9.50. QUATERNION 183

2
11

− 8 i +
3
4

j + k

Type: Quaternion Fraction Integer

The four arguments are the real part, the i imaginary part, the j imaginary
part, and the k imaginary part, respectively.

[real q, imagI q, imagJ q, imagK q][
2
11

,−8,
3
4
, 1

]
Type: List Fraction Integer

Because q is over the rationals (and nonzero), you can invert it.

inv q

352
126993

+
15488
126993

i− 484
42331

j − 1936
126993

k

Type: Quaternion Fraction Integer

The usual arithmetic (ring) operations are available

q**6

−2029490709319345
7256313856

− 48251690851
1288408

i +
144755072553

41229056
j +

48251690851
10307264

k

Type: Quaternion Fraction Integer

r := quatern(-2,3,23/9,-89); q + r

−20
11

− 5 i +
119
36

j − 88 k

Type: Quaternion Fraction Integer

In general, multiplication is not commutative.

q * r - r * q

−2495
18

i− 1418 j − 817
18

k

Type: Quaternion Fraction Integer

There are no predefined constants for the imaginary i, j, and k parts, but
you can easily define them.

184 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

i:=quatern(0,1,0,0); j:=quatern(0,0,1,0); k:=quatern(0,0,0,1)

k

Type: Quaternion Integer

These satisfy the normal identities.

[i*i, j*j, k*k, i*j, j*k, k*i, q*i][
−1,−1,−1, k, i, j, 8 +

2
11

i + j − 3
4

k

]
Type: List Quaternion Fraction Integer

The norm is the quaternion times its conjugate.

norm q

126993
1936

Type: Fraction Integer

conjugate q

2
11

+ 8 i− 3
4

j − k

Type: Quaternion Fraction Integer

q * %

126993
1936
Type: Quaternion Fraction Integer

9.51 RadixExpansion

It possible to expand numbers in general bases.
Here we expand 111 in base 5. This means

102 + 101 + 100 = 4 · 52 + 2 · 51 + 50

111::RadixExpansion(5)

421

9.51. RADIXEXPANSION 185

Type: RadixExpansion 5

You can expand fractions to form repeating expansions.

(5/24)::RadixExpansion(2)

0.00110

Type: RadixExpansion 2

(5/24)::RadixExpansion(3)

0.012

Type: RadixExpansion 3

(5/24)::RadixExpansion(8)

0.152

Type: RadixExpansion 8

(5/24)::RadixExpansion(10)

0.2083

Type: RadixExpansion 10

For bases from 11 to 36 the letters A through Z are used.

(5/24)::RadixExpansion(12)

0.26

Type: RadixExpansion 12

(5/24)::RadixExpansion(16)

0.35

Type: RadixExpansion 16

(5/24)::RadixExpansion(36)

0.7I

Type: RadixExpansion 36

186 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

For bases greater than 36, the ragits are separated by blanks.

(5/24)::RadixExpansion(38)

0 . 7 34 31 25 12

Type: RadixExpansion 38

The RadixExpansion type provides operations to obtain the individual rag-
its. Here is a rational number in base 8.

a := (76543/210)::RadixExpansion(8)

554.37307

Type: RadixExpansion 8

The operation wholeRagits returns a list of the ragits for the integral part
of the number.

w := wholeRagits a

[5, 5, 4]

Type: List Integer

The operations prefixRagits and cycleRagits return lists of the initial and
repeating ragits in the fractional part of the number.

f0 := prefixRagits a

[3]

Type: List Integer

f1 := cycleRagits a

[7, 3, 0, 7]

Type: List Integer

You can construct any radix expansion by giving the whole, prefix and cycle
parts. The declaration is necessary to let AXIOM know the base of the ragits.

u:RadixExpansion(8):=wholeRadix(w)+fractRadix(f0,f1)

554.37307

Type: RadixExpansion 8

9.52. ROMANNUMERAL 187

If there is no repeating part, then the list [0] should be used.

v: RadixExpansion(12) := fractRadix([1,2,3,11], [0])

0.123B0

Type: RadixExpansion 12

If you are not interested in the repeating nature of the expansion, an infinite
stream of ragits can be obtained using fractRagits.

fractRagits(u) [
3, 7, 3, 0, 7, 7

]
Type: Stream Integer

Of course, it’s possible to recover the fraction representation:

a :: Fraction(Integer)

76543
210

Type: Fraction Integer

Issue the system command) show RadixExpansion to display the full list
of operations defined by RadixExpansion. More examples of expansions are
available in 9.14 on page 58, 9.3 on page 6, and 9.29 on page 96.

9.52 RomanNumeral

The Roman numeral package was added to AXIOM in MCMLXXXVI for use
in denoting higher order derivatives.

For example, let f be a symbolic operator.

f := operator ’f

f

Type: BasicOperator

This is the seventh derivative of f with respect to x.

D(f x,x,7)

f (vii) (x)

Type: Expression Integer

188 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

You can have integers printed as Roman numerals by declaring variables to
be of type RomanNumeral (abbreviation ROMAN).

a := roman(1978 - 1965)

XIII

Type: RomanNumeral

This package now has a small but devoted group of followers that claim this
domain has shown its efficacy in many other contexts. They claim that Roman
numerals are every bit as useful as ordinary integers.

In a sense, they are correct, because Roman numerals form a ring and you
can therefore construct polynomials with Roman numeral coefficients, matrices
over Roman numerals, etc..

x : UTS(ROMAN,’x,0) := x

x

Type: UnivariateTaylorSeries(RomanNumeral,x,0)

Was Fibonacci Italian or ROMAN?

recip(1 - x - x**2)

I + x + II x2 + III x3 + V x4 + V III x5 + XIII x6 + XXI x7 + O
(
x8

)
Type: Union(UnivariateTaylorSeries(RomanNumeral,x,0),...)

You can also construct fractions with Roman numeral numerators and de-
nominators, as this matrix Hilberticus illustrates.

m : MATRIX FRAC ROMAN

Void

m := matrix [[1/(i + j) for i in 1..3] for j in 1..3] I
II

I
III

I
IV

I
III

I
IV

I
V

I
IV

I
V

I
V I

Type: Matrix Fraction RomanNumeral

Note that the inverse of the matrix has integral ROMAN entries.

inverse m

9.53. SEGMENT 189 LXXII −CCXL CLXXX
−CCXL CM −DCCXX
CLXXX −DCCXX DC

Type: Union(Matrix Fraction RomanNumeral,...)

Unfortunately, the spoil-sports say that the fun stops when the numbers get
big—mostly because the Romans didn’t establish conventions about represent-
ing very large numbers.

y := factorial 10

3628800

Type: PositiveInteger

You work it out!

roman y

((((I))))((((I))))((((I))))(((I)))(((I)))(((I)))(((I)))
(((I)))(((I)))((I))((I))MMMMMMMMDCCC

Type: RomanNumeral

Issue the system command)show RomanNumeral to display the full list of
operations defined by RomanNumeral.

9.53 Segment

The Segment domain provides a generalized interval type.
Segments are created using the “..” construct by indicating the (included)

end points.

s := 3..10

3..10

Type: Segment PositiveInteger

The first end point is called the lo and the second is called hi.

lo s

3

Type: PositiveInteger

190 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

These names are used even though the end points might belong to an un-
ordered set.

hi s

10

Type: PositiveInteger

In addition to the end points, each segment has an integer “increment.” An
increment can be specified using the “by” construct.

t := 10..3 by -2

10..3 by − 2

Type: Segment PositiveInteger

This part can be obtained using the incr function.

incr s

1

Type: PositiveInteger

Unless otherwise specified, the increment is 1.

incr t

−2

Type: Integer

A single value can be converted to a segment with equal end points. This
happens if segments and single values are mixed in a list.

l := [1..3, 5, 9, 15..11 by -1]

[1..3, 5..5, 9..9, 15..11by − 1]

Type: List Segment PositiveInteger

If the underlying type is an ordered ring, it is possible to perform additional
operations. The expand operation creates a list of points in a segment.

expand s

[3, 4, 5, 6, 7, 8, 9, 10]

9.54. SEGMENTBINDING 191

Type: List Integer

If k > 0, then expand(l..h by k) creates the list [l, l+k, ..., lN]
where lN <= h < lN+k. If k < 0, then lN >= h > lN+k.

expand t

[10, 8, 6, 4]

Type: List Integer

It is also possible to expand a list of segments. This is equivalent to append-
ing lists obtained by expanding each segment individually.

expand l

[1, 2, 3, 5, 9, 15, 14, 13, 12, 11]

Type: List Integer

For more information on related topics, see 9.54 on page 191 and 9.68 on
page 232. Issue the system command)show Segment to display full list of
operations defined by Segment.

9.54 SegmentBinding

The SegmentBinding type is used to indicate a range for a named symbol.
First give the symbol, then an “=” and finally a segment of values.

x = a..b

x = a..b

Type: SegmentBinding Symbol

This is used to provide a convenient syntax for arguments to certain opera-
tions.

sum(i**2, i = 0..n)

2 n3 + 3 n2 + n

6
Type: Fraction Polynomial Integer

The draw operation uses a SegmentBuilding argument as a range of co-
ordinates. This is an example of a two-dimensional parameterized plot; other
draw options use more than one SegmentBuilding argument.

192 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

draw(x**2, x = -2..2)

The left-hand side must be of type Symbol but the right-hand side can be a
segment over any type.

sb := y = 1/2..3/2

y =
(

1
2

)
..

(
3
2

)
Type: SegmentBinding Fraction Integer

The left- and right-hand sides can be obtained using the variable and seg-
ment operations.

variable(sb)

y

Type: Symbol

segment(sb) (
1
2

)
..

(
3
2

)
Type: Segment Fraction Integer

Issue the system command)show SegmentBinding to display the full list of
operations defined by SegmentBinding. For more information on related topics,
see 9.53 on page 189 and 9.68 on page 232.

9.55 Set

The Set domain allows one to represent explicit finite sets of values. These are
similar to lists, but duplicate elements are not allowed.

Sets can be created by giving a fixed set of values . . .

s := set [x**2-1, y**2-1, z**2-1]{
x2 − 1, y2 − 1, z2 − 1

}
Type: Set Polynomial Integer

or by using a collect form, just as for lists. In either case, the set is formed
from a finite collection of values.

t := set [x**i - i+1 for i in 2..10 | prime? i]

9.55. SET 193

{
x2 − 1, x3 − 2, x5 − 4, x7 − 6

}
Type: Set Polynomial Integer

The basic operations on sets are intersect, union, difference, and sym-
metricDifference.

i := intersect(s,t) {
x2 − 1

}
Type: Set Polynomial Integer

u := union(s,t){
x2 − 1, x3 − 2, x5 − 4, x7 − 6, y2 − 1, z2 − 1

}
Type: Set Polynomial Integer

The set difference(s,t) contains those members of s which are not in t.

difference(s,t) {
y2 − 1, z2 − 1

}
Type: Set Polynomial Integer

The set symmetricDifference(s,t) contains those elements which are in s
or t but not in both.

symmetricDifference(s,t){
x3 − 2, x5 − 4, x7 − 6, y2 − 1, z2 − 1

}
Type: Set Polynomial Integer

Set membership is tested using the member? operation.

member?(y, s)

false

Type: Boolean

member?((y+1)*(y-1), s)

true

Type: Boolean

194 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

The subset? function determines whether one set is a subset of another.

subset?(i, s)

true

Type: Boolean

subset?(u, s)

false

Type: Boolean

When the base type is finite, the absolute complement of a set is defined.
This finds the set of all multiplicative generators of PrimeField 11—the inte-
gers mod 11.

gs := set [g for i in 1..11 | primitive?(g := i::PF 11)]

{2, 6, 7, 8}

Type: Set PrimeField 11

The following values are not generators.

complement gs

{1, 3, 4, 5, 9, 10, 0}

Type: Set PrimeField 11

Often the members of a set are computed individually; in addition, values
can be inserted or removed from a set over the course of a computation.

There are two ways to do this:

a := set [i**2 for i in 1..5]

{1, 4, 9, 16, 25}

Type: Set PositiveInteger

One is to view a set as a data structure and to apply updating operations.

insert!(32, a)

{1, 4, 9, 16, 25, 32}

Type: Set PositiveInteger

9.55. SET 195

remove!(25, a)

{1, 4, 9, 16, 32}

Type: Set PositiveInteger

a

{1, 4, 9, 16, 32}

Type: Set PositiveInteger

The other way is to view a set as a mathematical entity and to create new
sets from old.

b := b0 := set [i**2 for i in 1..5]

{1, 4, 9, 16, 25}

Type: Set PositiveInteger

b := union(b, {32})

{1, 4, 9, 16, 25, 32}

Type: Set PositiveInteger

b := difference(b, {25})

{1, 4, 9, 16, 32}

Type: Set PositiveInteger

b0

{1, 4, 9, 16, 25}

Type: Set PositiveInteger

For more information about lists, see 9.36 on page 129. Issue the system
command)show Set to display the full list of operations defined by Set.

196 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.56 SmallFloat

AXIOM provides two kinds of floating point numbers. The domain Float (ab-
breviation FLOAT) implements a model of arbitrary precision floating point num-
bers. The domain SmallFloat (abbreviation SF) is intended to make available
hardware floating point arithmetic in AXIOM. The actual model of floating
point SmallFloat that provides is system-dependent. For example, on the IBM
system 370 AXIOM uses IBM double precision which has fourteen hexadeci-
mal digits of precision or roughly sixteen decimal digits. Arbitrary precision
floats allow the user to specify the precision at which arithmetic operations are
computed. Although this is an attractive facility, it comes at a cost. Arbitrary-
precision floating-point arithmetic typically takes twenty to two hundred times
more time than hardware floating point.

Th usual arithmetic and elementary functions are available for SmallFloat.
Use)show SmallFloat to get a list of operations or the HyperDoc Browse fa-
cility to get more extensive documentation about SmallFloat.

By default, floating point numbers that you enter into AXIOM are of type
Float.

2.71828

2.71828

Type: Float

You must therefore tell AXIOM that you want to use SmallFloat values and
operations. The following are some conservative guidelines for getting AXIOM
to use SmallFloat.

To get a value of type SmallFloat, use a target with “@”,...

2.71828@SmallFloat

2.71828

Type: SmallFloat

a conversion, ...

2.71828 :: SmallFloat

Type: SmallFloat

or an assignment to a declared variable. It is more efficient if you use a
target rather than an explicit or implicit conversion.

eApprox : SmallFloat := 2.71828

2.71828

9.56. SMALLFLOAT 197

Type: SmallFloat

You also need to declare functions that work with SmallFloat.

avg : List SmallFloat -> SmallFloat

Type: Void

avg 1 ==

empty? => 0 :: SmallFloat

reduce (_+,1) / #1

Type: Void

avg []

Compiling function avg with type List SmallFloat ->
SmallFloat

0.0

Type: SmallFloat

avg [3.4,9.7,-6.8]

2.1000000000000001

Use package calling for operations from SmallFloat unless the arguments
themselves are already of type SmallFloat.

cos(3.1415926)$SmallFloat

−0.99999999999999856

Type: SmallFloat

cos(3.1415926 :: SmallFloat)

−0.99999999999999856

Type: SmallFloat

By far, the most common usage of SmallFloat is for functions to be graphed.
For more information about AXIOM’s numerical and graphical facilities, see
Section 9.24 on page 82.

198 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.57 SmallInteger

The SmallInteger domain is intended to provide support in AXIOM for ma-
chine integer arithmetic. It is generally much faster than (bignum) Integer
arithmetic but suffers from a limited range of values. Since AXIOM can be
implemented on top of varios aspects of Lisp, the actual representation of small
integers may not correspond exactly to the host machines integer representation.

Under AKCL on the IBM RISC System/6000, small integers are restricted
to the range −226 to 226 − 1, allowing 1bit for overflow detection.

You can discover the minimum and maximum values in your implementation
by using min and max.

min()$SmallInteger

−2147483648

Type: SmallInteger

max()$SmallInteger

2147483647

Type: SmallInteger

To avoid confusion with Integer, which is the default type for integers, you
usually need to work with declared variables ...

a := 1234 :: SmallInteger

1234

Type: SmallInteger

or use package calling.

b := 124$SmallInteger

124

Type: SmallInteger

You can add, multiply and subtract SmallInteger objects, and ask for the
greatest common divisor (gcd).

gcd(a,b)

2

Type: SmallInteger

9.57. SMALLINTEGER 199

The least common multiple (lcm) is also available.

lcm(a,b)

76508

Type: SmallInteger

Operations nullmod, addmod, submod and invmod are similar - they
provide arithmetic modulo a given small integer. Here is 5 * 6 mod 13.

mulmod(5,6,13)$SmallInteger

4

Type: SmallInteger

To reduce a small integer modulo a prime, use positiveRemainder.

positiveRemainder(37,13)$SmallInteger

11

Type: SmallInteger

Operations And, Or, xor, and Not provide bit level operations on small
integers.

And (3,4)$SmallInteger

0

Type: SmallInteger

Use shift (int,numToShift) to shift bits, where i is shifted left if numTo
Shift is positive, right if negative.

shift(1,4)$SmallInteger

16

Type: SmallInteger

shift(31,-1)$SmallInteger

15

Type: SmallInteger

Many other operations are available for small integers, including many of
those provided for Integer. To see the other operations, use the Browse
HyperDoc facility. Issue the system command)show SmallInteger to display
the full list of operations defined by SmallInteger.

200 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.58 SparseTable

The SparseTable domain provides a general purpose table type with default
entries.

Here we create a table to save strings under integer keys. The value "Try
again!" is returned if no other value has been stored for a key.

t: SparseTable(Integer, String, "Try again!") := table()

table()

Type: SparseTable(Integer,String,Try again!)

Entries can be stored in the table.

t.3 := "Number three"

"Number three"

Type: String

t.4 := "Number four"

"Number four"

Type: String

These values can be retrieved as usual, but if a look up fails the default entry
will be returned.

t.3

"Number three"

Type: String

t.2

"Try again!"

Type: String

To see which values are explicitly stored, the keys and entries functions
can be used.

keys t

[4, 3]

9.59. SQUAREMATRIX 201

Type: List Integer

entries t

["Number four", "Number three"]

Type: List String

If a specific table representation is required, the GeneralSparseTable con-
structor should be used. The domain SparseTable(K, E, dflt) is equiva-
lent to GeneralSparseTable(K,E,Table(K,E), dflt). For more information,
see 9.64 on page 215 and 9.26 on page 91. Issue the system command)show
SparseTable to display the full list of operations defined by SparseTable.

9.59 SquareMatrix

The top level matrix type in AXIOM is Matrix (see 9.39 on page 142), which
provides basic arithmetic and linear algebra functions. However, since the ma-
trices can be of any size it is not true that any pair can be added or multiplied.
Thus Matrix has little algebraic structure.

Sometimes you want to use matrices as coefficients for polynomials or in
other algebraic contexts. In this case, SquareMatrix should be used. The
domain SquareMatrix(n,R) gives the ring of n by n square matrices over R.

Since SquareMatrix is not normally exposed at the top level, you must
expose it before it can be used.

)set expose add constructor SquareMatrix

SquareMatrix is now explicitly exposed in frame G1077

Once SQMATRIX has been exposed, values can be created using the square-
Matrix function.

m := squareMatrix [[1,-%i],[%i,4]][
1 −%i

%i 4

]
Type: SquareMatrix(2,Complex Integer)

The usual arithmetic operations are available.

m*m - m [
1 −4 %i

4 %i 13

]

202 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: SquareMatrix(2,Complex Integer)

Square matrices can be used where ring elements are required. For example,
here is a matrix with matrix entries.

mm := squareMatrix [[m, 1], [1-m, m**2]]
[

1 −%i
%i 4

] [
1 0
0 1

]
[

0 %i
−%i −3

] [
2 −5 %i

5 %i 17

]

Type: SquareMatrix(2,SquareMatrix(2,Complex Integer))

Or you can construct a polynomial with square matrix coefficients.

p := (x + m)**2

x2 +
[

2 −2 %i
2 %i 8

]
x +

[
2 −5 %i

5 %i 17

]
Type: Polynomial SquareMatrix(2,Complex Integer)

This value can be converted to a square matrix with polynomial coefficients.

p::SquareMatrix(2, ?)[
x2 + 2 x + 2 −2 %i x− 5 %i

2 %i x + 5 %i x2 + 8 x + 17

]
Type: SquareMatrix(2,Polynomial Complex Integer)

For more information on related topics, see Section 9.39 on page 142. Issue
the system command)show SquareMatrix to display the full list of operations
defined by SquareMatrix.

9.60 Stream

A Stream object is represented as a list whose last element contains the where-
withal to create the next element, should it ever be required.

Let ints be the infinite stream of non-negative integers.

ints := [i for i in 0..]

[0, 1, 2, 3, 4, 5, 6, . . .]

Type: Stream NonNegativeInteger

9.60. STREAM 203

By default, ten stream elements are calculated. This number may be changed
to something else by the system command)set streams calculate. For the
display purposes of this book, we have chosen a smaller value.

More generally, you can construct a stream by specifying its initial value and
a function which, when given an element, creates the next element.

f : List INT -> List INT

Void

f x == [x.1 + x.2, x.1]

Void

fibs := [i.2 for i in [generate(f,[1,1])]]

Compiling function f with type List Integer -> List Integer

[1, 1, 2, 3, 5, 8, 13, . . .]

Type: Stream Integer

You can create the stream of odd non-negative integers by either filtering
them from the integers, or by evaluating an expression for each integer.

[i for i in ints | odd? i]

[1, 3, 5, 7, 9, 11, 13, . . .]

Type: Stream NonNegativeInteger

odds := [2*i+1 for i in ints]

[1, 3, 5, 7, 9, 11, 13, . . .]

Type: Stream NonNegativeInteger

You can accumulate the initial segments of a stream using the scan opera-
tion.

scan(0,+,odds)

[1, 4, 9, 16, 25, 36, 49, . . .]

Type: Stream NonNegativeInteger

204 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

The corresponding elements of two or more streams can be combined in this
way.

[i*j for i in ints for j in odds]

[0, 3, 10, 21, 36, 55, 78, . . .]

Type: Stream NonNegativeInteger

map(*,ints,odds)

[0, 3, 10, 21, 36, 55, 78, . . .]

Type: Stream NonNegativeInteger

Many operations similar to those applicable to lists are available for streams.

first ints

0

Type: NonNegativeInteger

rest ints

[1, 2, 3, 4, 5, 6, 7, . . .]

Type: Stream NonNegativeInteger

fibs 20

6765

Type: PositiveInteger

The packages StreamFunctions1, StreamFunctions2 and StreamFuncti-
ons3 export some useful stream manipulation operations. For more information,
see Section 9.11 on page 37, and 9.36 on page 129. Issue the system command
)show Stream to display the full list of operations defined by Stream.

9.61. STRING 205

9.61 String

The type String provides character strings. Character strings provide all the
operations for a one-dimensional array of characters, plus additional operations
for manipulating text. For more information on related topics, see 9.7 on page 23
and 9.8 on page 25. You can also issue the system command)show String to
display the full list of operations defined by String.

String values can be created using double quotes.

hello := "Hello, I’m AXIOM!"

"Hello, I’m AXIOM!"

Type: String

Note, however, that double quotes and underscores must be preceded by an
extra underscore.

said := "Jane said, _"Look!_""

"Jane said, "Look!""

Type: String

saw := "She saw exactly one underscore: __."

"She saw exactly one underscore: _."

Type: String

It is also possible to use new to create a string of any size filled with a given
character. Since there are many new functions it is necessary to indicate the
desired type.

gasp: String := new(32, char "x")

"xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

Type: String

The length of a string is given by “#”.

#gasp

32

Type: PositiveInteger

206 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Indexing operations allow characters to be extracted or replaced in strings.
For any string s, indices lie in the range 1..#s.

hello.2

e

Type: Character

Indexing is really just the application of a string to a subscript, so any
application syntax works.

hello 2

e

Type: Character

hello(2)

e

Type: Character

If it is important not to modify a given string, it should be copied before
any updating operations are used.

hullo := copy hello

"Hello, I’m AXIOM!"

Type: String

hullo.2 := char "u"; [hello, hullo]

["Hello, I’m AXIOM!", "Hullo, I’m AXIOM!"]

Type: List String

Operations are provided to split and join strings. The concat operation
allows several strings to be joined together.

saidsaw := concat ["alpha","--","omega"]

"alpha--omega"

Type: String

There is a version of concat that works with two strings.

9.61. STRING 207

concat("hello ","goodbye")

"hello goodbye"

Type: String

Juxtaposition can also be used to concatenate strings.

"This " "is " "several " "strings " "concatenated."

"This is several strings concatenated."

Type: String

Substrings are obtained by giving an index range.

hello(1..5)

"Hello"

Type: String

hello(8..)

"I’m AXIOM!"

Type: String

A string can be split into several substrings by giving a separation character
or character class.

split(hello, char " ")

["Hello,", "I’m", "AXIOM!"]

Type: List String

other := complement alphanumeric();

Type: CharacterClass

split(saidsaw, other)

["alpha", "omega"]

Type: List String

208 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Unwanted characters can be trimmed from the beginning or end of a string
using the operations trim, leftTrim and rightTrim.

trim("## ++ relax ++ ##", char "#")

" ++ relax ++ "

Type: String

Each of these functions takes a string and a second argument to specify the
characters to be discarded.

trim("## ++ relax ++ ##", other)

"relax"

Type: String

The second argument can be given either as a single character or as a char-
acter class.

leftTrim ("## ++ relax ++ ##", other)

"relax ++ ##"

Type: String

rightTrim("## ++ relax ++ ##", other)

"## ++ relax"

Type: String

Strings can be changed to upper case or lower case using the operations
upperCase, upperCase, lowerCase and lowerCase.

upperCase hello

"HELLO, I’M AXIOM!"

Type: String

The versions with the exclamation mark change the original string, while
the others produce a copy.

lowerCase hello

"hello, i’m axiom!"

9.61. STRING 209

Type: String

Some basic string matching is provided. The function prefix? tests whether
one string is an initial prefix of another.

prefix?("He", "Hello")

true

Type: Boolean

prefix?("Her", "Hello")

false

Type: Boolean

A similar function, suffix?, tests for suffixes.

suffix?("", "Hello")

true

Type: Boolean

suffix?("LO", "Hello")

false

Type: Boolean

The function substring? tests for a substring given a starting position.

substring?("ll", "Hello", 3)

true

Type: Boolean

substring?("ll", "Hello", 4)

false

Type: Boolean

A number of position functions locate things in strings. If the first argu-
ment to position is a string, then position(s,t,i) finds the location of s as a
substring of t starting the search at position i.

210 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

n := position("nd", "underground", 1)

2

Type: PositiveInteger

n := position("nd", "underground", n+1)

10

Type: PositiveInteger

If s is not found, then 0 is returned (minIndex(s)-1 in IndexedString).

n := position("nd", "underground", n+1)

0

Type: NonNegativeInteger

To search for a specific character or a member of a character class, a different
first argument is used.

position(char "d", "underground", 1)

3

Type: PositiveInteger

position(hexDigit(), "underground", 1)

3

Type: PositiveInteger

9.62 StringTable

This domain provides a table type in which the keys are known to be strings so
special techniques can be used. Other than performance, the type StringTable
(S) should behave exactly the same way as Table(String,S). See 9.64 on
page 215 for general information about tables. Issue the system command)show
StringTable to display the full list of operations defined by StringTable.

This creates a new table whose keys are strings.

t: StringTable(Integer) := table()

9.63. SYMBOL 211

table()

Type: StringTable Integer

The value associated with each string key is the number of characters in the
string.

for s in split("My name is Ian Watt.",char " ")
repeat
t.s := #s

Type: Void

for key in keys t repeat output [key, t.key]

["Ian",3]
["My",2]
["Watt.",5]
["name",4]
["is",2]

Type: Void

9.63 Symbol

Symbols are one of the basic types manipulated by AXIOM. The Symbol domain
provides ways to create symbols of many varieties. Issue the system command
)show Symbol to display the full list of operations defined by Symbol.

The simplest way to create a symbol is to “single quote” an identifier.

X: Symbol := ’x

x

Type: Symbol

This gives the symbol even if x has been assigned a value. If x has not been
assigned a value, then it is possible to omit the quote.

XX: Symbol := x

x

Type: Symbol

212 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Declarations must be used when working with symbols, because otherwise
the interpreter tries to place values in a more specialized type Variable.

A := ’a

a

Type: Variable a

B := b

b

Type: Variable b

The normal way of entering polynomials uses this fact.

x**2 + 1

x2 + 1

Type: Polynomial Integer

Another convenient way to create symbols is to convert a string. This is
useful when the name is to be constructed by a program.

"Hello"::Symbol

Hello

Type: Symbol

Sometimes it is necessary to generate new unique symbols, for example,
to name constants of integration. The expression new() generates a symbol
starting with %.

new()$Symbol

%A

Type: Symbol

Successive calls to new produce different symbols.

new()$Symbol

%B

Type: Symbol

9.63. SYMBOL 213

The expression new("s") produces a symbol starting with %s.

new("xyz")$Symbol

%xyz0

Type: Symbol

A symbol can be adorned in various ways. The most basic thing is applying
a symbol to a list of subscripts.

X[i,j]

xi,j

Type: Symbol

Somewhat less pretty is to attach subscripts, superscripts or arguments.

U := subscript(u, [1,2,1,2])

u1,2,1,2

Type: Symbol

V := superscript(v, [n])

vn

Type: Symbol

P := argscript(p, [t])

p (t)

Type: Symbol

It is possible to test whether a symbol has scripts using the scripted? test.

scripted? U

true

Type: Boolean

scripted? X

false

214 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Boolean

If a symbol is not scripted, then it may be converted to a string.

string X

"x"

Type: String

The basic parts can always be extracted using the name and scripts oper-
ations.

name U

u

Type: Symbol

scripts U

[sub = [1, 2, 1, 2], sup = [], presup = [], presub = [], args = []]

Type: Record(sub: List OutputForm, sup: List OutputForm,
presup: List OutputForm, presub: List OutputForm, args: List

OutputForm)

name X

x

Type: Symbol

scripts X

[sub = [], sup = [], presup = [], presub = [], args = []]

Type: Record(sub: List OutputForm, sup: List OutputForm,
presup: List OutputForm, presub: List OutputForm, args: List

OutputForm)

The most general form is obtained using the script operation. This opera-
tion takes an argument which is a list containing, in this order, lists of subscripts,
superscripts, presuperscripts, presubscripts and arguments to a symbol.

M := script(Mammoth, [[i,j],[k,l],[0,1],[2],[u,v,w]])

9.64. TABLE 215

0,1
2 Mammothk,l

i,j (u, v, w)

Type: Symbol

scripts M

[sub = [i, j], sup = [k, l], presup = [0, 1], presub = [2], args = [u, v, w]]

Type: Record(sub: List OutputForm, sup: List OutputForm,
presup: List OutputForm, presub: List OutputForm, args: List

OutputForm)

If trailing lists of scripts are omitted, they are assumed to be empty.

N := script(Nut, [[i,j],[k,l],[0,1]])

0,1Nutk,l
i,j

Type: Symbol

scripts N

[sub = [i, j], sup = [k, l], presup = [0, 1], presub = [], args = []]

Type: Record(sub: List OutputForm, sup: List OutputForm,
presup: List OutputForm, presub: List OutputForm, args: List

OutputForm)

9.64 Table

The Table constructor provides a general structure for associative storage. This
type provides hash tables in which data objects can be saved according to keys
of any type. For a given table, specific types must be chosen for the keys and
entries.

In this example the keys to the table are polynomials with integer coefficients.
The entries in the table are strings.

t: Table(Polynomial Integer, String) := table()

table()

Type: Table(Polynomial Integer,String)

To save an entry in the table, the setelt operation is used. This can be
called directly, giving the table a key and an entry.

setelt(t, x**2 - 1, "Easy to factor")

216 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

"Easy to factor"

Type: String

Alternatively, you can use assignment syntax.

t(x**3 + 1) := "Harder to factor"

"Harder to factor"

Type: String

t(x) := "The easiest to factor"

"The easiest to factor"

Type: String

Entries are retrieved from the table by calling the elt operation.

elt(t, x)

"The easiest to factor"

Type: String

This operation is called when a table is “applied” to a key using this or the
following syntax.

t.x

"The easiest to factor"

Type: String

t x

"The easiest to factor"

Type: String

Parentheses are used only for grouping. They are needed if the key is an
infixed expression.

t.(x**2 - 1)

"Easy to factor"

Type: String

9.64. TABLE 217

Note that the elt operation is used only when the key is known to be in the
table—otherwise an error is generated.

t (x**3 + 1)

"Harder to factor"

Type: String

You can get a list of all the keys to a table using the keys operation.

keys t [
x, x3 + 1, x2 − 1

]
Type: List Polynomial Integer

If you wish to test whether a key is in a table, the search operation is used.
This operation returns either an entry or "failed".

search(x, t)

"The easiest to factor"

Type: Union(String,...)

search(x**2, t)

"failed"

Type: Union("failed",...)

The return type is a union so the success of the search can be tested using
case.

search(x**2, t) case "failed"

true

Type: Boolean

The remove operation is used to delete values from a table.

remove!(x**2-1, t)

"Easy to factor"

Type: Union(String,...)

218 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

If an entry exists under the key, then it is returned. Otherwise remove
returns "failed".

remove!(x-1, t)

"failed"

Type: Union("failed",...)

The number of key-entry pairs can be found using the # operation.

#t

2

Type: PositiveInteger

Just as keys returns a list of keys to the table, a list of all the entries can
be obtained using the members operation.

members t

["The easiest to factor", "Harder to factor"]

Type: List String

A number of useful operations take functions and map them on to the table
to compute the result. Here we count the entries which have “Hard” as a prefix.

count(s: String +-> prefix?("Hard", s), t)

1

Type: PositiveInteger

Other table types are provided to support various needs.

AssociationList gives a list with a table view. This allows new entries to
be appended onto the front of the list to cover up old entries. This is useful
when table entries need to be stacked or when frequent list traversals are
required. See 9.1 on page 1 for more information.

EqTable gives tables in which keys are considered equal only when they
are in fact the same instance of a structure. See 9.16 on page 61 for more
information.

StringTable should be used when the keys are known to be strings. See
9.62 on page 210 for more information.

9.65. TEXTFILE 219

SparseTable provides tables with default entries, so lookup never fails.
The GeneralSparseTable constructor can be used to make any table type
behave this way. See 9.58 on page 200 for more information.

KeyedAccessFile allows values to be saved in a file, accessed as a table.
See 9.33 on page 112 for more information.

Issue the system command)show Table to display the full list of operations
defined by Table.

9.65 TextFile

The domain TextFile allows AXIOM to read and write character data and
exchange text with other programs. This type behaves in AXIOM much like
a File of strings, with additional operations to cause new lines. We give an
example of how to produce an upper case copy of a file.

This is the file from which we read the text.

f1: TextFile := open("/etc/motd", "input")

"/etc/motd"

Type: TextFile

This is the file to which we write the text.

f2: TextFile := open("/tmp/MOTD", "output")

"/tmp/MOTD"

Type: TextFile

Entire lines are handled using the readLine and writeLine operations.

l := readLine! f1

"Risc System/6000 Model 320H: pascal"

Type: String

writeLine!(f2, upperCase l)

"RISC SYSTEM/6000 MODEL 320H: PASCAL"

Type: String

Use the endOfFile? operation to check if you have reached the end of the
file.

220 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

while not endOfFile? f1 repeat
s := readLine! f1
writeLine!(f2, upperCase s)

Type: Void

The file f1 is exhausted and should be closed.

close! f1

"/etc/motd"

Type: TextFile

It is sometimes useful to write lines a bit at a time. The write operation
allows this.

write!(f2, "-The-")

"-The-"

Type: String

write!(f2, "-End-")

"-End-"

Type: String

This ends the line. This is done in a machine-dependent manner.

writeLine! f2

""

Type: String

close! f2

"/tmp/MOTD"

Type: TextFile

Finally, clean up.

)system rm /tmp/MOTD

For more information on related topics, see 9.21 on page 74, 9.33 on page 112,
and 9.34 on page 116. Issue the system command)show TextFile to display
the full list of operations defined by TextFile.

9.66. TWODIMENSIONALARRAY 221

9.66 TwoDimensionalArray

The TwoDimensionalArray domain is used for storing data in a two dimensional
data structure indexed by row and by column. Such an array is a homogeneous
data structure in that all the entries of the array must belong to the same
AXIOM domain. Each array has a fixed number of rows and columns specified
by the user and arrays are not extensible. In AXIOM, the indexing of two-
dimensional arrays is one-based. This means that both the “first” row of an
array and the “first” column of an array are given the index 1. Thus, the entry
in the upper left corner of an array is in position (1,1).

The operation new creates an array with a specified number of rows and
columns and fills the components of that array with a specified entry. The
arguments of this operation specify the number of rows, the number of columns,
and the entry.

This creates a five-by-four array of integers, all of whose entries are zero.

arr : ARRAY2 INT := new(5,4,0)
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Type: TwoDimensionalArray Integer

The entries of this array can be set to other integers using the operation
setelt.

Issue this to set the element in the upper left corner of this array to 17.

setelt(arr,1,1,17)

17

Type: PositiveInteger

Now the first element of the array is 17.

arr
17 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Type: TwoDimensionalArray Integer

Likewise, elements of an array are extracted using the operation elt.

222 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

elt(arr,1,1)

17

Type: PositiveInteger

Another way to use these two operations is as follows. This sets the element
in position (3,2) of the array to 15.

arr(3,2) := 15

15

Type: PositiveInteger

This extracts the element in position (3,2) of the array.

arr(3,2)

15

Type: PositiveInteger

The operations elt and setelt come equipped with an error check which
verifies that the indices are in the proper ranges. For example, the above array
has five rows and four columns, so if you ask for the entry in position (6,2)
with arr(6,2) AXIOM displays an error message. If there is no need for an
error check, you can call the operations qelt and qsetelt which provide the
same functionality but without the error check. Typically, these operations are
called in well-tested programs.

The operations row and column extract rows and columns, respectively,
and return objects of OneDimensionalArray with the same underlying element
type.

row(arr,1)

[17, 0, 0, 0]

Type: OneDimensionalArray Integer

column(arr,1)

[17, 0, 0, 0, 0]

Type: OneDimensionalArray Integer

You can determine the dimensions of an array by calling the operations
nrows and ncols, which return the number of rows and columns, respectively.

9.66. TWODIMENSIONALARRAY 223

nrows(arr)

5

Type: PositiveInteger

ncols(arr)

4

Type: PositiveInteger

To apply an operation to every element of an array, use map. This creates
a new array. This expression negates every element.

map(-,arr)
−17 0 0 0
0 0 0 0
0 −15 0 0
0 0 0 0
0 0 0 0

Type: TwoDimensionalArray Integer

This creates an array where all the elements are doubled.

map((x +-> x + x),arr)
34 0 0 0
0 0 0 0
0 30 0 0
0 0 0 0
0 0 0 0

Type: TwoDimensionalArray Integer

To change the array destructively, use map instead of map. If you need to
make a copy of any array, use copy.

arrc := copy(arr)
17 0 0 0
0 0 0 0
0 15 0 0
0 0 0 0
0 0 0 0

Type: TwoDimensionalArray Integer

224 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

map!(-,arrc)
−17 0 0 0
0 0 0 0
0 −15 0 0
0 0 0 0
0 0 0 0

Type: TwoDimensionalArray Integer

arrc
−17 0 0 0
0 0 0 0
0 −15 0 0
0 0 0 0
0 0 0 0

Type: TwoDimensionalArray Integer

arr
17 0 0 0
0 0 0 0
0 15 0 0
0 0 0 0
0 0 0 0

Type: TwoDimensionalArray Integer

Use member? to see if a given element is in an array.

member?(17,arr)

true

Type: Boolean

member?(10317,arr)

false

Type: Boolean

To see how many times an element appears in an array, use count.

count(17,arr)

9.67. UNIVARIATEPOLYNOMIAL 225

1

Type: PositiveInteger

count(0,arr)

18

Type: PositiveInteger

For more information about the operations available for TwoDimensional
Array, issue)show TwoDimensionalArray. For information on related topics,
see 9.39 on page 142 and 9.44 on page 158.

9.67 UnivariatePolynomial

The domain constructor UnivariatePolynomial (abbreviated UP) creates do-
mains of univariate polynomials in a specified variable. For example, the domain
UP(a1,POLY FRAC INT) provides polynomials in the single variable a1 whose
coefficients are general polynomials with rational number coefficients.

Restriction:

AXIOM does not allow you to create types where Univa-
riatePolynomial is contained in the coefficient type of Po-
lynomial. Therefore, UP(x,POLY INT) is legal but POLY UP
(x,INT) is not.

.

UP(x,INT) is the domain of polynomials in the single variable x with integer
coefficients.

(p,q) : UP(x,INT)

Type: Void

p := (3*x-1)**2 * (2*x + 8)

18 x3 + 60 x2 − 46 x + 8

Type: UnivariatePolynomial(x,Integer)

q := (1 - 6*x + 9*x**2)**2

81 x4 − 108 x3 + 54 x2 − 12 x + 1

226 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: UnivariatePolynomial(x,Integer)

The usual arithmetic operations are available for univariate polynomials.

p**2 + p*q

1458 x7 + 3240 x6 − 7074 x5 + 10584 x4 − 9282 x3 + 4120 x2 − 878 x + 72

Type: UnivariatePolynomial(x,Integer)

The operation leadingCoefficient extracts the coefficient of the term of
highest degree.

leadingCoefficient p

18

Type: PositiveInteger

The operation degree returns the degree of the polynomial. Since the poly-
nomial has only one variable, the variable is not supplied to operations like
degree.

degree p

3

Type: PositiveInteger

The reductum of the polynomial, the polynomial obtained by subtracting
the term of highest order, is returned by reductum.

reductum p

60 x2 − 46 x + 8

Type: UnivariatePolynomial(x,Integer)

The operation gcd computes the greatest common divisor of two polynomi-
als.

gcd(p,q)

9 x2 − 6 x + 1

Type: UnivariatePolynomial(x,Integer)

The operation lcm computes the least common multiple.

lcm(p,q)

9.67. UNIVARIATEPOLYNOMIAL 227

162 x5 + 432 x4 − 756 x3 + 408 x2 − 94 x + 8

Type: UnivariatePolynomial(x,Integer)

The operation resultant computes the resultant of two univariate polyno-
mials. In the case of p and q, the resultant is 0 because they share a common
root.

resultant(p,q)

0

Type: NonNegativeInteger

To compute the derivative of a univariate polynomial with respect to its
variable, use D.

D p

54 x2 + 120 x− 46

Type: UnivariatePolynomial(x,Integer)

Univariate polynomials can also be used as if they were functions. To eval-
uate a univariate polynomial at some point, apply the polynomial to the point.

p(2)

300

Type: PositiveInteger

The same syntax is used for composing two univariate polynomials, i.e. sub-
stituting one polynomial for the variable in another. This substitutes q for the
variable in p.

p(q)

9565938 x12 − 38263752 x11 + 70150212 x10 − 77944680 x9 + 58852170 x8−

32227632 x7 + 13349448 x6 − 4280688 x5 + 1058184 x4−

192672 x3 + 23328 x2 − 1536 x + 40

Type: UnivariatePolynomial(x,Integer)

This substitutes p for the variable in q.

q(p)

228 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

8503056 x12 + 113374080 x11 + 479950272 x10 + 404997408 x9−

1369516896 x8 − 626146848 x7 + 2939858712 x6 − 2780728704 x5+

1364312160 x4 − 396838872 x3 + 69205896 x2 − 6716184 x + 279841

Type: UnivariatePolynomial(x,Integer)

To obtain a list of coefficients of the polynomial, use coefficients.

l := coefficients p

[18, 60,−46, 8]

Type: List Integer

From this you can use gcd and reduce to compute the content of the poly-
nomial.

reduce(gcd,l)

2

Type: PositiveInteger

Alternatively (and more easily), you can just call content.

content p

2

Type: PositiveInteger

Note that the operation coefficients omits the zero coefficients from the
list. Sometimes it is useful to convert a univariate polynomial to a vector whose
i-th position contains the degree i-1 coefficient of the polynomial.

ux := (x**4+2*x+3)::UP(x,INT)

x4 + 2 x + 3

Type: UnivariatePolynomial(x,Integer)

To get a complete vector of coefficients, use the operation vectorise, which
takes a univariate polynomial and an integer denoting the length of the desired
vector.

vectorise(ux,5)

9.67. UNIVARIATEPOLYNOMIAL 229

[3, 2, 0, 0, 1]

Type: Vector Integer

It is common to want to do something to every term of a polynomial, creating
a new polynomial in the process.

This is a function for iterating across the terms of a polynomial, squaring
each term.

squareTerms(p) == reduce(+,[t**2 for t in monomials p])

Type: Void

Recall what p looked like.

p

18 x3 + 60 x2 − 46 x + 8

Type: UnivariatePolynomial(x,Integer)

We can demonstrate squareTerms on p.

squareTerms p

Compiling function squareTerms with type
UnivariatePolynomial(x,Integer) ->
UnivariatePolynomial(x,Integer)

324 x6 + 3600 x4 + 2116 x2 + 64

Type: UnivariatePolynomial(x,Integer)

When the coefficients of the univariate polynomial belong to a field,7 it is
possible to compute quotients and remainders.

(r,s) : UP(a1,FRAC INT)

Type: Void

r := a1**2 - 2/3

7For example, when the coefficients are rational numbers, as opposed to integers. The
important property of a field is that non-zero elements can be divided and produce another
element. The quotient of the integers 2 and 3 is not another integer.

230 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

a12 − 2
3

Type: UnivariatePolynomial(a1,Fraction Integer)

s := a1 + 4

a1 + 4

Type: UnivariatePolynomial(a1,Fraction Integer)

When the coefficients are rational numbers or rational expressions, the op-
eration quo computes the quotient of two polynomials.

r quo s

a1− 4

Type: UnivariatePolynomial(a1,Fraction Integer)

The operation rem computes the remainder.

r rem s

46
3

Type: UnivariatePolynomial(a1,Fraction Integer)

The operation divide can be used to return a record of both components.

d := divide(r, s)[
quotient = a1− 4, remainder =

46
3

]
Type: Record(quotient: UnivariatePolynomial(a1,Fraction

Integer), remainder: UnivariatePolynomial(a1,Fraction Integer))

Now we check the arithmetic!

r - (d.quotient * s + d.remainder)

0

Type: UnivariatePolynomial(a1,Fraction Integer)

It is also possible to integrate univariate polynomials when the coefficients
belong to a field.

integrate r

9.67. UNIVARIATEPOLYNOMIAL 231

1
3

a13 − 2
3

a1

Type: UnivariatePolynomial(a1,Fraction Integer)

integrate s

1
2

a12 + 4 a1

Type: UnivariatePolynomial(a1,Fraction Integer)

One application of univariate polynomials is to see expressions in terms of a
specific variable.

We start with a polynomial in a1 whose coefficients are quotients of polyno-
mials in b1 and b2.

t : UP(a1,FRAC POLY INT)

Type: Void

Since in this case we are not talking about using multivariate polynomials
in only two variables, we use Polynomial. We also use Fraction because we
want fractions.

t := a1**2 - a1/b2 + (b1**2-b1)/(b2+3)

a12 − 1
b2

a1 +
b12 − b1
b2 + 3

Type: UnivariatePolynomial(a1,Fraction Polynomial Integer)

We push all the variables into a single quotient of polynomials.

u : FRAC POLY INT := t

a12 b22 +
(
b12 − b1 + 3 a12 − a1

)
b2− 3 a1

b22 + 3 b2
Type: Fraction Polynomial Integer

Alternatively, we can view this as a polynomial in the variable This is a mode-
directed conversion: you indicate as much of the structure as you care about and
let AXIOM decide on the full type and how to do the transformation.

u :: UP(b1,?)

1
b2 + 3

b12 − 1
b2 + 3

b1 +
a12 b2− a1

b2
Type: UnivariatePolynomial(b1,Fraction Polynomial Integer)

For more information on related topics, see 9.49 on page 174, 9.41 on pa-
ge 153, and 9.15 on page 59. Issue the system command)show UnivariatePo-
lynomial to display the full list of operations defined by UnivariatePolyno-
mial.

232 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

9.68 UniversalSegment

The UniversalSegment domain generalizes Segment by allowing segments with-
out a “hi” end point.

pints := 1..

1..

Type: UniversalSegment PositiveInteger

nevens := (0..) by -2

0..by − 2

Type: UniversalSegment NonNegativeInteger

Values of type Segment are automatically converted to type UniversalSeg-
ment when appropriate.

useg: UniversalSegment(Integer) := 3..10

3..10

Type: UniversalSegment Integer

The operation hasHi is used to test whether a segment has a hi end point.

hasHi pints

false

Type: Boolean

hasHi nevens

false

Type: Boolean

hasHi useg

true

Type: Boolean

All operations available on type Segment apply to UniversalSegment, with
the proviso that expansions produce streams rather than lists. This is to ac-
commodate infinite expansions.

9.69. VECTOR 233

expand pints

[1, 2, 3, 4, 5, 6, 7, . . .]

Type: Stream Integer

expand nevens

[0,−2,−4,−6,−8,−10,−12, . . .]

Type: Stream Integer

expand [1, 3, 10..15, 100..]

[1, 3, 10, 11, 12, 13, 14, . . .]

Type: Stream Integer

For more information on related topics, see 9.53 on page 189, 9.54 on pa-
ge 191, 9.36 on page 129, and 9.60 on page 202. Issue the system command)show
UniversalSegment to display the full list of operations defined by Universal
Segment.

9.69 Vector

The Vector domain is used for storing data in a one-dimensional indexed data
structure. A vector is a homogeneous data structure in that all the components
of the vector must belong to the same AXIOM domain. Each vector has a fixed
length specified by the user; vectors are not extensible. This domain is similar
to the OneDimensionalArray domain, except that when the components of a
Vector belong to a Ring, arithmetic operations are provided. For more examples
of operations that are defined for both Vector and OneDimensionalArray, see
9.44 on page 158.

As with the OneDimensionalArray domain, a Vector can be created by call-
ing the operation new, its components can be accessed by calling the operations
elt and qelt, and its components can be reset by calling the operations setelt
and qsetelt.

This creates a vector of integers of length 5 all of whose components are 12.

u : VECTOR INT := new(5,12)

[12, 12, 12, 12, 12]

Type: Vector Integer

This is how you create a vector from a list of its components.

234 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

v : VECTOR INT := vector([1,2,3,4,5])

[1, 2, 3, 4, 5]

Type: Vector Integer

Indexing for vectors begins at 1. The last element has index equal to the
length of the vector, which is computed by “#”.

#(v)

5

Type: PositiveInteger

This is the standard way to use elt to extract an element. Functionally, it
is the same as if you had typed elt(v,2).

v.2

2

Type: PositiveInteger

This is the standard way to use setelt to change an element. It is the same
as if you had typed setelt(v,3,99).

v.3 := 99

99

Type: PositiveInteger

Now look at v to see the change. You can use qelt and qsetelt (instead of
elt and setelt, respectively) but only when you know that the index is within
the valid range.

v

[1, 2, 99, 4, 5]

Type: Vector Integer

When the components belong to a Ring, AXIOM provides arithmetic oper-
ations for Vector. These include left and right scalar multiplication.

5 * v

[5, 10, 495, 20, 25]

9.70. VOID 235

Type: Vector Integer

v * 7

[7, 14, 693, 28, 35]

Type: Vector Integer

w : VECTOR INT := vector([2,3,4,5,6])

[2, 3, 4, 5, 6]

Type: Vector Integer

Addition and subtraction are also available.

v + w

[3, 5, 103, 9, 11]

Type: Vector Integer

Of course, when adding or subtracting, the two vectors must have the same
length or an error message is displayed.

v - w

[−1,−1, 95,−1,−1]

Type: Vector Integer

For more information about other aggregate domains, see the following: 9.36
on page 129, 9.39 on page 142, 9.44 on page 158, 9.55 on page 192, 9.64 on
page 215, and 9.66 on page 221. Issue the system command)show Vector to
display the full list of operations defined by Vector.

9.70 Void

When an expression is not in a value context, it is given type Void. For example,
in the expression

r := (a; b; if c then d else e; f)

values are used only from the subexpressions c and f: all others are thrown
away. The subexpressions a, b, d and e are evaluated for side-effects only and
have type Void. There is a unique value of type Void.

You will most often see results of type Void when you declare a variable.

236 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

a : Integer

Void

Usually no output is displayed for Void results. You can force the display of
a rather ugly object by issuing)set message void on.

)set message void on

b : Fraction Integer

"()"

Type: Void

)set message void off

All values can be converted to type Void.

3::Void

Type: Void

Once a value has been converted to Void, it cannot be recovered.

% :: PositiveInteger

Cannot convert from type Void to PositiveInteger for value "()"

