
On the Implementation of Dynamic Evaluation

P. A. Broadbery
The Numerical Algorithms Group, Ltd

Wilkinson House, Jordan Hill Road, Oxford, OX2 8DR, UK

peterb@nag.co.uk

T. Gómez-Dı́az ∗

Laboratoire d’arithmétique, calcul formel et optimisation (URA 1586)

123, Av. Albert Thomas. University of Limoges, France

tgomez@marie.polytechnique.fr

S. M. Watt
IBM T.J. Watson Research Center

P.O. Box 218, Yorktown Heights, NY 10598 USA

smwatt@watson.ibm.com

Abstract

Dynamic evaluation is a technique for producing multiple
results according to a decision tree which evolves with pro-
gram execution. Sometimes it is desired to produce results
for all possible branches in the decision tree, while on other
occasions it may be sufficient to compute a single result
which satisfies certain properties. This technique finds use
in computer algebra where computing the correct result de-
pends on recognising and properly handling special cases
of parameters. In previous work, programs using dynamic
evaluation have explored all branches of decision trees by
repeating the computations prior to decision points.

This paper presents two new implementations of dynamic
evaluation which avoid recomputing intermediate results.
The first approach uses Scheme “continuations” to record
state for resuming program execution. The second imple-
mentation uses the Unix “fork” operation to form new pro-
cesses to explore alternative branches in parallel.

These implementations are based on modifications to
Lisp- and C-based run-time systems for the Axiom Version
2 extension language (previously known as A]). This allows
the same high-level source code to be compared using the
“re-evaluation,” the “continuation,” and the “fork” imple-
mentations.

∗Partially supported by IBM Research contract N. 40140052 and
PoSSo Esprit/Bra 6846

c© 1995 Association for Computing Machinery.

Reprinted from pp. 77–84, Proc. 1995 International Sympo-
sium on Symbolic and Algebraic Computation (ISSAC 95),
A. H. M. Levelt editor, ACM Press 1995.

1 INTRODUCTION

Consider the following example:

rank

(
1 1
1 a

)
When examining this example it is clear that the entries
are of two different kinds: some are numbers and one is a
parameter. The value of this expression is:

1 if a = 1
2 if a 6= 1

and this can be obtained easily by hand. When computing
the rank of the matrix, the question a = 1 appears. Ob-
viously, if one does not know whether a is equal to 1, both
results are possible, and if one computes using both possi-
bilities, one gets the right answer.

This, however, is not what one gets using a computer
algebra system; there, the usual answer is simply “2”. Com-
puter algebra systems will normally provide only one result,
possibly querying the user or selecting the “more general”
branch during the course of the computation. This can lead
to problems when the conditions under which the branch
is valid are not recorded. For example, related questions
can arise during the course of a computation, and there is
no guarantee that the results of querying the user or auto-
matically selecting branches will be consistent. Even when
the choices are consistent, the conditions for validity are not
presented as part of the answer in available algebra systems.

A proposal has existed for some time in the Maple com-
munity to return this list of conditions via a variable, the
“proviso” [CJ], and an experimental version of Maple’s ”so-
lve” command has been created to test these ideas [La].

The second difficulty is to obtain a complete solution cov-
ering all cases of a general mathematical problem. There do
exist packages for particular algorithms which return results
covering different cases (as for example [Si]). The next step
is to understand how to use such packages together, compos-
ing the results of sub-problems. This is not straight-forward,

77

since the course of an algorithm will likely vary depending
on the conditions placed on the different cases. One does not
wish to obscure the intent of every function in an algebra
system with back-tracking logic. Even if one were willing to
accept this, it would be necessary to modify all of the code
in the entire system.

Dynamic evaluation addresses this problem and gives a
method of proceeding when there are many possibilities for
the answer [DR]. It has been implemented on the com-
puter algebra system Axiom Version 1 [JS] and has been
applied first in computations involving algebraic numbers
[DDD, DD, Du], which are considered as a special kind of
parameter. Dynamic evaluation is intrinsically parallel, but
in earlier implementations the parallelism is only simulated,
and some parts of the computation are performed many
times. This redundant computation was unavoidable in the
Axiom system, as it provides no mechanism for restarting a
computation at a point in the middle of a program.

A possible way of avoiding redundant computation is to
use continuations [R4R]. Continuations provide a mecha-
nism for marking a point in a computation (in the middle of
an equality in our example) and to return to this point as
many times as desired. This allows the back-tracking prim-
itive that dynamic evaluation needs. The question now is
how to use continuations from within a computer algebra
system. This has been made possible by the new Axiom
compiler, called A].

In this paper we describe dynamic evaluation and its
utilisation in some computations involving parameters. We
describe how continuations may be used to avoid redundant
computation in the dynamic evaluation of a program, and
how continuations may be used from within the Axiom Ver-
sion 2 system. Section 2 describes the form of the domains
over which dynamic evaluation can be made. This section
then goes on to describe the splitting trees which can be
used to represent a particular computation over these do-
mains. This section then gives a more extended example
of such a tree. Section 3 describes the implementations of
dynamic evaluation, and describes the interface to A].

2 DYNAMIC EVALUATION AND
COMPUTING WITH PARAMETERS

Dynamic evaluation is a process of calculation that allows
the execution of a program even where several answers are
possible for some questions appearing in the program. It is
described rigorously using sketch theory [DR].

Dynamic evaluation was first applied to computations
with algebraic numbers, implemented as the dynamic alge-
braic closure of a field, first written in Reduce (known as
the D5 system), and later in Axiom [DDD, DD, Du]. In
this program the parameters are algebraic numbers, repre-
sented by symbols under algebraic constraints. This domain
handles questions of equality over itself, using an algorithm
based on the gcd.

The Axiom version of the dynamic algebraic closure is
composed of several categories, domains and packages [Du]1.
In particular there is the control package with the function
allCases. This function manages the progress of a dynamic
evaluation. It is done in a general way that is independent
of the particular application under consideration. This was
possible because dynamic evaluation is a general principle,
and also thanks to the polymorphism of Axiom.

1this version is referred to later as the old implementation of dy-
namic evaluation

Other applications of dynamic evaluation implemented
in Axiom are, for example, the dynamic algebraic real closure
[DGV] and the dynamic constructible closure [Go]. They
use (without modification) the same control package. In the
dynamic algebraic real closure parameters are also algebraic
numbers, but additionally allow sign tests (>). The sign test
implies the use of algorithms from real closed fields which
makes the implementation more difficult (in fact, this work
is still in progress).

The dynamic constructible closure of a field allows only
the equality test, but here one deals with parameters in a
more general sense than the algebraic one. In this domain
one can get the full answer for the example in the introduc-
tion. As in the algebraic case, the gcd is the tool used in
answering equality tests. We explore this domain further in
the next section.

2.1 The Dynamic constructible closure

Dynamic constructible closure is an Axiom constructor (i.e.
a domain-producing function) that provides parameters. It
needs a ground field K, which can be any field and produces
a new Field with additional operations. If K is a subfield of
complex numbers, the domain deals with complex parame-
ters, that is parameters that take a complex number as their
value.

In Axiom, one builds the dynamic constructible closure
of a field K in the following way:

CL:= DynamicConstructibleClosure(K)

The result is a Field which also provides a function to intro-
duce parameters:

newElement: Symbol -> CL

In addition, there are two functions to impose or forbid val-
ues for the introduced parameters, i.e. imposing constraints
over the parameters:

areEqual: (CL,CL) -> Boolean
areDifferent: (CL,CL) -> Boolean

The boolean result of these operators says whether a new
constraint is compatible with the previous ones. Constraints
over parameters express the possible values for a parameter.
At the moment of their introduction, they are reduced into
a standard form in a recursive way, which reduces its pre-
sentation to the case of a parameter a over the ground field
K. The constraints on a are in one of the following forms:

• anyElement: there is no constraint on a (this means
that a can take any value)

• algebraic: there is a constraint of type P (a) = 0 with
P a monic univariate polynomial of positive degree
with coefficients in K (this means that a can take as
value any zero of P).

• exception: there is a constraint of type

P1(a) 6= 0 and . . . and Pk(a) 6= 0

with P1, . . . , Pk monic univariate polynomials of posi-
tive degree with coefficients in K and pairwise coprime
(this means that a can take any value different from
any zero of any of the polynomials P1, . . . , Pk)

78

•

?
a:= newElement(’a)

?
any a

areDifferent(a,1)

?
a 6= 1

true

•

?
a:= newElement(’a)

?
any a

a = 1

�
�

�	
a 6= 1 @

@
@R

a = 1

false true

•

?
a:= newElement(’a)

?
any a

areEqual(a,1)

?
a = 1

true

Figure 1: Three basic trees.

In addition, when the characteristic of the ground field is
zero, we can suppose that polynomials P, P1, . . . , Pk above
are square-free.

The main point now is that parameters can take different
values, so that it is in general impossible to answer true
or false to an equality test over parameters. When both
answers are possible, it is essential to distinguish the values
of the parameters corresponding to true from the values
corresponding to false. This is called a splitting, and it is
detected using gcd computations.

One can use this program to solve polynomial systems or
in mechanical geometry theorem proving. Also, one can get
Jordan canonical form for matrices with parameters in its
entries (see [Go]).

To illustrate the use of this program, we show the code
(slightly simplified) corresponding to our example in the in-
troduction:

RN:= Fraction Integer
CL:= DynamicConstructibleClosure(RN)
M := Matrix(CL)

dynamicRank():NonNegativeInteger ==
a:CL:= newElement(’a)
m:M:= [[1,1],[1,a]]
rank m

allCases(dynamicRank)

In the first line we say that our ground field is the ratio-
nal numbers, in the second we build its constructible closure,
CL. CL is a field in Axiom sense, so it makes sense to build
matrices over it. Next we write a function with the com-
putation to be done. It starts with the introduction of the
necessary parameters and after building the matrix, calls
rank over it. Finally we call this function with allCases in
order to get the full answer:

[value is 1 in case a = 1,
value is 2 in case a /= 1]

Time: 0.12 sec

We remark that rank is a function from Axiom. This
function has no knowledge of dynamic evaluation, and is
used without modification.

2.2 Splitting trees

Dynamic evaluation associates a splitting tree with a compu-
tation. It is built by the allCases function as computation
proceeds.

We explain here splitting trees related to computations
in the dynamic constructible closure domain. They can be
defined in the following way:

1. The root node represents the beginning of the compu-
tation.

2. The edges represent current information about param-
eters, that is constraints over parameters in their stan-
dard form.

3. The nodes represent the points in the computation
where the constraints can change — this can hap-
pen with the introduction of a new parameter (with
newElement), and in the use of areEqual, areDiffe-
rent or the equality test (=).

The third point is the essential one, we will extend it more
precisely, first for the case of only one parameter over the
ground field, then for the case of many parameters, where
recursion appears.

Case of one parameter. Let a be a parameter over the
field K, and x and y two elements in the field K(a). At
every node of the splitting tree, except the root node, there
is one of the following possibilities:

• areEqual(x,y). There is only one edge coming down
from this node, it corresponds to:

– true if areEqual(x,y) implies a constraint on a
which is compatible with the old ones,

– or false otherwise. In this case, current con-
straints on a do not change.

• areDifferent(x,y). There is only one edge coming
down from this node, it corresponds to:

– true if areDifferent(x,y) implies a constraint
on a which is compatible with the old ones,

– or false otherwise. In this case, current con-
straints on a do not change.

• x = y. In this case we have several possibilities:

79

•

?
a:= newElement(’a)

?
b:= newElement(’b)

?
c:= newElement(’c)

?
a*b*c = 0

any a, any b any c

c = 0

�
�

��	
false

@
@

@@R
true

0 = 0

?
true

0 = 0

?
true

any a

any a, any b

any a, any b, any c

any a, any b

a 6= 0, b 6= 0 a 6= 0, b = 0 a = 0, any b

a 6= 0, b 6= 0

c 6= 0

a 6= 0, b 6= 0

c = 0

a 6= 0, b = 0
any c

a = 0, any b
any c

Figure 2: Splitting tree with box.

– the answer is true for all the possible values of a.
This node has only one edge coming down, and
current constraints on a do not change.

– the answer is false for all the possible values of
a. This node has only an edge coming down, and
current constraints on a do not change.

– both answers, true and false, are possible.
There are two edges coming down from this node,
one for each answer. This is called a splitting
point.

Figure 1 shows three basic trees for the case of one parame-
ter. The second tree in this figure corresponds to the exam-
ple of the matrix rank computation.

Case of many parameters. Let a1, . . . , an be the param-
eters introduced. The main point is that the program works
recursively over parameters and then the use of =, areEqual
or areDifferent over expressions of level k (k ≤ n) can
produce equality tests (and then splitting points) in lower
levels.

Initially we show the last level only, with possible internal
splittings in lower levels represented by a box. From this box,
there is at least one edge coming down, but possibly many
edges. During this process only constraints related to lower
levels could change.

In order to show it we will study the following example:

a:CL:= newElement(’a)
b:CL:= newElement(’b)
c:CL:= newElement(’c)
(a*b*c = 0)$CL

This corresponds to the splitting tree in figure 2. In the
root node computation starts, in the second one there is the
introduction of the first parameter a. From this node there is
an edge coming down with the current information over this
parameter that is any a. In the next node there is the intro-
duction of the second parameter, and after the introduction
of the parameter c we find the equality test a*b*c = 0. In
order to answer this question the system works recursively
over the parameters and some splitting points appear for
parameters a and b. This splitting tree hides these splits in
a box in which the current constraint on c (any c) does not
change. From this box there are three edges coming down,
with the current information about parameters a and b after
split. For each edge we find a node with the question a*b*c
= 0 specialized with respect to these new constraints. In two
nodes there is 0 = 0, which we can answer now without ad-
ditional split over c. In the other node we find the question
c = 0 that needs a split over c in order to be answer.

Finally the complete answer is:

[value is true in case any c and any b and a = 0,
value is true in case any c and b = 0 and a /= 0,
value is true in case c = 0 and b /= 0 and a /= 0,
value is false in case c /= 0 and b /= 0 and a /= 0]

Time: 1.46 sec

Let us now open the box (see figure 3). In order to answer
the question a*b*c = 0 the system needs to answer a*b = 0
and for that a = 0. One split appears at the level of a, that
is inside the inner box. There are two edges coming down
from this box, for each of them there is a reduction step to
specialize the question a*b = 0 to the new constraints on

80

?
a*b*c = 0

?
a*b = 0

?
a = 0

�� HH
false true

b = 0 0 = 0

�� HH
false true true

c = 0 0 = 0 0 = 0

any cany a, any b

any bany a

a 6= 0 a = 0

a 6= 0
b 6= 0

a 6= 0
b = 0

a = 0
any b

Figure 3: Splitting tree with open box.

a. In one of the branches this question can be answered
without more splits, in the other it is needed another split
over b.

Note that boxes are used to show the change of level in
the computation, where recursion acts. Also there are some
boolean values that appear, they only clarify the meaning
of the branch (they can be seen as a flag for the branch).

3 IMPLEMENTING DYNAMIC EVALUATION

3.1 Strategies

The splitting trees show what kind of parallel problems that
dynamic evaluation generates: from a given splitting point,
each case is independent of the others, and consequently
may be evaluated by a separate thread of execution.

Most common parallel libraries (including RPC, Linda,
and PVM) assume that a parallel task can be described by
a function, plus some arguments, and the parallel execution
simply obtains a processor, branches to the function and
when the function returns, marks itself as finished in some
way. Unfortunately, dynamic evaluation is not suited to
these kinds of model, as the parallel work is the remainder
of the computation (ie. a continuation) rather than a well
defined subpart of it.

In the previous implementation of dynamic evalua-
tion, one starts the computation (for example the function
dynamicRank) with a call to the function allCases. This ini-
tiates the computation. The process may then reach a point
where a split is needed (the question a = 1 in the rank algo-
rithm). At this point it picks one branch (a 6= 1) saving the
other possibility onto a list ([a = 1]). Execution continues
until the process is complete (and we have the result 2 for

the case a 6= 1). The next stage takes the first condition on
the list (a = 1) and re-evaluates the function (dynamicRank)
using those conditions, possibly generating more list entries.
When this list has been exhausted, a complete set of solu-
tions has been found. This mechanism walks every possible
path in the splitting tree, from the root node down to each
leaf. This mechanism therefore evaluates the first part (up
to a splitting point) of the function redundantly (in fact, if n
answers are produced, the execution up to the first splitting
point will have been repeated n times).

There are two possible solutions to this problem:

• to save the initial part preceding the split, to choose
one branch, and re-instantiate the initial part in order
to get the other branch when the first one is complete.

• to start two independent threads of computation at a
splitting point,

The first of these may be implemented as a continua-
tion save and restart, and the second by using a primitive
similar to fork. Note that for the program to be useful, any
independent threads must be re-synchronised and the results
combined. This makes the two roughly equivalent, and gives
us a way of describing fork as a continuation saving device.

Naturally, for any mechanism to be judged useful, the
expense involved in either taking a continuation or forking
a process should be less than the expense of re-evaluating
the program up to the point at which the split occurs.

3.2 A tool: continuations

The language Scheme [R4R] provides continuations as first
class objects. Continuations are useful for implementing a

81

wide variety of advanced control constructs, including non-
local exits, backtracking, and coroutines.

Whenever an expression is evaluated there is a continu-
ation which is waiting for the result of the expression. The
continuation represents an entire (default) future for the
computation and may be represented as a snapshot of the
current state of the program. A language which provides
continuations as first-class objects allows a continuation to
be saved, and later re-invoked. This re-invocation puts the
computation back to the point where the continuation was
saved, and additionally passes a result back to the continu-
ation, in place of the result of the original expression.

For dynamic evaluation, the points we would mark are
equalities in splitting points. In this case there are two pos-
sible ways to continue the computation, one for each branch
of the tree. We therefore save the continuation of the equal-
ity test in a global table, returning false as the result of the
equality test. After execution of this side of the splitting
tree has completed, we can invoke this continuation with a
true argument to force execution along the other path of
the splitting tree. This serialises the computation as a se-
quence of disjoint paths in the splitting tree — there is no
redundant execution of code when continuations are used.

The Scheme primitive which provides this snap-
shot is call-with-current-continuation, abbreviated to
call/cc. This is a Scheme primitive which passes an object
representing the continuation of the call/cc expression to
the argument of the call/cc. The argument should be a
function that takes one parameter. The following illustrates
the use of call/cc:

(define *the-cont* nil) ;; continuation holder
(define *the-val* nil) ;; value for continuation

;; Equality. If either argument is a symbol, we save
;; the current continuation, and return false. If
;; neither is a symbol, we call = as usual. In Scheme
;; false is #f, true is #t.

(define (my-equal a b)
(if (or (symbol? a) (symbol? b))

(call/cc
(lambda (cont)

;; save the continuation,
(set! *the-cont* cont)
;; and a value for it
(set! *the-val* #t)
#f))

(= a b)))

;; if x is zero, then return good, bad otherwise.
(define (test x)

(if (my-equal x 0) "good" "bad"))

> (test 3) ;; simple case, 3 <> 0
value is: "bad"

> (test ’x) ;; saves a continuation
value is: "bad" ;; and returns as if false

;; restart the computation from my-equal with the
;; value it saved (#t in this case)
> (*the-cont* *the-val*)
value is: "good" ;; we get this result

The above example shows the basic idea behind contin-
uations, as used in dynamic evaluation — an equality test
can (by definition) only return true or false, but we use a

continuation in order to be able to back-track to the point
of the test, so that we can follow both possible execution
paths. However, we must identify cases which are provably
true or provably false, which in the case of a constructible
closure of a field is a significant task.

Note that a continuation saves dynamic information, but
not global variables — clearly some state has to be left alone
when restoring a continuation, because without that a pro-
gram would have no way of discovering whether it was con-
tinuing from a re-invoked continuation, or from normal ex-
ecution.

For the purposes of dynamic evaluation, it is possible to
simulate continuations in C using the fork function. This is
available under UNIX-style operating systems — in this case
a continuation is really a whole separate process which is
allowed to compute up to the end of the allCases function,
and then return its result to its caller.

3.3 Making continuations available within Axiom

A] [W1] is a part of version 2 of the Axiom symbolic algebra
package. The language provides a large number of relatively
novel constructs, including first-class types, functions and
iterators plus backward compatibility with the previous Ax-
iom library language [JS]. As well as producing code for the
Axiom system, it may also generate stand-alone programs
in either Lisp or C. The dialect of Lisp that the compiler
produces is heavily abstracted using macros, and has been
designed in such a way that the macros may be modified for
a Scheme system.

In order for A] to produce both C and Lisp code, it first
produces an intermediate representation called foam (for
more details of the compiler’s design, see [W2]). foam is
a very small language which can be mapped to a particu-
lar target language. Both C and Lisp host languages have
been implemented, but in practice the majority of impera-
tive computer languages contain a foam-like subset. This
makes the compiler retargetable to other host languages,
which may provide other control mechanisms.

A] also includes a foreign function interface which can
call functions from the hosting language, and allows one to
build abstractions over the imported functions. For exam-
ple, the call/cc function and the continuations it produces
may be turned into a type by importing call/cc into the
compiler namespace, and wrapping a type around it. Thus
we declare a type with the following signature:

Continuation(T: Type): with {
callWithCC: (% -> T) -> T;
apply: (%, T) -> Exit;

}

This states that Continuation is a function, which when
applied to a type (called T), returns a new type which has
two operations: apply and callWithCC. The apply opera-
tion invokes a continuation. The type Exit indicates that
the call never returns — in this case execution continues
at the point of the corresponding callWithCC call. Calling
this function apply indicates that using a continuation in
a function position will call this function — this is in or-
der to mimic the Scheme syntax. In order to implement
callWithCC, we have to write a small piece of Scheme which
can call back the function passed to it. The function is an
Axiom-level function, not a Scheme function, so we have to
call it via a macro (CCall) from the foam package.

(define (schemeCallWithCC clos)

82

(call/cc (lambda (c)
(CCall clos c))))

We then incorporate this code into the definition of
Continuation as follows (continuing from the declaration
above):

Continuation(T: Type): with {
callWithCC: (% -> T) -> T;
apply: (%, T) -> Exit;

}
== add {

import { schemeCallWithCC: (% -> T) -> T }
from Foreign Lisp;

callWithCC(fn: % -> T): T ==
schemeCallWithCC fn;

...
}

The import statement asserts that the function sche-
meCallWithCC exists, has a particular type, and should be
called as a Lisp function. Note that from the compiler’s
point of view the Scheme language is identical to Lisp.

These definitions now allow us to use continuations as
first class objects within A].

We also implement a slightly modified version of contin-
uations in terms of fork — in this case, we import functions
from C, and have to do more wrapping in order to achieve
the desired semantics, but the declaration above is identical,
and so the code using the Continuation type does not need
to be changed.

The relative costs of the two implementations are hard
to compare — in the Scheme case, the act of taking a con-
tinuation is not too high unless there is a large amount of
dynamic data. However, the cost of running any Scheme
code is often much greater than that of running the same
code under C. This is partially due to the implementation
of loops in Scheme, which had to be hand crafted, and also
because Scheme is a dynamically typed language, and there-
fore spends much time checking types. C, however runs code
very fast, but a call to fork has to be carefully guarded, as
this may double the amount of memory taken by the pro-
gram. This doubling is worst case, as many operating sys-
tems only replicate information after a process has written
to a page, which implies that we only need copy the work-
ing set of pages in the program. The overhead can also
be reduced by ensuring that no more than a fixed number
of processes are active at a time — this ensures that the
amount of space needed is proportional to the depth of the
splitting tree, rather than the maximum width, at the worst
case.

3.4 Using continuations with an algebra library

As we have shown above, continuations form a useful ba-
sic mechanism for implementing dynamic evaluation. Dy-
namic evaluation itself can be applied to many problems,
which typically need a large amount of non-trivial algebra
code. This code is typically written in a high level language,
whose hosting platform is not able to handle the creation of
continuations. Conversely, languages that provide contin-
uations do not have a rich enough algebra library or type
system to implement some of the applications. Naturally,
these could be added, but this is a significant amount of
work. The A] compiler is used to bridge this gap.

As described above, there is the old implementation of
dynamic evaluation [Du], which has been translated into A]

language. (not a major change, as the languages are very
similar). The principal user of this package, the dynamic
constructible closure domain, has also been translated.

These programs are strongly structured into categories,
domains and packages, and so it has been very easy to adapt
them to the use of the new tools. In particular there are only
two major changes:

• the function allCases in the control package,

• the equality in the dynamic constructible closure do-
main (and that only for the case where a split appears).

These two parts have been rewritten to use the continuation
model of evaluation.

The old implementation of dynamic evaluation uses mu-
table variables in the dynamic constructible closure con-
structor in order to store the current case and the list of
next cases. These variables are changed at a split point and
allCases has access to these variables so as to control exe-
cution.

The mutable variable for the list of next cases disappears
with the introduction of continuations, as the continuation
effectively holds the necessary case information. This list of
cases variable is therefore substituted with a variable that
saves a list of outstanding continuations.

This rewriting allows one to use programs developed us-
ing the compiler to make use of dynamic evaluation — for
example a program using the Matrix domain formed over a
dynamic field may be used unchanged in both a Scheme and
C based environment.

4 CONCLUSIONS AND FURTHER WORK

We have presented here two different solutions for the con-
trol problem in dynamic evaluation. In fact this control
problem appears in a more general context: the use of par-
allelism from computer algebra systems.

We have seen how A] is able to incorporate tools such
as continuations and fork. This mechanism is very power-
ful, and while foreign function interfaces are becoming rel-
atively common in other languages, the compiler allows a
much greater degree of control over the definition and use
of the imported functions.

The problem of redundant computation has been avoided
in these implementations of dynamic evaluation, and the use
of continuations is a very elegant mechanism for solving this
form of control problem. Naturally, more work is needed in
both the C and Scheme versions to ensure that they retain
this elegance, and execute without excessive overhead. As
stated before, the original code was only lightly modified,
but one can imagine some changes to make it better adapted
to the continuations model.

The dynamic evaluation code itself can be further im-
proved — the gcd algorithm used as the basis of the equality
test is a generic implementation, and could be made more
specific to the data structures used in dynamic evaluation.

References

[R4R] W. Clinger, J. Rees, eds. — Revised4 Report on the
Algorithmic Language Scheme. ACM LISP Pointers IV,
3 (July-September 1991).

[CJ] R. Corless, D. Jeffrey — Well It Isn’t Quite That Sim-
ple! ACM Sigsam Bulletin, Number 26 p. 2–6 (1992).

83

[DDD] J. Della Dora, C. Dicrescenzo, D. Duval — About
a New Method for Computing in Algebraic Number
Fields. Eurocal’85, vol.2, Springer Lecture Notes in
Computer Science 204, ed. G. Goos, J. Hartmanis, p.
289–290 (1985).

[DD] C. Dicrescenzo, D. Duval — Algebraic Extensions and
Algebraic Closure in Scratchpad. Symbolic and Alge-
braic Computation, Springer Lecture Notes in Com-
puter Science 358, ed. P. Gianni, p. 440–446 (1989).

[Du] D. Duval — Evaluation dynamique et clôture algé-
brique en Axiom. J. of Pure and Applied Algebra, to
appear.

[DGV] D. Duval, L. González-Vega — Dynamic Evaluation
and Real Closure. To appear in Mathematics and Com-
puters (transactions of IMACS Conference, June 1993).

[DR] D. Duval, J.-C. Reynaud — Sketches and Compu-
tation (Part I): Basic Definitions and Static Evalua-
tion and (Part II): Dynamic Evaluation and Applica-
tions. Mathematical Structures in Computer Science,
4 p. 185-238 and 239-271. Cambridge University Press
(1994)

[Go] T. Gómez-Dı́az — Quelques applications de l’évalua-
tion dynamique. Thesis, Université de Limoges (1994).
Available from Atelier National de Reproduction des
Thèses, Université de Grenoble 2.

[JS] R. D. Jenks, R. S. Sutor — Axiom, The Scientific Com-
putation System. NAG, Springer-Verlag (1992).

[La] J. M. Lang — Private communication. Waterloo Maple
Software (1995).

[Si] W. Y. Sit — An algorithm for solving parametric lin-
ear systems. J. Symbolic Computation 13 p. 353–394
(1992).

[W1] S. M. Watt, P. A. Broadbery, S. S. Dooley, P. Iglio,
S. C. Morrison, J. M. Steinbach, R. S. Sutor — Axiom
library compiler user guide. NAG Ltd, 1994.

[W2] S. M. Watt, P. A. Broadbery, S. S. Dooley, P. Iglio,
S. C. Morrison, J. M. Steinbach, R. S. Sutor — A first
report on the A] compiler. Proceedings ISSAC’94, ACM
Press, New York 1994, p. 25–31.

84

