
FOAM:

A First Order Abstract Machine

Version 0.35

Stephen M. Watt
Peter A. Broadbery

Pietro Iglio
Scott C. Morrison

Jonathan M. Steinbach

IBM Thomas J. Watson Research Center
P.O. Box 218, Yorktown Heights, NY 10598

November 1, 1994

1 Purpose

Foam is a programming language intended for use by other computer programs.
In particular, foam is generated by the A] compiler.

This report is a snapshot of a work in progress, and the authors invite com-
ments. There will likely be some changes between the form of Foam described
in this document and the form used by the first release of A].

Foam has been defined with the following goals:

1. it has a well-defined semantics, independent of platform,

2. it has an efficient mapping to Common Lisp and to ANSI C, and

3. its structure allows easy manipulation.

Foam-to-Foam transformations produce equivalent programs with improved per-
formance. These transformations are independent of hardware platform and can
be agressively applied even by a cross-compiler.

Having an easy mapping to Common Lisp and to ANSI C is a more nebulous
goal. However, the intent is that these mappings be relatively simple and easy
to implement efficiently. For example, there is no concept of addresses in Foam

1

since addresses are unpredictable with a Lisp garbage collector. Likewise, Foam
does not have self identifying data objects since this is not available in C.

FOAM is not restricted to the precise intersection of C and Lisp. Some
aspects are handled by support libraries. Big integer arithmetic is assumed as
part of FOAM, and this is provided as a library for C. Also the memory model
differs from both C and Lisp in some details: garbage collection is assumed (this
is a run time support library in C) and it is possible to make an explicit request
to free storage (in Lisp this is ignored).

A FOAM program is comprised of a flat sequence of commands. FOAM
types have various sizes and uses. or example, “Char” is a text character whereas
“Byte” is a character sized integer, “DFlo” is a double precision floating point,
“Ptr” can point to an array, record, arbitrary sized integer, etc. Reference
instructions contain the kind of reference and the position, e.g., “Loc 3” refers to
the third local variable of the current function and “RElt 7 x 2” indicates the
2nd field of the record x, using the 7th layout format. FOAM operations consist
of instructions, such as “If b n,” which indicates that if b is true then proceed
to label n, and builtin operations, e.g., “HIntLT a b” is a half-word-integer
less-than comparison. The builtin operations are type specific and conversion
operations are generally provided.

2 Instructions

〈Unit〉 ::=
[Unit 〈DFmt〉 〈DDef〉]

The first 4 slots of DFmt are reserved for the declaration of the globals,
constants, lexicals and fluids for the unit, the fifth slot is always the empty
format.

〈DFmt〉 ::=
[DFmt 〈f0 : DDecl〉 ... 〈fn−1 : DDecl〉]

Layout formats for environment levels, records etc.

〈DDecl〉 ::=
[DDecl 〈u : Byte〉 〈d0 : Decl〉 ... 〈dn−1 : Decl〉]

Specify formats for globals, parameters, locals, fluids, lexicals and con-
stants. The usage parameter indicates the context in which the ddecl may
be used. Note that the Decls may either be Decl or GDecl instructions.

〈Decl〉 ::=
[Decl 〈t : Type〉 〈s : String〉 〈p : Byte〉 〈r0 : Byte〉 〈r1 : Byte〉]

Declaration of a single parameter, local or lexical. The type is given by
t and the user’s name for it can be unmangled from s. r0 and r1 are

2

reserved (and used by the compiler). If t is Rec or Arr, r1 is the format
number or type of the slot, respectively.

〈GDecl〉 ::=
[Decl 〈t : Type〉 〈s : String〉 〈r0 : Byte〉 〈r1 : Byte〉]

〈dir : Byte〉 〈p : Byte〉 Declaration of a single global. The type is given
by t and the user’s name for it can be unmangled from s. The language
protocol is specified by p. r0 and r1 are reserved (and used by the com-
piler). If t is Rec or Arr, r1 is the format number or type of the slot,
respectively. The dir field indicates whether the declaration is an import
or export.

〈DDef〉 ::=
[DDef 〈v0 : Def〉 ... 〈vn−1 : Def〉]

Initial values for things.

〈Def〉 ::=
[Def 〈r : Reference〉 〈v : Value〉]

r is typically a global or lexical. v is typically a program or closure.

〈DEnv〉 ::=
[DEnv 〈e0 : Int〉 ... 〈en−1 : Int〉]

List of format numbers for lexical environment levels. The empty envi-
ronment indicates that the level is never accessed by this function or its
children, while a 0 format number indicates that the level is closed over,
but is empty.

〈DFluid〉 ::=
[DFluid 〈i0 : Int〉 ... 〈fi−1 : Int〉]

Indicies into the unit’s fluid list, indicating which are rebound at this level.

〈Cmd〉 ::= 〈Def〉 | 〈Expr〉 | one of

[Seq 〈c0 : Cmd〉 〈c1 : Cmd〉 ... 〈cn : Cmd〉]
Defines a sequence of Cmd. Seq represents the body of a program. If the
execution of ci does not cause the transfer of the control, then ci + 1 is
executed. The only way to exit a Seq is by a Return instruction. It follows
that if the last instruction cn is reached, then it must transfer the control
(typically the last instruction is a Return or a Goto).

[Goto 〈l : Label〉]
Go to label l in current prog.

3

[If 〈e : Expr〉 〈t : Label〉]
If e is BoolTrue, go to label t. Semantic restriction: e must be of type
Bool.

[Select 〈e : Expr〉 〈l0 : Label〉 ... 〈ln−1 : Label〉]
e evaluates to an integer. If e is in [0..n − 1], goto label le in current
program. Otherwise, continue. Semantic restrictions: e must be of type
SInt.

[Return 〈e : Expr〉]
Return e from the current program.

[Set 〈r : Reference〉 〈e : Expr〉]
Update the location given by r to contain the value e. The reference r
may be a set of references given by Values. A call to a function returning
multiple values always looks like: (Set (Values r1 ... rn) (MFmt f call))
where call can be any of the Foam call instructions. The format f describes
the type of the returned parameters. This is the only context where MFmt
can occur.

[Lose 〈r : Reference〉]
Modify the location given by r to point to no structure.

[PushEnv 〈f : Int〉 〈e : Reference〉]
Push a new environment with format f onto the stack with e as its parent.

[PopEnv]
Pop an environment from the stack.

[Protect 〈e : Expr〉 〈p : Reference〉]
Evaluate e, then p, returning the value of e. If a Throw occurs and e is
abandoned, then p is evaluated and the Throw is resumed.

[Throw 〈to : Expr〉 〈e : Expr〉]
Throw to the tag to, evaluating any intervening protect forms.

[Halt]
Terminates the current Foam program.

〈Expr〉 ::= 〈Value〉 | one of

[BVal 〈n : Int〉]
The n-th builtin value.

[Label 〈n : Int〉]
The n-th command in the current program.

4

[Cast 〈t : Type〉 〈e : Expr〉]
View value e as being of type t. Types other than DFLo may be cast
freely to and from Word without loss of information.

[ANew 〈t : Type〉 〈e : Expr〉]
Form an array of e elements of type t filled with zeroes or nils of the
appropriate type. e must be a SInt value.

[RNew 〈f : Int〉]
Form a record with format f . The elements are filled with zeroes or nils
of the appropriate types.

[TRNew 〈f0 : Int〉 〈f1 : Int〉 〈s : Expr〉]
Form a record with trailing array whose initial part has format f0 and
with s elements in its trailing array with element format f1.

[RCopy 〈f : Int〉 〈e : Expr〉]
Copy the record e with format f .

[BCall 〈o : Int〉 〈e0 : Expr〉 ... 〈en−1 : Expr〉]
Call builtin o on e0...en−1. The expression (BCall o e0...en−1) is equivalent
to (OCall t (BVal o) (Env -1) e0...en−1) where t is the return type of (BVal
o).

[CCall 〈t : Type〉 〈c : Expr〉 〈e0 : Expr〉 ... 〈en−1 : Expr〉]
Call closure c on e0...en−1, returning type t. The expression (CCall t c
e0...en−1) is equivalent to (OCall t (CProg c’) (CEnv c’) e0...en−1) where
c is possibly a temporary to avoid multiple evaluation.

[OCall 〈t : Type〉 〈f : Expr〉 〈e : Reference〉 〈e0 : Expr〉 ... 〈en−1 : Expr〉]
Call the program f on e0...en−1 in environment e, returning type t. The
expression (OCall t f e e0...en−1) is equivalent to (PCall FOAM_Proto_Foam
t f e e0...en−1)

[PCall 〈p : Int〉 〈t : Type〉 〈f : Expr〉 〈e : Reference〉 〈e0 : Expr〉... 〈en−1 :
Expr〉]
Call f with environment e and arguments e0..en−1. e will be unused in
the case of FOAM_Proto_C. according to protocol p, returning type t.

[MFmt 〈f : Int〉 〈c : Expr〉]
Wrapping MFmt around a call indicates that the call returns multiple val-
ues. See Set for more information.

[Values 〈e0 : Expr〉 ... 〈en : Expr〉]
Indicates multiple values. It can only occur in a return statement in
a program returning multiple values, or on the left hand side of a Set
instruction, when calling a function returning multiple values. See Set.

5

[Catch 〈tag : Name〉 〈e : Expr〉]
Give rt a tag suitable for use with Throw, and evaluate the expression,
which is returned. In the case of a throw to the tag, the value given by
the throw is returned.

〈Value〉 ::= 〈Reference〉 | 〈Data〉
〈Reference〉 ::= one of

[AElt 〈t : Type〉 〈n : Expr〉 〈a : Expr〉]
The n-th element of the array a, viewed as an array with components of
type t.

[RElt 〈f : Int〉 〈r : Expr〉 〈n : Int〉]
The n-th field of the record r with the f -th format in the current unit.

[IRElt 〈f : Int〉 〈r : Expr〉 〈n : Int〉]
The n-th field of the record with a trailing array r with the f -th format
for the initial part of the record in the current unit.

[TRElt 〈f0 : Int〉 〈f1 : Int〉 〈r : Expr〉 〈index : Expr〉 〈n : Int〉]
The n-th field of the index-th element of the trailing array of r whose
initial format is f0 and whose trailing array element has format f1 in the
current unit.

[EElt 〈l : Int〉 〈n : Int〉 〈f : Int〉 〈e : Reference〉]
The n-th lexical of the l-th level in the environment e with the f -th format
in the current unit.

[Const 〈n : Int〉]
The n-th constant of the current unit.

[Glo 〈n : Int〉]
The n-th global of the current unit.

[Fluid 〈n : Int〉]
The n-th fluid of the current unit.

[Par 〈n : Int〉]
The n-th parameter of the current function.

[Loc 〈n : Int〉]
The n-th local of the current function.

[Lex 〈l : Int〉 〈n : Int〉]
The n-th lexical of the l-th level (function or unit).

[Env 〈l : Int〉]
Environment beginning l levels out in the current prog.

6

[EEnv 〈l : int〉 〈e : Reference〉]
Environment beginning l levels out from the environment e.

[CEnv 〈c : Expr〉]
The environment part of a closure.

[CProg 〈c : Expr〉]
The program part of a closure.

[EInfo 〈e : Expr〉]
Information related to the environment e. e must be an environment. The
result is of type Word.

[PRef 〈r : Int〉 〈p : Expr〉]
Information related to the prog p. p must be a prog. r indicates the field
of the prog information structure. currently this can only be 0, which is
the hashcode of a function.

〈Data〉 ::= one of

[Nil]
Nothing. Distinguished value of type Nil.

[Char 〈char-value〉]
Character. ASCII character set.

[Bool 〈bit-value〉]
BoolFalse or BoolTrue.

[Byte 〈byte-value〉]
0..255

[HInt 〈half-int-value〉]
2’s complement 16 bit integer

[SInt 〈single-int-value〉]
2’s complement 32 bit integer (at least 24 bit?)

[BInt 〈bigint-value〉]
signed magnitude big integer, any no of bits.

[SFlo 〈single-float-value〉]
IEEE format

[DFlo 〈double-float-value〉]
IEEE format

[Arr 〈t : Type〉 〈v0 : Value〉 ... 〈vn−1 : Value〉]

7

[Rec 〈f : Int〉 〈v0 : Value〉 ... 〈vn−1 : Value〉]

[Prog 〈n : Int〉 〈m : Int〉 〈t : Type〉 〈f : Int〉 〈b : Int〉 〈size : Int〉 〈time : Int〉
〈par : DDecl〉 〈loc : DDecl〉 〈lex : DEnv〉 〈fluid : DFluid〉 〈c0 : Cmd〉
〈c1 : Cmd〉 ... 〈cn−1 : Cmd〉]
Program of size n bytes, and maximum label m, returning value of type
t. If t has the value NOp then the program returns multiple values, where
the format f describes the types of the values returned, otherwise f is 0.
The integer b contains bits specifying whether: The program is a leaf. The
program has side-effects. The program is a generator. The program has
optimization info. The program contains OCalls. The program contains
Consts. The program must or must not be inlined. The integer size is the
number of nodes of the program + the size info of each Const prog which
is referred in program. In other word, this is the growth that is expected
inlining this program from another file. The integer time is the estimated
time cost of the program. Of course, this is an approximation. par is the
declaration of parameters. loc is the declaration of local variables. lex
is an array of formats for the lexical levels. The commands c0..cn−1 are
performed in sequence.

[Clos 〈env : Value〉 〈prog : Value〉]

[Ptr 〈v : Value〉]

〈Type〉 ::= one of

[Nil]
Nothing. 1-element type. Distinguished value.

[Char]
Character. E.g. ’a’

[Bool]
0 or 1

[Byte]
Unsigned integer represented in 8 bits.
Bool can be converted to Byte

[HInt]
Half precision integer: Signed int in 16 bits
Byte, Bool can be converted to HInt

8

[SInt]
Single precision integer: Signed int in 32 bits
HInt, Byte, Bool can be converted to SInt

[BInt]
Signed integer of arbitrary number of bits.

[SFlo]
Single precision floating point.

[DFlo]
Double precision floating point. SFlo can be converted to DFlo

[Arr]
Array (i.e. one dimensional array)

[Rec]
Record

[Env]
Environment.

[Prog]
Program.

[Clos]
Closure.

[Ptr]
Pointer: Nil, BInt, Prog, Clos, Env, Arr, Rec

[Word]
Single precision arbitrary: Ptr, Char, Bool, Byte, Hint, SInt, SFlo.

[Arb]
Arbitrary value: Word, DFlo

[NOp]
Used for multiple types context. See Prog.

3 Protocols

A Protocol is used to describe the interface through which an object should
be called or accessed. The following protocols are currently produced by the
A]compiler.

FOAM Proto Foam Use a natural mapping for Foam objects: for variables this
is typically a Lisp or C identifier with a name derived from the id field in
the declaration.

9

FOAM Proto Other Use a natural mapping for objects in the hosting system, for
example C or Lisp identifiers with the same name as in the id field in the
declaration.

FOAM Proto Init The object is an initializer for a unit, and so it should be
called before any other globals from that unit. Foam units initialize those
units which they use, but the first one is expected to be called by the
hosting environment.

The other protocols (FOAM Proto C, FOAM Proto Lisp, FOAM Proto Fortran)
indicate that the particular object should be treated as coming from the appro-
priate language, or that it should be accessible from that language. In these
cases, no manipulation of the id field occurs.

4 Builtins

These descriptions are in the same order as in the enumeration foam.h. This
list is expected to grow somewhat, as needed.

4.1 Operations on type Bool

Type Bool contains the values ‘false’ and ‘true’. Values of this type are used to
control the sequence of program evaluation. In a C implementation the values
can be represented as the integers 0 and 1. In a Lisp implementation the values
can be represented as Nil and T.

BoolFalse: () → Bool
BoolTrue: () → Bool
BoolNot: (Bool) → Bool
BoolAnd: (Bool, Bool) → Bool
BoolOr: (Bool, Bool) → Bool
BoolEQ: (Bool, Bool) → Bool
BoolNE: (Bool, Bool) → Bool

BoolAnd and BoolOr are not conditional, that is both the arguments are
evaluated in every case.

4.2 Operations on type Char

Type Char contains letters, numerals and other text constituents. Char Data
may need to be converted to a native character set (e.g. EBCDIC) for an
implementation. CharLower and CharUpper convert the case of letters and do
not modify other character values. CharOrd converts a character to a small
integer and CharNum does the reverse.

10

CharSpace: () → Char
CharNewline: () → Char
CharMin: () → Char
CharMax: () → Char
CharIsDigit: (Char) → Bool
CharIsLetter: (Char) → Bool
CharEQ: (Char,Char) → Bool
CharNE: (Char,Char) → Bool
CharLT: (Char,Char) → Bool
CharLE: (Char,Char) → Bool
CharLower: (Char) → Char
CharUpper: (Char) → Char
CharOrd: (Char) → SInt
CharNum: (SInt) → Char

4.3 Operations on type SFlo

SFlo is single precision floating point. SFloMax is the largest positive number.
SFloEpsilon is the smallest positive number which can be represented. SFloMin
is the most negative number which can be represented. This type is used pri-
marily for storing large quantities of floating pt data. In the tree form of Foam,
SFlo values are represented in a machine-dependent single precision floating
point format. The linear representation presently uses IEEE single precision
format, however, this will change to extended single precision format.

11

SFlo0: () → SFlo
SFlo1: () → SFlo
SFloMin: () → SFlo
SFloMax: () → SFlo
SFloEpsilon: () → SFlo
SFloIsZero: (SFlo) → Bool
SFloIsNeg: (SFlo) → Bool
SFloIsPos: (SFlo) → Bool
SFloEQ: (SFlo,SFlo) → Bool
SFloNE: (SFlo,SFlo) → Bool
SFloLT: (SFlo,SFlo) → Bool
SFloLE: (SFlo,SFlo) → Bool
SFloNegate: (SFlo) → SFlo
SFloPlus: (SFlo,SFlo) → SFlo
SFloMinus: (SFlo,SFlo) → SFlo
SFloTimes: (SFlo,SFlo) → SFlo
SFloTimesPlus: (SFlo,SFlo,SFlo) → SFlo
SFloDivide: (SFlo,SFlo) → SFlo
SFloSIPower: (SFlo,SInt) → SFlo
SFloBIPower: (SFlo,BInt) → SFlo
SFloRound: (SFlo) → BInt
SFloTruncate: (SFlo) → BInt
SFloFloor: (SFlo) → BInt
SFloCeiling: (SFlo) → BInt

4.4 Operations on type DFlo

DFlo is double precision floating point. In the tree form of Foam, DFlo values
are represented in a machine-dependent double precision floating point format.
The linear representation presently uses IEEE double precision format, however,
this will change to extended double precision format.

12

DFlo0: () → DFlo
DFlo1: () → DFlo
DFloMin: () → DFlo
DFloMax: () → DFlo
DFloEpsilon: () → DFlo
DFloIsZero: (DFlo) → Bool
DFloIsNeg: (DFlo) → Bool
DFloIsPos: (DFlo) → Bool
DFloEQ: (DFlo,DFlo) → Bool
DFloNE: (DFlo,DFlo) → Bool
DFloLT: (DFlo,DFlo) → Bool
DFloLE: (DFlo,DFlo) → Bool
DFloNegate: (DFlo) → DFlo
DFloPlus: (DFlo,DFlo) → DFlo
DFloMinus: (DFlo,DFlo) → DFlo
DFloTimes: (DFlo,DFlo) → DFlo
DFloTimesPlus: (DFlo,DFlo,DFlo) → DFlo
DFloDivide: (DFlo,DFlo) → DFlo
DFloSIPower: (DFlo,SInt) → DFlo
DFloBIPower: (DFlo,BInt) → DFlo
DFloRound: (DFlo) → BInt
DFloTruncate: (DFlo) → BInt
DFloFloor: (DFlo) → BInt
DFloCeiling: (SFlo) → BInt

4.5 Operations on type Byte

Type Byte is used to compactly represent small positive integers. This is pri-
marily useful in arrays. To compute with Byte values, convert them to SInt
first. Type Byte must be able to represent at least the values 0..2**7-1. Bytes
are used for numeric data and are never subject to character set conversion.

Byte0: () → Byte
Byte1: () → Byte
ByteMin: () → Byte
ByteMax: () → Byte

4.6 Operations on type HInt

Type HInt is used to compactly represent small signed ”half precision” integers.
This is primarily useful in arrays. Type HInt must be able to represent at least
the values -2**15..2**15-1.

HInt0: () → HInt
HInt1: () → HInt
HIntMin: () → HInt
HIntMax: () → HInt

13

4.7 Operations on type SInt

Type SInt is used to represent signed ”single precision” integers. Type SInt
must be able to represent at least the values -2**23..2**23-1.

The values behave as if represented in two’s complement for the logical
operations (Bool, Not, And, Or). If arithmetic operations overflow, the result
is not defined and may or may not equal the true value modulo 2**machine-
wordsize. The operations SIntPlusMod, SIntMinusMod, SIntTimesMod require
their first 2 arguments to be in the range 0..m-1, for m = third argument.
Otherwise the result is not defined. The operation SIntLength is the number
of bits required to represent the number in two’s complement and in particular
can be less than the word size. SIntShift is an arithmetic shift. The second
argument is the number of bits to shift by. +ve implies shift up. -ve implies
shift down. SIntBool(x,i) returns the i’th bit of x.

14

SInt0: () → SInt
SInt1: () → SInt
SIntMin: () → SInt
SIntMax: () → SInt
SIntIsZero: (SInt) → Bool
SIntIsNeg: (SInt) → Bool
SIntIsPos: (SInt) → Bool
SIntIsEven: (SInt) → Bool
SIntIsOdd: (SInt) → Bool
SIntEQ: (SInt,SInt) → Bool
SIntNE: (SInt,SInt) → Bool
SIntLT: (SInt,SInt) → Bool
SIntLE: (SInt,SInt) → Bool
SIntNegate: (SInt) → SInt
SIntPrev: (SInt) → SInt
SIntNext: (SInt) → SInt
SIntPlus: (SInt,SInt) → SInt
SIntMinus: (SInt,SInt) → SInt
SIntTimes: (SInt,SInt) → SInt
SIntTimesPlus: (SInt,SInt,SInt) → SInt
SIntMod: (SInt,SInt) → SInt
SIntQuo: (SInt,SInt) → SInt
SIntRem: (SInt,SInt) → SInt
SIntDivide: (SInt,SInt) → (SInt,SInt)
SIntGcd: (SInt,SInt) → SInt
SIntSIPower: (SInt,SInt) → SInt
SIntBIPower: (SInt,BInt) → SInt
SIntPlusMod: (SInt,SInt,SInt) → SInt
SIntMinusMod: (SInt,SInt,SInt) → SInt
SIntTimesMod: (SInt,SInt,SInt) → SInt
SIntLength: (SInt) → SInt
SIntShift: (SInt,SInt) → SInt
SIntBit: (SInt,SInt) → Bool
SIntNot: (SInt) → SInt
SIntAnd: (SInt,SInt) → SInt
SIntOr: (SInt,SInt) → SInt

4.8 Operations on type BInt

Type BInt is used to represent integers which may be arbitrarily large. The
operations on BInt require dynamic memory allocation and garbage collection.
BIntIsSmall tests whether a value could be represented as a SInt. Operations
have the same meaning as for SInt but will never overflow.

15

BInt0: () → BInt
BInt1: () → BInt
BIntIsZero: (BInt) → Bool
BIntIsNeg: (BInt) → Bool
BIntIsPos: (BInt) → Bool
BIntIsEven: (BInt) → Bool
BIntIsOdd: (BInt) → Bool
BIntIsSingle: (BInt) → Bool
BIntEQ: (BInt, BInt) → Bool
BIntNE: (BInt, BInt) → Bool
BIntLT: (BInt, BInt) → Bool
BIntLE: (BInt, BInt) → Bool
BIntNegate: (BInt) → BInt
BIntPrev: (BInt) → BInt
BIntNext: (BInt) → BInt
BIntPlus: (BInt, BInt) → BInt
BIntMinus: (BInt, BInt) → BInt
BIntTimes: (BInt, BInt) → BInt
BIntTimesPlus: (BInt, BInt, BInt) → BInt
BIntMod: (BInt, BInt) → BInt
BIntQuo: (BInt, BInt) → BInt
BIntRem: (BInt, BInt) → BInt
BIntDivide: (BInt, BInt) → (BInt, BInt)
BIntGcd: (BInt, BInt) → BInt
BIntSIPower: (BInt, SInt) → BInt
BIntBIPower: (BInt, BInt) → BInt
BIntLength: (BInt) → SBInt
BIntShift: (BInt, SBInt) → BInt
BIntBit: (BInt, SInt) → Bool

4.9 Operations on type Ptr

PtrNil: () → Ptr
PtrIsNil: (Ptr) → Bool
PtrEQ: (Ptr, Ptr) → Bool
PtrNE: (Ptr, Ptr) → Bool

4.10 Text operations

FormatXxx takes a value of type Xxx, a character array and an integer index.
The operation formats the value into the character array starting at the position
given by the integer. The result is the number of characters placed in the array.

ScanXxx is the opposite of FormatXxx. It produces a value of type Xxx
from the contents of the character array. The SInt argument is the index of

16

the array element to start at and the SInt return value is the index of the first
unscanned array element following.

FormatSFlo: (SFlo,Arr,SInt) → SInt
FormatDFlo: (DFlo,Arr,SInt) → SInt
FormatSInt: (SInt,Arr,SInt) → SInt
FormatBInt: (BInt,Arr,SInt) → SInt
ScanSFlo: (Arr, SInt) → (SFlo, SInt)
ScanDFlo: (Arr, SInt) → (DFlo, SInt)
ScanSInt: (Arr, SInt) → (SInt, SInt)
ScanBInt: (Arr, SInt) → (BInt, SInt)

4.11 Conversion Operations

SFloToDFlo: (SFlo) → DFlo
DFloToSFlo: (DFlo) → SFlo
ByteToSInt: (Byte) → SInt
SIntToByte: (SInt) → Byte
HIntToSInt: (HInt) → SInt
SIntToHInt: (SInt) → HInt
SIntToBInt: (SInt) → BInt
BIntToSInt: (BInt) → SInt
SIntToSFlo: (SInt) → SFlo
SIntToDFlo: (SInt) → DFlo
BIntToSFlo: (BInt) → SFlo
BIntToDFlo: (BInt) → DFlo
PtrToSInt: (Ptr) → SInt
SIntToPtr: (SInt) → Ptr
ArrToSFlo: (Arr) → SFlo
ArrToDFlo: (Arr) → DFlo
ArrToSInt: (Arr) → SInt
ArrToBInt: (Arr) → BInt
PlatformRTE: () → SInt
PlatformOS: () → SInt
Halt: (SInt) → Nil

5 Semantics of Foam Programs

A Foam program P is a set of Units, with the following conditions:

• P contains at least a single unit.

• One unit in P is the starting unit. A Foam program starts with a call to
the first Prog in the starting unit, with a null environment.

17

• Only globals are shared among the units. Globals are unique by name
and protocol. It follows that two globals with the same name and protocol
must also have the same type. Note: the same global in different units may
appear in different positions. Globals with the same name and different
protocols may be identified, but this is implementation-defined.

• The order of evaluation for the arguments of call is left undefined. An
implementation may specify a particular order.

• The order of evaluation for the arguments of a PCall is related to the spe-
cific protocol being be used. In example, if the protocol is FOAM_Proto_C,
then the C language evaluation order is used.

6 Forms of Foam Code

6.1 Tree format for Foam code

This representation is used by C programs to manipulate Foam code. See the
C header file “foam_c.h”.

6.2 Linear format for Foam code

The purpose of this representation is two-fold:

1. to save foam code compactly in files and

2. to be appropriate for direct interpretation.

The main purpose is (1).
The linear representation is an augmented prefix traversal of a foam tree.
For compactness,

1. only nodes with varying arity indicate the number of descendants (“argc”)
and

2. nodes which contain an integer index or an argc have multiple represen-
tations so the numbers can be be saved in as little space as necessary

3. fields such as builtin operation numbers or type codes are represented as
immediate bytes and are understood by context.

For interpretation,

1. Step numbers used in Goto, If, Select are represented as relative offsets
into the byte code string.

If [expr] <label>

18

Select [expr] < label0 > < label1 > ... < labeln−1 >

Goto <label>

2. The same idea is used for progs, but in this case the offset is to step n, i.e.
just past the end of the last step. This allows whole program bodies to be
skipped when finding/extracting/inflating a subtree in linear format.

Prog <X:prog size> [F][i][t][b][p][l][x][c0][c1] ... [cn−1]

3. All offsets in a given prog are represented in the same format, which is
the format of the Prog instruction.

6.3 Instruction formats

For the linear, byte coded version, variant instruction formats are used to help
represent the code more compactly. The instructions are divided into groups
according to the meaning of the variant formats.

6.3.1 Fixed arity instructions (tree/data args)

NOp
BVal
Ptr
CProg
CEnv
Loose
Kill
Free
Return
Cast
ANew
Clos
Set
Def
AElt
If
Goto
Throw
Catch
Protect
Unit
PushEnv
PopEnv
MFmt

1 form of each instruction 1*24 = 24

19

6.3.2 Fixed arity (data args)

Nil (0 data bytes)
Char char-value (1 data byte)
Bool bit-value (1 data byte)
Byte byte-value (1 data byte)
HInt half-int-value (2 data bytes)
SInt single-int-value (4 data bytes)
SFlo single-float-value (4 data bytes)
DFlo double-float-value (8 data bytes)
Word single-precision-arbitrary (4 data bytes)
Arb double-precision-arbitrary (8 data bytes)

1 form of each instruction 1*10 = 10

6.3.3 Fixed arity + Nary ()

Decl
BInt

DDecl
DFluid
DEnv
DDef
DFmt
Rec
Arr
Select
PCall
BCall
CCall
OCall
Seq
Values
Prog

5 forms of each instruction 5*17 = 85

0 ⇒ gen argc. (4 bytes)
1 ⇒ 1 byte argc.
2 ⇒ argc = 0
3 ⇒ argc = 1
4 ⇒ argc = 2

20

6.3.4 Fixed arity 1 Int index ()

Par
Loc
Glo
Fluid
Const
Env
EEnv
RNew
PRef
EInfo
RCopy
Label

5 forms of each instruction 5*12 = 60

0 ⇒ gen index (4 bytes)
1 ⇒ 1 byte index
2 ⇒ index = 0
3 ⇒ index = 1
4 ⇒ index = 2

6.3.5 Multi-Int index: (including arity)

Lex
RElt
IRElt
TRNew
TRElt
EElt

5 forms of each instruction 5* 6 = 30

0 ⇒ gen indices (4 bytes each)
1 ⇒ 1 byte indices
2 ⇒ ix1 2 bytes, ix2 1 byte, [ix3 1 byte]
3 ⇒ ix1 1 byte, ix2 2 bytes, [ix3 1 byte]
4 ⇒ ix1 1 byte, ix2 1 byte, [ix3 2 bytes]

Total number of instructions including variant forms = 24+10+85+60+30
= 209

21

7 Acknowledgements

Foam was preceded by a number of earlier designs, named SAM for “Scratchpad
Abstract Machine.”

In addition to the authors of this document, many people have contributed
to these earlier designs and their implementations. These individuals include
Florian Bundshuh, Marc Gaetano, Michael Monagan, Simon Robinson, and
Knut Wolf.

22

