
A First Report on the A] Compiler

Stephen M. Watt Peter A. Broadbery Samuel S. Dooley
Pietro Iglio Scott C. Morrison∗ Jonathan M. Steinbach Robert S. Sutor

IBM Thomas J. Watson Research Center
P.O. Box 218, Yorktown Heights, NY 10598 USA

{smwatt,peteb,dooley,iglio,jonms,sutor}@watson.ibm.com

1 INTRODUCTION

The A] compiler allows users of computer algebra to de-
velop programs in a context where multiple programming
languages are employed. The compiler translates programs
written in the A] programming language [24][25] to a low-
level intermediate language, Foam [26], from which it can
generate stand-alone programs, native object libraries to be
linked with other applications, or code to be read into closed
environments. In addition, Foam code may be directly exe-
cuted using an interpreter provided with the A] compiler.

The A] programming language provides support for object-
oriented and functional programming styles. It is “higher-
order” in the sense that both types and functions are first
class, and may be manipulated in the same ways as any
other values. The primary considerations in the formulation
of the language have been generality, composibility, and effi-
ciency. The language has been designed to admit a number
of important optimizations, allowing compilation to machine
code which is in many instances of efficiency comparable to
that produced by a C or Fortran compiler.

The original motivation for A] comes from the field of
computer algebra: to provide an improved extension lan-
guage for the Axiom computer algebra system [14].

Relation to work in computer algebra

From a computer algebra perspective, the most interesting
aspects of the A] compiler are that

• it allows programmers to develop code which can parti-
cipate naturally in both C and Lisp based environments,

• the programmer can decide which primitives must be
most efficient and obtain optimized code for them, and

• serious consideration has been given to the efficiency of
both symbolic and floating point computation.

We put these developments in context to show why we
have taken the present approach.

∗Present address: Autodesk, Multimedia Division, 2320 Marinship
Way, Sausalito, CA 94965 USA.

c© 1994 Association for Computing Machinery. Reprinted from
pp. 25-31 Proc. International Symposium on Symbolic and
Algebraic Computation (ISSAC 94), 20-22 July 1994, Oxford
UK.

The first computer algebra software took the form of li-
braries, intended for use from Fortran or Lisp [5][10][11].
Shortly thereafter, special-purpose systems were introduced
to allow computational input to be given in a more natural
form. Some of these were programming languages backed by
libraries [4][6], while others also provided an interactive pro-
gramming environment [12][13]. These algebra systems were
closed , in the sense that it was not readily possible to call
code written in them from another programming language
environment, such as Fortran, or vice versa.

The use of closed systems has predominated over the
course of three decades, and the computer algebra software
in use today is of this form [7][9][13][14][17][20][23][28]. It re-
mains the case that it is not possible to call programs written
in one of these systems from programs written in another.
Nor is it possible to use general Fortran or C libraries with-
out resorting to some relatively expensive communication
scheme.

One consequence of this is that a great deal of effort is ex-
pended in reproducing the same programs in different com-
puter algebra systems, or reproducing the function of other
libraries within these systems. While there will always be
cases where similar packages are developed independently to
establish legal ownership for commercial development, it is
regrettable that researchers must reproduce their programs
in several different systems to make them available to their
colleagues.

There have been a number of proposals to improve on
this situation with structured data communication between
processes [16][29][30]. This is only a partial solution, how-
ever, since IPC-based methods incur a significant communi-
cation overhead which can easily dominate the cost of O(n)
problems.

Another partial solution has been to build special-purpose
interfaces to particular libraries. While this is useful for the
particular cases handled, it does not accomodate new or
third party libraries as they become available.

The A] compiler presents an alternative approach to the
problem: sharing code.

A] libraries participate on an equal footing with other
libraries in the host environment. Functions in A] libraries
may call and be called by functions in other libraries in the
normal way and it is possible to share data in forms required
by other programs. This makes it possible, for example, to
use libraries for numeric problem solving or scientific visu-
alization.

This approach is standard practice in the larger world,
but has been abandoned for decades in mainstream com-
puter algebra software. This discrepancy is perhaps the re-

25

sult of at least two pressures: users have come to appreciate
the value of interactive environments for computer algebra,
and the languages incorporated in computer algebra systems
have allowed programs to be written more conveniently than
the alternatives. With A], however, a user may prototype an
application within an interactive environment, such as the
Axiom system, or A] with the Foam interpreter, and later
generate code to be linked with other applications. Further-
more, it is not unreasonable to anticipate running the same
A] code in “closed” systems by taking the approach used
with Lisp: from Foam generating source code to load into
Maple, for example.

A second problem with closed systems is that certain
computations will be much slower than they need to be.
This arises because these systems are typically structured
as a kernel , written in another programming language, and
a library providing an assortment of additional functions.
The operations coded directly in the kernel can be two or
three orders of magnitude more efficient than the same op-
erations written at the library level. It is not possible to
know in advance what the efficiency-critical primitives will
be for the complete spectrum of mathematics so key prim-
itives for new application areas will likely be missing from
the system kernel. These will have to be written at the li-
brary level, with the associated slow-down. A case in point
is GAP [20], a system very similar to Maple, but with a focus
on group theoretic computation. GAP was initially written
because the necessary kernel-level efficiency for primitives in
group computations could not be achieved by writing Maple
library code.

The A] compiler addresses this issue by giving the pro-
grammer the ability to develop optimized code for whatever
primitives are required.

In practice, these problems are not as severe in Lisp-
based systems [13][14][23]. Users of Lisp-based algebra sys-
tems may make their own kernel extensions by writing and
compiling Lisp code. If the underlying Lisp system supports
it, an implementation-specific foreign function interface can
provide a mechanism to access C or Fortran libraries.

This direction, however, has drawbacks: In practice, to
use a foreign library from Lisp it is necessary to cover the
foreign functions with wrappers to convert between the Lisp
and the foreign data representations. This may involve copy-
ing on each call and return and introduces semantic difficul-
ties when considering sharing of substructure and pointer
equality. Next, the Lisp foreign function interface will have
a fixed vocabulary of understood data transformations and
will not usefully pass function values, file pointers, or other
interesting composite objects. Finally, it is necessary to en-
sure that the values passed to foreign functions do not re-
locate (e.g. by garbage collection) during the course of ex-
ecution, and any pointers captured by the foreign functions
migth be invalid in subsequent calls. This makes it very dif-
ficult to write code to embed in non-Lisp applications, since
the controlling side will retain state between call-backs. Be-
cause of these difficulties, Lisp foreign function interfaces do
not promise a great improvement over IPC methods as a
means of accessing libraries.

At this point, one might ask why not move to stand-alone
programs based on a mathematical library for C++ [22] or
some other programming language. Our response is two-
fold: First, we felt that existing object systems were not
capable of modelling the intricate relations among algebraic
structures sufficiently naturally. Second, it is valuable to
maintain a path of access to the existing computer algebra
software base.

Relation to work in compilers

From a compiler implementation perspective, the most in-
teresting aspects of the A] compiler are:

• type inference in the context of overloaded identifiers
and type constructors, with types being first class values,

• the combination of cross-file inlining and data structure
elimination to reduce overhead

• the use of dataflow analysis to reduce flow graphs
produced by constructs such as generators

• efficient implementation of types as run-time values,
• storage management performed through a run-time

conservative garbage collector [2], and
• portability across many hardware platforms and

operating systems.

As far as we are aware, the first three of these items are new.
The remaining items have novel aspects.

2 COMPILER ORGANIZATION

External characteristics

The A] compiler accepts several forms of source and can
potentially produce multiple files, each containing a different
representation of the program.

The most common use of the compiler is to take a source
file and produce a platform-independent binary object “aso”
file. The aso file contains types and documentation for ex-
ports, intermediate code, and other information. It is pos-
sible to produce C, Lisp or Foam files from an aso file. It
is also possible to create a platform-specific object file or
a symbol table file. The symbol table file contains human-
readable type and documentation information in a form suit-
able for use by other programs. Any combination of these
files can be produced in a single invocation of the compiler.

The generated C or Lisp code is designed to be used
either by itself or as part of a larger software system. The
generated code uses a judicious selection of macros for which
sets of default definitions are provided.

The compiler has an additional interface to allow inter-
active investigation of compile-time errors. This has turned
out to be very convenient for pinpointing errors with heav-
ily overloaded operations. The information needed to fix the
error can be located quickly since it is not lost in a flood of
preemptive detail. The A] compiler can also generate error
messages in a special format so that it can interact with
other programs. An X-Windows/Motif tool is supplied for
inspecting compile-time errors in that graphical user inter-
face environment.

A full description of the external characteristics of the
compiler is given in the user’s guide [25].

Internal structure

The compiler works in several passes, which may be broadly
grouped as

• syntactic analysis: source inclusion, lexical analysis,
parsing, macro expansion,

• semantic analysis: scope binding, type inference,
• intermediate Foam code generation,
• intermediate code optimization (several individual passes),
• concrete code generation: to C or Lisp.

The compiler can generate or accept files between any of
these groups. For example, when machine-generating A]

26

programs it is possible to bypass the syntax analysis and
pass generated abstract syntax trees into the semantic anal-
ysis phase.

The A] compiler is about 120,000 lines of C code and
6000 lines of A] code in its current implementation. About
1% of the compiler is code for Lisp generation and about 3%
is code for C generation. Some code is shared between the
general library and the default A] run time system. Most
of the A] run-time system is written in A], with the rest
written in C or Lisp depending on the platform.

3 MAJOR COMPONENTS

Type inference

The largest single phase of the compiler is the type inference
phase. As implemented in the A] compiler, type inference
determines a unique interpretation for every identifier in the
source text, and assigns a unique type for every node in the
abstract syntax tree. If this is not possible, the reasons are
reported.

The algorithm which is responsible for making these as-
signments is complicated by the following features of the A]

type system:

• functions, domains, and categories as first-class values;
• parameterized domain and category constructors, param-

eterization of functions over domains, categories, other
functions, and data values;

• dependent function types;
• categorical inheritance;
• categorical default implementations;
• conditional declarations and definitions;
• overloaded identifier names;
• nested function definitions;
• recursion in the types of domains and categories; and
• domain and category extension definitions.

A “domain” corresponds closely to an abstract type or
class in other languages. For an explanation of these features
the reader is referred to the language reference [24].

Briefly, the type inference algorithm proceeds in two ma-
jor passes. When presented with an abstract syntax tree,
the first pass collects the possible interpretations for each
leaf node in the tree, and propagates a set of possible types,
from the bottom up, for each node in the tree. The second
pass traverses the tree to propagate type constraints which
are inherent in the structure of the program, and uses these
constraint types to select a unique interpretation for each
leaf node. As the traversal unwinds back toward the root of
the tree, a unique type is then computed for each node in
the tree.

Interpretations for identifiers which appear in a program
may be found from declarations in the current lexical scope
in which the identifier appears, or may be found by import-
ing definitions from (possibly parameterized) domains which
are defined elsewhere. Definitions available via an import
statement are visible throughout the lexical scope in which
the import statement appears. Therefore the interpretation
of each type which is imported in the current scope must be
known before the set of possible meanings for an identifier
can be collected. As a result, the bottom-up pass of the
type inference phase, upon entry into a given lexical level,
recursively invokes the type inference algorithm on the set
of types which are used in that level.

The definitions of domains and categories in A] may
involve the inheritance of definitions from other domains

and/or categories. As a result it is often the case that the
interpretation of one domain D must be completed before
the interpretation of another can be determined. These de-
pendencies may be recursive, as in the following declaration:

Ladder(D: with (f: E->E), E: with (g: D->D)): with
Ladderf: E -> E
Ladderg: D -> D

== add
import from D;
import from E;
...

The parameters D and E of Ladder are domains, each of
which exports an operation, whose type involves the other
parameter. Within the definition of Ladder the definitions of
f and g are available, and can be used to define Ladderf and
Ladderg. The types of D and E are mutually-recursive. These
must be determined by a process of simultaneous type in-
ference which interleaves the usual bottom-up and top-down
phases on each set of mutually-recursive types to determine
unique interpretations.

The inference algorithm will be described in more detail
in another paper.

Abstract Machine

A major part of the A] compiler is concerned with producing
optimized intermediate code, or Foam code. “Foam” is an
acronym for “First Order Abstract Machine.” The abstract
machine is first order in the sense that it does not treat its
types as values.

Foam is designed to contain only those concepts which
can have an efficient realization in both Lisp and C. For
example it is not possible to take an address of a variable
because that would be inefficient in Lisp (a closure would
be created). Nor are dynamic type tests allowed, as that
would be inefficient in C. We have been asked how the lack
of address arithmetic limits the potential performance of
compiled A] vs hand-coded C which uses pointers to traverse
arrays in inner loops. It is our experience that this is a minor
concern on current architectures with optimizing compilers.

Foam is not restricted to the precise intersection of C
and Lisp. Some aspects are handled by support libraries.
Big integer arithmetic is assumed as part of Foam, and this
is provided as a library for C. Also the memory model differs
from both C and Lisp in some details: garbage collection is
assumed (this is a run time support library in C) and it is
possible to make an explicit request to free storage (in Lisp
this is ignored).

A Foam program is comprised of a flat sequence of com-
mands. Foam types have various sizes and uses. or example,
“Char” is a text character whereas “Byte” is a character
sized integer, “DFlo” is a double precision floating point,
“Ptr” can point to an array, record, arbitrary sized inte-
ger, etc. Reference instructions contain the kind of refer-
ence and the position, e.g., “Loc 3” refers to the third local
variable of the current function and “RElt 7 x 2” indicates
the 2nd field of the record x, using the 7th layout format.
Foam operations consist of instructions, such as “If b n,”
which indicates that if b is true then proceed to label n, and
builtin operations, e.g., “HIntLT a b” is a half-word-integer
less-than comparison. The builtin operations are type spe-
cific and conversion operations are generally provided. A
detailed description of Foam is given elsewhere [26].

27

The abstract machine does not support asharp types di-
rectly and relies on the code generator to produce appropri-
ate calls to create and maintain types. This has the advan-
tage that one can use these calls to add new representations
of types to the system. These representations may be writ-
ten in A]itself, or some other language. This is used in order
to interface with the Axiom system, and may be extended
to other object/type systems, such as CLOS [21] and C++.

Optimization

The A] compiler performs a number of optimizations on
the intermediate Foam code. Further optimizations may be
performed downstream by a C or Lisp compiler, depending
on the environment.

The criterion for deciding which Foam optimizations to
include in the A] compiler has been to select those optimiza-
tions which have maximum payoff but cannot be expected
from a downstream compiler. These optimizations are:

Program specialization is used to exploit specific instances
of generic type constructors. For example, if the generic con-
structor Complex is used as Complex(DoubleFloat), then
specialized versions of the complex arithmetic operations
are produced at compile-time. On the other hand, if the
constructor is used as Complex(R), where R is a parameter,
then code is generated which binds the operations from R
and Complex(R) at run-time.

Procedural integration (or inlining) is used to eliminate
function calls. This is particularly effective where many ex-
ported operations are simple combinations of other func-
tions. The compiler performs cross-file procedural integra-
tion by extracting code bursts from other compiled files.
This optimization is only performed when a client of a pack-
age declares that it is willing to depend on the package’s
implementation.

Data structure elimination converts heap-allocated struc-
tures to collections of temporaries, when possible. This op-
timization often eliminates the need to heap-allocate tempo-
rary results. For example, arithmetic operations on rational
or complex number structures are converted into sequences
of component operations. This optimization allows efficient
code without complicated explicit reference accounting on
the part of the programmer.

Dataflow analysis of condition variables eliminates com-
puted branches which arise from inlining generators. The
analysis identifies generator control nodes and splits them
to form reducible flow graphs. This allows programs to use
the high-level control abstractions without a performance
penalty.

Some other optimizations that would be expected of any
downstream concrete-code generator are performed on Foam
as prerequisites of other optimizations. These include: copy
propagation, dead variable elimination, dead code elimina-
tion, constant folding (including big integer arithmetic), and
various peep-hole optimizations.

Together these optimizations seem quite effective. In
particular, the combination of cross-file inlining and data
structure elimination produces significant gains for the style
of programming encouraged by the language.

While we have not performed a careful comparison, cer-
tain high-level examples generate code which is comparable
in performance to optimized hand-written C.

4 TARGETS

Presently, only C and Lisp code are generated directly from
Foam. By compiling generated C into object code, A] pro-
grams may participate in open software architectures. The
A] compiler treats Lisp systems as if they were closed, in
the sense of Section 1. We generate Lisp code from Foam,
and use the Lisp system’s compiler, if it has one, to generate
Lisp-loadable modules.

C generation

C code can be generated in platform-independent K&R [15]
or ANSI [1] form. This code uses macros for operations
important in efficient arithmetic: double word multiply, di-
vision with remainder, multiply-add, etc. If the A] compiler
is used in conjunction with a C compiler which supports
asm statements, these macros can be redefined to use single
machine instructions. With appropriate declarations in the
A] program, the generated C code uses appropriate naming
and linkage conventions to allow access to other libraries,
for example, the X Window System.

A default run-time library is supplied for storage man-
agement, big integer arithmetic, and so on. The storage
manager assumes that other storage managers may be oper-
ating simultaneously. It allows deallocation of store as well
as garbage collection. The garbage collector assumes that
pointers may be captured by other programs so it will not
collect storage which is referenced by global data, foreign
heaps, the stack or registers.

By replacing just one header file, the C code may use
other packages for this support.

Lisp generation

The generated Lisp code is heavily abstracted by macros
which have access to information that is potentially useful to
a Lisp compiler. It would be straight-forward in principle to
provide macro implementations for several dialects of Lisp.
We currently provide only Common Lisp [21] versions of
the macros, Standard Lisp [18] and Scheme [19] were also
considered in their design.

Macros are used to provide low-level type information
is given for all variables. All operations are implemented in
terms of monomorphic macros (for example, fixnum “+” uses
a different macro than double precision “+”.) The Common
Lisp implementation uses all this information to produce
fully proclaimed code which a good Lisp compiler can use
to avoid all run-time type tests.

As discussed earlier, some Lisp systems do provide mech-
anisms for linking foreign functions. It would therefore be
possible, in principle, to instead generate C code and use
the foreign function interfact to link the resulting objects
into the Lisp system. This, however, would be highly un-
portable accross different Lisp systems and would suffer all
the drawbacks described in Section 1.

Portability

The compiler development work is regularly checkpointed,
and as a foremost consideration, portability is tested against
a wide variety of platforms. The A] source compiles without
warnings on many compilers, including: Borland, DEC, Free
Software Foundation, IBM, Metaware, and Mips.

Test platforms include several operating systems: DOS,
CMS, VMS, OS/2 and many UNIX derivatives, as well as

28

hardware architectures with different word sizes, byte or-
ders, and character and floating point representations. These
include: Intel 8086, 80X86, Motorola 680X0, IBM 370, RT
PC, and RS/6000, DEC Alpha AXP, Sun SPARC, and MIPS
processors. Run-time support is 16/32/64 bit clean.

Platform-independent object files store integers, charac-
ters and floating point data in a standard format, which pre-
serves all representable floating point numbers in the native
architectures. (Some formats, such as XDR, lose significant
bits or exponent range.)

5 EXAMPLE

The following A] program computes the Mandelbrot set by
determining the number of iterations of the function f(z) =
z2 + c required to send each point in a given region of the
complex plane to a point outside the circle of radius 2:

-- Computation engine for the X mandelbrot program.
#include "aslib.as"

-- Macros
I ==> SingleInteger
F ==> DoubleFloat
CF ==> Complex DoubleFloat

maxIters: I == 100

import from CF -- Make operations from CF visible.
inline from CF -- Give optimizer permission to depend on CF.

default ar, br, ai, bi: F
default nr, ni: I

++ Draw the Mandelbrot set in the given region.
++ The pixel drawing function is passed as a parameter.

drawMand(ar,br,nr, ai,bi,ni, draw: (I,I,I,I)->I): () ==

mandel(c: CF): I ==
z: CF := 0
n: I := 0
for it in 1..maxIters while norm z < 4.0 repeat

z := z*z + c
n := it

n

for i in step(ni)(ai,bi) for ic in 0..ni-1 repeat
for r in step(nr)(ar,br) for rc in 0..nr-1 repeat

nit := mandel complex(r, i)
draw(rc, ic, maxIters, nit)

The function drawMand illustrates several interesting fea-
tures of the A] language: domains (the DoubleFloat argu-
ment to Complex) and functional closures (the draw param-
eter to drawMand) as first-class objects, domains parameter-
ized over other domains (Complex(DoubleFloat)), cross-file
inlining, inlining of functions from parameterized domains,
and iteration using generator functions (step(ni)(ai,bi))
These features are described in more detail in [24].

The non-optimized intermediate Foam code generated
from the above program illustrates the character of the ab-
stract machine. The code fragment shown below is produced
from the inner loop which steps the variables r and rc in
parallel.

(Label 2)
(Set (Loc 10 r) (CCall Word (Loc 13)))
(If (EElt 4 (Loc 12) 0 0 done) 3)
(Set (Loc 9 rc) (CCall Word (Loc 16)))

(If (EElt 4 (Loc 15) 0 0 done) 3)
(Set (Loc 0 nit)

(OCall Word (Const 2 mandel) (Env 0)
(CCall Word (Lex 1 18 complex)

(Loc 10 r) (Loc 2 i))))
(CCall Word (Par 6 draw) (Loc 9 rc) (Loc 1 ic)

(Lex 1 1 maxIters) (Loc 0 nit))
(Goto 2)

A few words might make this code less cryptic. The in-
structions Par and Loc refer to the current function’s param-
eters and temporary variables. They are annotated with the
name from the user-level program, when there is one. The
Lex instruction refers to variables in the lexical environment
of the current function. EElt refers to variables in other lex-
ical environments. The OCall and CCall instructions call
programs as function-environment pairs or closures respec-
tively. The first parameter in OCall and CCall special form
is the Foam type of the return value. The second argument
to the If instruction is a branch label.

The optimized Foam code demonstrates the level of effi-
ciency which can be realized by programs written in A]:

(If (Loc 33 done) 39)
(Set (Loc 35 f0) (DFlo 4.000000e+00))
(Set (Loc 38 f0) (BCall DFloTimes (Loc 57 f0) (Loc 57 f0)))
(Set (Loc 39 f0) (BCall DFloTimes (Loc 58 f0) (Loc 58 f0)))
(Set (Loc 40 f0) (BCall DFloPlus (Loc 38 f0) (Loc 39 f0)))
(If (Cast Word (BCall DFloLE (Loc 35 f0) (Loc 40 f0))) 39)
(Set (Loc 41 f0) (BCall DFloTimes (Loc 57 f0) (Loc 57 f0)))
(Set (Loc 42 f0) (BCall DFloTimes (Loc 58 f0) (Loc 58 f0)))
(Set (Loc 55 f0) (BCall DFloMinus (Loc 41 f0) (Loc 42 f0)))
(Set (Loc 43 f0) (BCall DFloTimes (Loc 57 f0) (Loc 58 f0)))
(Set (Loc 44 f0) (BCall DFloTimes (Loc 58 f0) (Loc 57 f0)))
(Set (Loc 56 f0) (BCall DFloPlus (Loc 43 f0) (Loc 44 f0)))
(Set (Loc 57 f0) (BCall DFloPlus (Loc 55 f0) (Loc 52 f0)))
(Set (Loc 58 f0) (BCall DFloPlus (Loc 56 f0) (Loc 48 f0)))
(Set (Loc 9) (Loc 11))
(Goto 38)
(Label 39)
(Set (Loc 0 nit) (Loc 9))
(CCall Word (Par 6 draw) (Loc 2 rc) (Loc 1 ic)

(Lex 1 1 maxIters) (Loc 0 nit))
(Goto 2)

The above code fragment is the body of the same loop,
after functions (e.g. mandel) have been inlined and non-
escaping record values (e.g. complex numbers) have been
replaced by collections of temporaries.

As might be expected, the concrete C code generated by
the back-end of the compiler closely parallels the optimized
Foam code:

if (T33_done) goto L39;
T35_f0 = 4.000000e+00;
T38_f0 = T57_f0*T57_f0;
T39_f0 = T58_f0*T58_f0;
T40_f0 = T38_f0 + T39_f0;
if ((FiWord) (T35_f0 <= T40_f0)) goto L39;
T41_f0 = T57_f0*T57_f0;
T42_f0 = T58_f0*T58_f0;
T55_f0 = T41_f0 - T42_f0;
T43_f0 = T57_f0*T58_f0;
T44_f0 = T58_f0*T57_f0;
T56_f0 = T43_f0 + T44_f0;
T57_f0 = T55_f0 + T52_f0;
T58_f0 = T56_f0 + T48_f0;
T9 = T11;
goto L38;

L39: T0_nit = T9;
fiCCall4(FiWord, P6_draw, T2_rc, T1_ic,

l1->X1_maxIters, T0_nit);
goto L2;

29

Each identifier is starts with a letter to indicate its kind
(e.g., T: local, P: parameter, X: lexical, etc.) and is enumer-
ated to handle name overloading. The statement fiCCall4
is a macro to call a functional closure which takes four ar-
guments. It takes the function return type, then the closure
value, followed by the four function parameters.

The corresponding Lisp code is similar and is omitted
for brevity. Macros are used for the various primitive opera-
tions to allow the Lisp compiler to generate better code. For
example, the multiplications in this example would be gen-
erated as calls to “DFloTimes,” which is defined for Common
Lisp as

(defmacro |DFloTimes| (x y)
‘(the |DFlo| (* (the |DFlo| ,x) (the |DFlo| ,y))))

and DFlo is defined using deftype.

6 BENCHMARKS

The table below shows a few preliminary benchmarks ob-
tained from A], and compares them with equivalent pro-
grams in Axiom and C. The A] figures were obtained for
compilation to both C and Lisp target environments.

Program S1 is a symbolic computation benchmark, per-
forming polynomial arithmetic to compute a Hilbert func-
tion of a monomial ideal [3]. This test compares A] on Lisp
and C bases against the same computation in Axiom. This
test is not applicable to C so no figures appear in those
positions in the table.

Program N1 is a numeric benchmark computing a 600
by 600 region of the Mandelbrot set using a naive method.
The A] version of the code is that given in Section 5. The
Axiom version is a simple transcription of this program. The
C version is carefully written, with the complex arithmetic
expanded by hand to operations on the real and imaginary
parts.

Platform S1-unopt S1-opt N1-unopt N1-opt

Axiom — 8.5 — 2230.0
A] (Lisp) 21.0 4.0 >4000.0 48.0
A] (C) 7.2 1.4 847.0 9.7
C — — 11.7 7.9

For A] and C, the tests have been run both with and
without compiler optimizations in effect. In Axiom the op-
timizer is always on so no entries appear in the “unopt”
columns for that row.

All times are in seconds, measured on an IBM RS/6000
model 530E. The same XLC C compiler was used for both
the C and A](C) timings and the same AKCL Lisp environ-
ment was used for both Axiom and A](Lisp). The Axiom
time includes garbage collection, and excludes time needed
to initialize the domains and packages used by the program.
The A] time includes garbage collection, as well as initial-
izations. An extended version of this paper provides the
precise benchmark examples [27].

As can be seen from the above, both Axiom and A] gen-
erate suboptimal code for the test N1. The A] compiler is
then able to transform this code into equivalent code that
runs at nearly the same speed as carefully written C.

Acknowledgements

The authors would like to thank the many other people who
have contributed one way or another to the current and

previous compiler implementations. Earlier, experimental
implementations had significant contributions from William
Burge, Marc Gaetano, Michael Monagan, Simon Robinson,
Knut Wolf and others. Gerald Baumgartner contributed to
the current implementation in the summer of 1993.

The authors would also like to those who have taken the
time to β-test the compiler, and Barry Trager for providing
the S1 benchmark example.

References

[1] American National Standard Programming Language C,
ANSI X3.159-1989, American National Standards Institute,
1989.

[2] H.J. Boehm and M. Weiser, Garbage collection in an Unco-
operative Environment, Software Practice and Experience,
September 1988.

[3] Bigatti, Caboara, Robbiano, On the Computation of Hilbert-
Poincare Series, AAECC vol 2, Jan 1991, pp 21–33.

[4] S.R. Bourne and J.R. Horton, The CAMAL System Manual,,
Computer Laboratory, Cambridge, 1971.

[5] W.S. Brown, The ALPAK System for Nonnumerical Algebra
on a Digital Computer, Bell Systems Tech. Journal, Murray
Hill, 1963.

[6] W.S. Brown, ALTRAN User’s Manual, Bell Laboratories,
Murray Hill, 1973.

[7] J. Cannon and C. Playoust, An Introduction to MAGMA
University of Sydney, 1993.

[8] B.W. Char, K.O. Geddes, W.M. Gentleman and G.H.
Gonnet, The design of Maple: A compact, portable, and
powerful computer algebra system, in Proc. EUROCAL ’83,
Springer Verlang LNCS 162, 1983.

[9] B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B.
Monagan and S.M. Watt, Maple V Language Reference
Manual, Springer Verlag, 1991.

[10] G.E. Collins, PM, A System for Polynomial Manipulation,
Communications of the ACM 9, 1966.

[11] G.E. Collins, The SAC-1 System: An Introduction and Sur-
vey, ACM, Proceedings of the 2nd Symposium on Symbolic
and Algebraic Manipulation, 1971.

[12] C. Engelman, MATHLAB: A Program for On-line Assis-
tance in Symbolic Computations, Proceedings of FJCC,
1965.

[13] A.C. Hearn, Reduce 3 User’s Manual, version 3.3 Rand Cor-
poration, 1987.

[14] R.D. Jenks and R.S. Sutor, Axiom — The Scientific Com-
putation System, Springer Verlag, 1992.

[15] Brian W. Kernighan and Dennis M. Ritchie, The C Pro-
gramming Language, First edition, Prentice Hall, 1978.

[16] J. Purtilo, A Software Interconnection Technology, UMCP,
Computer Science Department TR-2139, 1988.

[17] A. Rich and D. Stoutemyer, DERIVE Reference Manual,
SoftWarehouse, 1992.

[18] J. Marti, A.C. Hearn, M.L. Griss, and C. Griss, Standard
LISP Report, SIGPLAN Notices 14, 1979.

[19] Guy L. Steele Jr.and G.J. Sussman, The Revised Report on
SCHEME: A Dialect of LISP, MIT Artificial Intelligence
Lab Memo 452, 1978.

[20] M. Schönert, GAP - Groups, Algorithms, and Programs,
Lehrstuhl D für Mathematik, Rheinisch Westfälische Tech-
nische Hochschule, Aachen, Germany, Third edition, 1993.

[21] Guy L. Steele Jr. Common Lisp: The Language, Second
edition, Digital Press, 1990.

30

[22] Bjarne Stroustrup, The C++ Programming Language, Sec-
ond edition, Addison-Wesley, 1991.

[23] MACSYMA Reference Guide, Symbolics Inc, 1985.

[24] S.M. Watt, A] Language Reference, V 0.35 , IBM Research
Report 19530, 1994.

[25] S.M. Watt, P.A. Broadbery, S.S. Dooley, P. Iglio, S.C. Morri-
son, J.M. Steinbach and R.S. Sutor, A] User’s Guide, NAG
Ltd, 1994.

[26] S.M. Watt, P.A. Broadbery, P. Iglio, S.C. Morrison and J.M.
Steinbach, Foam: A First Order Abstract Machine, V 0.35 ,
IBM Research Report RC 19528, 1994.

[27] S.M. Watt, P.A. Broadbery, S.S. Dooley, P. Iglio, S.C. Mor-
rison, J.M. Steinbach and R.S. Sutor, A First Report on the
A] Compiler (including benchmarks), IBM Research Report
RC 19529, 1994.

[28] S. Wolfram, Mathematica: A System for Doing Mathematics
by Computer, Second edition, Addison-Wesley, 1991.

[29] Mathlink, Wolfram Research Inc.

[30] OpenMath, Workshop notes, ETH Zürich, 1993.

31

