
The Singular Value Decomposition for Polynomial Systems

RobertM. Corless PatriziaM. Gianni BarryM. Trager StephenM. Watt∗

IBM T. J. Watson Research Center
Yorktown Heights, NY 10598 USA

Abstract

This paper introduces singular value decomposition (SVD)
algorithms for some standard polynomial computations, in
the case where the coefficients are inexact or imperfectly
known. We first give an algorithm for computing univariate
GCD’s which gives exact results for interesting nearby prob-
lems, and give efficient algorithms for computing precisely
how nearby. We generalize this to multivariate GCD com-
putation. Next, we adapt Lazard’s u-resultant algorithm for
the solution of overdetermined systems of polynomial equa-
tions to the inexact-coefficient case. We also briefly discuss
an application of the modified Lazard’s method to the loca-
tion of singular points on approximately known projections
of algebraic curves.

1 Introduction

We consider here the computation of useful and familiar al-
gebraic quantities from sets of input polynomials whose co-
efficients are only imperfectly known. To do this, we reduce
problems involving polynomials with floating point coeffi-
cients to more well-understood problems of numerical linear
algebra, to take advantage of the well-developed backward
error analysis of that field of study. We also use existing
high-quality numerical linear algebra software, such as LA-
PACK [1], wherever possible, as the numerical stability and
robustness of these codes is very well understood and tested.

Similar and related works include [2, 10, 13, 14, 15, 16,
17, 20, 21]. In addition, an anonymous referee has informed
us of the µ-analysis toolbox in Matlab, written by Doyle,
Packard, Tits, and others, which apparently uses optimiza-
tion techniques to solve problems in the same spirit as this
paper. It is now becoming apparent through all these works

∗This research was supported by IBM T. J. Watson Research Cen-
ter and in part by the Natural Science and Engineering Research
Council of Canada. Special thanks go to R. D. Jenks for helping to
arrange the sabbatical visit of RMC to the Center. This research also
benefited from the contribution of C.N.R., M.U.R.S.T, CEC contract
ESPRIT B.R.A. n.6846 POSSO and the European Communities Sci-
ence Plan Project “Computational Methods in the Theory of Riemann
Surfaces and Algebraic Curves.”

c© 1995 Association for Computing Machinery.

Reprinted from pp. 195–207 Proc. 1995 International Sym-
posium on Symbolic and Algebraic Computation (ISSAC
95), A. H. M. Levelt editor, ACM Press 1995.

that symbolic and numeric computation can be usefully done
together, combining the speed and low memory usage of nu-
meric computation with the mathematical veracity of sym-
bolic computation, in a sense to be made clearer below.

In section 2 we introduce our notation, discuss the sin-
gular value decomposition (SVD), and show how this can
be used to compute univariate GCD’s. This section also
develops the idea of ‘backward error analysis’ in this con-
text. This idea is also used in subsequent sections. This
work is similar to that in [10, 17], and particularly to the
former. That work was brought to our attention quite late
in the process of preparing this paper, and so a full com-
parison of the significance of the differences between our
work and theirs (principally that we use the 2-norm and
the SVD whilst they use the 1-norm and a stabilized poly-
nomial remainder sequence) cannot be attempted at this
time. In section 3 we extend the univariate GCD computa-
tion to the multivariate case; this requires a reformulation
of the standard algorithms to improve numerical stability,
which seems to be new. In section 4 we look at the solution
of possibly overdetermined homogeneous multivariate prob-
lems with only finitely many solutions at infinity. To do this
we provide a constructive reformulation of an algorithm of
Lazard [12], changing his determinantal algorithm to a gen-
eralized eigenvalue problem. This work is similar to that
in [2, 13, 14, 15, 16, 20, 21], but differs in that the method
of this paper can handle the overdetermined case.

2 Univariate GCD

Suppose we are asked to compute the GCD of two polyno-
mials whose coefficients are given to only 2 decimal places,
and expected to produce a ‘satisfactory’ answer. This is in
contrast with the notion of ‘quasi-GCD’ of Schönhage [18],
where the input polynomials are supposed to have ‘exact’
coefficients which can be known to arbitrary accuracy by
some oracle.

For example, suppose we are given the polynomials p =
x2 +1.99x+1.00 and q = x+1.00 and asked to compute the
GCD of p and q. In the quasi-GCD approach of Schönhage,
we would need to be able to refer to an oracle to get more
figures of accuracy for the coefficients on demand, and the
concept of quasi-GCD itself makes reference to the ‘exact
GCD’ of the infinitely-precise input polynomials. We do not
take this approach here. Instead, we work with the data we
are given, but make a certain assumption as to its accuracy.

The fact that the coefficients are given above to two dec-

195

imals means by one convention1 that the third and subse-
quent decimals are unknown, and may imply that we do
not place much reliance on the second place. Thus there is
an implied error tolerance (call it ε) on the input—we may
be perfectly happy with an answer which is exact for some
p + ∆p and q + ∆q, where each of ∆p and ∆q is smaller (in
some sense) than ε. For the problem given above, it seems
reasonable to take ε = 0.01, or perhaps some moderate mul-
tiple of that.

Now it is obvious that for ‘most’ ∆p and ∆q the GCD
will just be (p+∆p, q+∆q) = 1. It is equally obvious in this
case that this is unsatisfactory—for ∆p = .01x and ∆q = 0
we have (p + ∆p, q + ∆q) = x + 1.00, and this would be
preferred in many cases.

However, there are in fact an infinite number of pertur-
bations ∆p and ∆q which produce a monic degree 1 GCD;
for example, if we restrict ∆p to be ∆p0 + ∆p1x (i.e. leave
the perturbed polynomial monic) and likewise ∆q to be
∆q0 +0 ·x, then the GCD of the perturbed polynomials will
be x+0.99+∆p1−∆q0 provided that the perturbations lie
on a subspace determined by

0.01 + ∆p0 −∆p1 + 0.01∆q0 −∆q0(∆p1 −∆q0) = 0 .

Which of these possibly interesting GCDs should we com-
pute?

We take as the answer to this question that the GCD
we compute will be the one of highest possible degree with
perturbations ||∆p|| ≤ ε and ||∆q|| ≤ ε; if there are more
than one such, then we take the one with the minimum 2-
norm (Euclidean norm) of the perturbation ||∆p||22+ ||∆q||22.
This choice of norms is not arbitrary—it is chosen to facili-
tate computation. As previously mentioned, the work of [10]
uses the 1-norm ||p||1 =

∑
|pk| to measure polynomial size

and a stabilized polynomial remainder sequence. Here we
use the SVD to obtain precise results on the perturbation;
these may well be equivalent to the precise results obtained
in [10].

Some generalizations to the use of the 2-norm are pos-
sible at no real extra complication: in particular we can
handle the case where different weights are given to the per-
turbations of different coefficients, corresponding to the case
when different coefficients are known to different accuracies.
Such elaboration will usually be left for the reader.

This approach to computing GCD’s is based on a ‘back-
ward error’ point of view. We wish to compute the exact
answer to a possibly different question to the one posed.
Note this is a more general usage of the term ‘backward
error’ than that used in the context of proving that sim-
ple rounding errors in a computation can be interpreted as
perturbing the problem; rounding errors will not be consid-
ered in this paper, as they are usually far less significant
than the errors in the input data that we are allowing for.
This approach is very useful provided that the input data
is not known to great precision (or can be efficiently found
to great precision). It may not be useful if the notion of

1The purely mathematical convention that all unstated digits are
zero is perhaps more common in computer algebra; indeed assuming
the input is exact is a commonplace in numerical analysis. We choose
to follow in this article a different convention, the experimentalists’
convention, to see if we can gain in simplicity of analysis and in speed
of the algorithms. This convention has semantic implications—that
is, it really alters the arithmetic model we are using, in the sense
that we are really specifying both a number and a tolerance on input.
Although not every arithmetic operation needs to be cognizant of
this tolerance (as for example would happen in interval arithmetic)
we will see that certain ‘blocks’ of operations will need this tolerance,
and without it progress cannot be made.

‘exact answer’ makes any sense for the problem at hand—in
that case, the notion of ‘quasi-GCD’ of Schönhage [18] may
be more useful. The algorithms considered in this work are
intended for use in the case where a satisfactory answer is
desired in the face of imperfect data.

Note that the problem of computing the GCD of two
polynomials over the reals is ‘ill-posed’, in that arbitrar-
ily small changes in the coefficients can make large changes
in the answer. Thus we may expect the traditional tech-
niques for dealing with ill-posed problems to be of some use.
In particular, we take the approach here of projecting the
problem onto the nearest degenerate problem (that is, the
nearest problem with a non-trivial or higher-degree GCD),
and then doing a minimization.

The main tool that we use for this is the Singular Value
Decomposition. We explain this tool in some detail here,
to make the exposition self-contained. To motivate the dis-
cussion below, note that the computation of GCDs can be
phrased as a matrix problem: the degree of the GCD of
two polynomials is related to the rank of their Sylvester ma-
trix, and indeed the GCD itself can be read off from the last
nonzero row of the reduced row-echelon form of the Sylvester
matrix [6] as we will see.

2.1 Notation

Given a polynomial p(x) = p0+p1x+· · ·+pnxn we associate
with it the vector p∗ = [pn, pn−1, . . . , p0]

T . We say that p
has 2-norm ||p|| equal to the 2-norm of its associated vector.

Then p(x) = p∗ ˙̃xn where x̃n = [xn, xn−1, . . . , 1]T .
We can represent polynomial multiplication by using the

Cauchy matrix

Cq(p) =

pn

pn−1 pn

...
...

. . .

p0

. . .
p0 pn

. . .
...

p0

,

and it is easy to see that a(x) = p(x) · q(x) if and only if
a∗ = Cq(p)q∗, if there are the right number of columns of
Cq(p), namely degree(q) + 1 (hence the subscript q).

Suppose p(x) and q(x) are polynomials in x, with the
degree of p equal to n and the degree of q equal to m. Let
S(p, q) be the Sylvester matrix (see e.g. [6]) of p and q. Note
it is of dimension m + n by m + n, and is linear in the
polynomial coefficients.

Remark 1. We can see the significance of the Sylvester
matrix for polynomial computations most easily by consider-
ing the matrix-vector multiplication S(p, q)x̃m+n−1. Linear
combinations of the rows of S can be written as row-vector
times matrix multiplications; if there are several combina-
tions to be considered we can use matrix-matrix multiplica-
tion. If we multiply the row vector vT by the Sylvester ma-
trix S(p, q) and then by x̃m+n−1, we find vT S(p, q)x̃m+n−1

is

[
am−1, am−2, . . . , a0, bn−1, . . . , b1, b0

]
xm−1p(x)
xm−2p(x)

...
q(x)

196

or [
(am−1x

m−1 + · · ·+ a1x + a0)p(x)

+ (bn−1x
n−1 + · · ·+ b1x + b0)q(x)

]
,

where the ai and bi are the entries of vT , partitioned con-
formably with the rows of S. Thus we see that linear combi-
nations of the rows of S are in a one-to-one correspondence
with polynomial combinations of p(x) and q(x). Thus if we
can find the linear combination of the rows of S that gives
a row with the most leading zeros (while still having some
nonzero entries) then we will have found the coefficients of
the GCD of p and q. But this is just the last row of the row
echelon form of S.

Thus for the example we began with, we must decide the
rank of the matrix[

1.00 1.99 1.00
1.00 1.00 0.00
0.00 1.00 1.00

]
.

and to compute the last row of its ‘correct’ row-echelon form.

2.2 Elementary Numerical Analysis and the SVD

The main tool in numerical analysis for deciding the rank
of a matrix in the face of data perturbations (or, indeed,
in the face of the usually much more trivial roundoff per-
turbations) is the Singular Value Decomposition, or SVD.
We refer the reader to [8] for a geometric interpretation of
the SVD, as well as details on how to compute it. We note
that many packages exist for the reliable and efficient com-
putation of the SVD, and in particular the LAPACK project
paid particular attention to it.

Before we begin we describe the usual notation.
The norm of a vector v is, here, the Euclidean length of

v, denoted by ||v||2 =
√

v2
1 + · · · v2

n or more simply by ||v||.
The 2-norm (Euclidean norm) of a matrix is

||A||2 = max
||v||=1

||Av||

or, equivalently,

||A|| = max
x6=0

||Ax||
||x|| .

This implies that ||Ax|| ≤ ||A|| · ||x|| for any vector x. Note
that this norm is different from the more easily computed
Frobenius norm

||A||F =

√∑
a2

ij .

It can be shown that ||A||2 ≤ ||A||F .
The lengths of the semi-axes of the ellipsoidal image of

the unit sphere under the mapping x → Ax are called the
singular values of A, and are usually denoted by σ1 ≥ σ2 ≥
· · · ≥ σn in the n-dimensional case. ||A||2 is just σ1.

A can be factored as A = UΣV T , where U and V are or-
thogonal and Σ = diag(σ1, σ2, . . . , σn) is a diagonal matrix.
The orthogonal matrices U and V can be computed along
with the σj if desired.

The most important property of the SVD for our al-
gebraic purposes is that σk is the 2-norm distance to the
nearest matrix of rank strictly less than k. This is Corol-
lary 2.3-3 in [8]. In other words, if A has singular values

σj , j = 1, 2, . . . , n arranged in the conventional decreas-
ing order, and A + E has rank strictly less than k, then
||E||2 ≥ σk. Further, there is a matrix E with ||E||2 = σk

such that the rank of A+E is strictly less than k. This ma-
trix E is easily constructible from the SVD of A, as follows.
Put A + E = Udiag(σ1, σ2, . . . , σk−1, 0, 0, . . . , 0)V T . Then
it is obvious that A + E has rank strictly less than k. A
simple computation shows that the norm of E = A + E−A
is the norm of Udiag(0, 0, . . . , 0, σk, σk+1, . . . , σn)V T which
is σk since multiplication by orthogonal matrices does not
alter the 2-norm.

2.2.1 Relationship with eigenvalues

Singular values are often confused with eigenvalues. How-
ever, the singular values σk of A are in fact the square roots
of the eigenvalues of AT A. If A happens to be symmetric
positive definite, then indeed the singular values of A are
the same as the eigenvalues of A; but in general they are
not the same. Geometrically, singular values measure the
amount of stretching A induces, without worrying about di-
rection changes (i.e. rotation). In contrast, eigenvalues (if
complex) also measure the amount of rotation that A in-
duces.

2.3 Algorithms for Univariate GCD

Several algorithms exist to compute floating-point GCD’s.
We discuss only three here: Schönhage’s quasi-GCD algo-
rithm, which assumes the input is inexact but arbitrarily
precise, Noda and Sasaki’s scaled Euclidean algorithm [17],
and Karcanias and Mitrouli’s associated matrix pencil algo-
rithm [11]. As mentioned previously, the method of Hriber-
nig and Stetter [10] was brought to our notice too recently
to permit a real comparison with our method.

Schönhage’s algorithm does not do what we want. Here
we are assuming that the input is inaccurate and the inac-
curacy cannot be removed. Since the hypotheses on which
the algorithm is based are assumed not to apply, we do not
discuss this approach further.

Noda and Sasaki’s scaled Euclidean algorithm is simple
and efficient, but again is designed to do something slightly
different than what we want. It can produce unsatisfactory
answers on some simple examples, including the following
one from Schönhage: p = z4 + z + 1, q = z3 − ηz. For this
example, for any small η, the GCD is 1. More than that,
every polynomial set within 0.27 of this polynomial (with
η = 0) in 2-norm also has GCD 1. We can, however, find
values of η and reasonable tolerances (say η = 10−3 and
ε = 10−6) such that Noda and Sasaki’s algorithm computes
a degree-1 GCD. This degree-1 GCD is completely spuri-
ous, in light of the above. We remark, however, that their
algorithm often produces satisfactory answers, particularly
for the approximate square-free decomposition, and it is ef-
ficient.

The algorithms of Karcanias and Mitrouli [11] are phra-
sed in the jargon of automatic control and hence less ac-
cessible to a general audience. Their first algorithm, which
they call the associated pencil algorithm, is equivalent to the
algorithm of Lazard (see section 4) for the solution of poly-
nomial systems, specialized to the univariate case. Their
second algorithm, which they really advocate as being more
efficient, algorithm 3.1 in [11], is quite different from the as-
sociated pencil approach and from the approach used here.
However, their error analysis for their algorithm 3.1 is ap-
parently incomplete: they analyze each step but this does

197

not guarantee the stability of the whole process (for exam-
ple one can stably compute the characteristic polynomial of
a matrix (using extra precision if necessary in intermediate
steps and then rounding to working precision, for example),
and then stably compute the roots of that polynomial, but it
is well known that first computing the characteristic polyno-
mial and then computing its roots is not a stable method for
computing eigenvalues). Finally, one of their error bounds

contains the term ||Â||d−1
∞ , where Â is the companion matrix

for one of the input monic polynomials, and d is the maxi-
mum degree of the input polynomials. This term (and hence
the stated error bound) can be extremely large. Indeed for
their example (4.2), this number is larger than 10120, which
induces a gross over-estimate of the actual error achieved by
their algorithm.

The algorithm we present here for GCD computations
is simpler and may be more reliable, but may also be more
expensive than any of these. On the other hand, the ex-
pensive part of our algorithms can be carried out in purely
numerical subroutines, perhaps in FORTRAN, and if the
computer algebra system can take sufficient advantage of
connections to good numerical libraries, as A] can [24], the
actual performance of this approach may not be bad at all.

It is possible that some of the ideas presented here may
be adapted to improve instead, say, Noda and Sasaki’s al-
gorithm (or at least provide an a posteriori error analysis
for it); however, the ideas used in this algorithm also prove
useful in the approximate solution of polynomial systems,
which is discussed in section 4.

2.4 Description of the SVD GCD algorithm

Input: Polynomials p and q, with deg(p) ≥ deg(q), and an
error tolerance ε > 0.

Processing:

1. Form the Sylvester matrix S of p and q.

2. Compute the SVD of S = UΣV T .

3. Find the maximum k such that σk > ε
√

m + n and
σk+1 ≤ ε (if all σj > ε

√
m + n then set d = 1, and if

there is no such ‘gap’ in the singular values then report
failure). The index k is the declared rank of S, and
the degree of d will be nd = n− k.

4. Compute d by any of the following methods.

(a) Compute d by the ordinary Euclidean algorithm
(perhaps scaled as Noda and Sasaki do it [17]),
terminating when the degree of the remainder is
nd.

(b) (This rational method is speculative.) Form the
top k rows of UT S or, equivalently, of ΣV T . Com-
pute the row-echelon form of this matrix by Gaus-
sian elimination with partial pivoting. The nu-
merical behaviour of this algorithm can be bad,
depending on the conditioning of the matrix F
which transforms this matrix to row-echelon form.
It is possible that this problem may be dealt with
by a careful variation of iterative refinement, tak-
ing care to simultaneously iterate for a perturbed
Sylvester matrix.

(c) Solve the minimization problem defined below, in
section 2.6, by standard optimization techniques.
This has the advantage that the backward error

analysis (also discussed below) is all done at the
same time, and is numerically stable.

(d) Use the modified Lazard algorithm detailed in
section 4, specialized to the univariate case, to
find all the roots of the GCD and hence the GCD.
This is equivalent to the matrix pencil algorithm
of [11].

Output: A polynomial d of degree nd which satisfies the
following properties:

1. The polynomial d is the exact GCD of some pair of
polynomials p + ∆p and q + ∆q, where ||∆p|| ≤ ε̂ and
||∆q||2 ≤ ε̂. We will discuss the quantity ε̂ below,
but note now that it is very easily bounded and only
slightly less simply computed exactly a posteriori.

2. The degree of d satisfies

degree(d) = maxdegree(GCD(r, s)) .

where the maximum is taken over all polynomials r ∈
Nε̂(p) and s ∈ Nε̂(q). By Nα(p) we mean a closed
α-neighbourhood of p in the 2-norm:

Nα(p) = {q(x)|deg(q) = deg(p) and ||p− q||2 ≤ α} .

3. Among all polynomials (d∗, p + ∆p̂, q + ∆q̂) satisfying
the first two properties, the associated polynomials p+
∆p and q + ∆q are the closest to p and q in the least-
squares sense.

Remark 2. Given an error bound, we have a well-defined
concept of GCD. If an error bound is not known in advance,
this algorithm can be used in several ways. For example:

• We can ask if a set of polynomials has a nontrivial
GCD, and be assured that no polynomial within dis-
tance σk has one;

• We can instead ask how far away is the first set of
polynomials with nontrivial GCD;

• We can ask for the polynomials closest to the given
ones having a GCD of a given degree; or

• We can inspect the sequence {σk} for jumps to deter-
mine candidates for a “natural” GCD.

Other variations will no doubt occur to the reader.
We point out that the negative results (e.g., no polynomi-

als within ε have nontrivial GCD) are the easiest to obtain—
the algorithm produces this type of result directly. On the
other hand, to explicitly find the nearest polynomials with
a GCD of specific degree requires the additional solution of
two least-squares problems, but as we will see the problems
involved give rise to banded, symmetric, Toeplitz, positive
definite systems, which can be solved very efficiently.

2.5 More precise statements

Lemma 1. If E = S(∆p, ∆q) = S(p+∆p, q+∆q)−S(p, q),
then ||∆p||2 ≤ ||E||2, ||∆q||2 ≤ ||E||2, and

||E||22 ≤ ||E||2F = m||∆p||22 + n||∆q||22 ,

where ||E||2 is the 2-norm of the matrix E and ||E||F is the
Frobenius norm of the matrix E. Recall that the 2-norm of

198

the matrix E is, in contrast, the maximum value of ||Ex||2
that can be obtained for any unit vector x.

Proof. The last inequality is obvious from the defi-
nitions. The first two are consequences of the fact that
||E||2 = ||ET ||2 and taking as unit vector x = [1, 0, . . . , 0]T

we have ET x = [∆pn, ∆pn−1, . . . , ∆p0, 0, . . . , 0] which im-
plies ||E||2 ≥ ||ET x||2 = ||∆p||2 by definition. A similar
argument establishes the inequality for ||∆q||2.

Lemma 2. If the singular values of S(p, q) are σj , j =
1, 2, . . . , m + n, and σ1 ≥ σ2 ≥ · · · ≥ σk > ε

√
m + n > ε ≥

σk+1 ≥ · · ·σm+n (in other words, the numerical ε-rank of S

is k), and if d̂ is a common divisor of p + ∆p and q + ∆q

with degree(d̂) ≥ m + n − k + 1, then one of ||∆p|| > ε or
||∆q|| > ε.

Proof. The nearest rank m + n − k + 1 matrix S + E
has ||E||2 ≥ σk > ε

√
m + n. Thus S(p + ∆p, q + ∆q) −

S(p, q) = S(∆p, ∆q) has ||S(∆p, ∆q)|| ≥ σk > ε
√

m + n.
But if both ||∆p|| ≤ ε and ||∆q|| ≤ ε, then by Lemma 1
||S(∆p, ∆q)||22 ≤ mε2 + nε2 or ||S(∆p, ∆q)||2 ≤ ε

√
m + n, a

contradiction.
Lemma 3. Given a candidate approximate divisor d of

p, we define p + ∆p to be the (least-squares) ‘closest exact
product’ if there exists a polynomial Qp(x) such that d·Qp =
(p + ∆p) exactly and ∆p is as small as possible in the least
squares sense. We can compute ∆p by solving the following
linear least squares problem: minimize ||∆p∗|| where

∆p∗ = DpQ∗
p − p∗ ,

with the n + 1 by k + 1 Cauchy matrix Dp := Cp(d) (see
section 2.1) whose columns are the coefficients of d. If d has
degree nd = m + n− k, where k is defined as the numerical
ε-rank of S(p, q), then we can bound the norm of ||∆p|| by

σk+1 ≤ ||∆p|| ≤ ||rp||

where rp is defined by p = Q̂pd+rp (i.e. ordinary polynomial
division).

Proof: Immediate after the observation that polynomial
multiplication of d by Qp = Q0 + Q1x + · · ·+ Qkxk can be
written in linear algebra terms as the matrix-vector product

DpQ∗
p. The final inequality arises because if p = Q̂pd + rp

then
−r∗p = DpQ̂∗

p − p∗

which must have norm greater than or equal to the minimum
value attainable, i.e. ||rp|| ≥ ||∆p||.

Remark 3. Solution of this least-squares problem by
the method of normal equations gives us a banded sym-
metric Toeplitz (positive definite because A = DT

P DP) ma-
trix whose first column is [d2

0 + d2
1 + · · · d2

nd
, d0d1 + d1d2 +

· · · dnd−1dnd , . . . , d0dnd , 0, . . . 0]T where only the first nd +1
entries are nonzero (this presumes k > nd). Thus the band-
width of the system is directly related to the degree of the
putative GCD, while the size of A is k + 1 by k + 1. This
system can be solved in O(knd) floating point operations by
the standard recurrences [8], which are particularly apt for
this system with its banded structure. There are faster al-
gorithms for solving non-banded symmetric positive definite
Toeplitz systems, which take O(k log2 k) operations, but in
the usual case where the degree of the GCD nd is small we
can expect the standard (and in any event simpler) algo-
rithm to be faster still.

The conditioning of A is also important. In the common
case when the degree of the computed GCD is 1, then A
is tridiagonal, symmetric, and Toeplitz; in that case we can

explicitly calculate the eigenvalues in terms of the roots of
the Chebyshev polynomials of the second kind. This gives
that the condition number of A grows in the worst case like
4n2/π2 + O(n) where n is the degree of p; clearly for large
n this could be a problem (say n = 1000, depending on
the problem and the precision desired in the estimate for
∆p). This is obviously not a critical problem, though for
larger-degree GCD’s the conditioning may be worse.

If conditioning of A prevents a satisfactory answer from
being obtained, one can alter the Modified Gram-Schmidt
algorithm for QR factorization to take advantage of the spe-
cial form of Dp; if Dp = QR then Q is upper trapezoidal
in shape and R is upper nd + 1-diagonal; still, this gives a
more expensive algorithm than the normal equations. But
the condition number of Dp grows only like 2n/π (in the
degree one case), which may allow more accurate answers
than the normal equations approach.

Remark 4. For the degree-one case, there is an explicit
analytical formula for the minimum 2-norm ∆p. We derive
it as follows (this result may not be original to this paper).
Suppose r is the root of our computed degree-one GCD.
Then the minimum 2-norm distance from p(x) to a polyno-
mial p(x) + ∆p(x) with this root can be found by solving
the following rank-deficient least-squares problem with the
SVD [8].

p(r) + [1, r, r2, . . . , rn]

∆p0

∆p1

...
∆pn

 = 0

But the SVD of the 1 by n + 1 matrix R for this linear
system is trivial: U = [1], σ1 = ||R||2 (as a vector), and V is
some orthogonal completion of R/σ1. This gives us as the
minimum 2-norm solution

∆p∗ = −p(r)RT /σ2
1 .

We see that the distance to the nearest polynomial with this
zero is proportional to the residual p(r).

There is a slightly simpler formula cited in [15] which
gives the 1-norm distance to the nearest polynomial with
the given root.

Definition. Suppose ∆p has been computed by solving
the associated least-squares problem. Suppose also that ∆q
has been computed. We define ε̂ = max(||∆p||, ||∆q||). This
is our computable a posteriori bound on the distance to the
nearest set of input polynomials with nontrivial GCD.

Remark 5. This definition and Lemma 3 provide two a
posteriori backward error bounds, one cheap and crude and
one slightly more expensive but wholly precise. It would
also be interesting and useful to have a good a priori bound.
We conjecture that one can replace the upper bound ε̂ in the
Lemma 2 with something like Mε for a suitably moderate
constant M , possibly depending on n and m.

2.6 Optimization Algorithm

If we define the near-GCD as the solution to the following
minimization problem

min
d
||Cp(d)q1 − p||2 + ||Cq(d)q2 − q||2

where Cp(d) is the n+1 by n−nd +1 Cauchy matrix defined
by the unknown coefficients of the near-GCD d of degree nd,
and similarly Cq(d) is the m+1 by m−nd+1 Cauchy matrix,

199

and q1 and q2 are the unknown vectors of coefficients of the
corresponding quotient polynomials, then we see we have a
(quadratic) nonlinear least-squares problem to solve to find
d(x).

This can be done with standard optimization algorithms,
and has as byproduct the backward error computations dis-
cussed in the previous sections, because clearly once d(x)
has been specified, the minimum is achieved on each piece
of the function by choosing q1 and q2 appropriately. We are
experimenting with this algorithm at present to see if it can
be competitive.

2.7 Example

Suppose

p = x5 + 5.503x4 + 9.765x3 + 7.647x2 + 2.762x + 0.37725

and

q = x4 − 2.993x3 − 0.7745x2 + 2.0070x + 0.7605

are given.
If we compute the GCD by the SVD algorithm above, we

find that the singular values of the Sylvester matrix are ap-
proximately 23.1, 14.6, 7.62, 4.68, 3.59, 2.72, 1.11, .000141,
and .611E−5. From this we can decide that there is a per-
turbation of the data not much bigger than 1.4 · 10−4 such
that there is a degree 2 GCD, and that the required pertur-
bation to make a degree 3 GCD is at least 1.1—that is, the
2-norm of the vector of coefficients of ∆p or ∆q must be at
least 1.1 to get a degree 3 GCD. Since the coefficients of the
input were given only to four significant figures, we conclude
that it is reasonable to look for a degree-2 GCD.

Now we continue with the algorithm and compute the
candidate GCD

d = x2 + 1.007x + 0.2534 .

Then as we have seen in theory, d exactly divides some p+∆p
with ||∆p|| ≤ ||r||, where r is the remainder on division of p
by d. This gives an upper bound on ||∆p|| of roughly 9.7 ·
10−5. In fact the minimum possible perturbation to p that
allows exact division by d has norm about 6.6 · 10−6, as we
discover on solving the appropriate least-squares problem.

Similarly, d exactly divides q + ∆q with ||∆q|| ≤ ||r||,
where r is the remainder on division of q by d. This gives
an upper bound on ||∆q|| of roughly 5.7 · 10−4, whereas
the minimum possible perturbation to q that allows exact
division by d has norm about 1.6 · 10−4. Note that this is
only slightly larger than the discriminating singular value of
the Sylvester matrix, which was 1.4 · 10−4.

The 2-norm of p is about 14, while the 2-norm of q is
about 4. Thus we see that our divisor d is a better divisor
of p than it is of q, but in both cases relative changes in the
input of less than 10−4, that is, of the unknown digits of p
and q, allow us to say that our calculated GCD is exact.

Thus the algorithm provides a proof that there is no
more satisfactory GCD than the one given, in the sense that
the one computed has the highest possible degree consistent
with the data. Further, we can explicitly compute the small-
est perturbation of the initial data which makes the answer
exact, so that we can verify that the problem we have actu-
ally solved is reasonable.

Contrast this with a ‘forward error’ approach, which re-
quires you to know something more a priori about the ‘exact’
answer to the given problem.

2.8 Difficult cases

What do we do if there is no clear separation amongst sin-
gular values? This is likely to happen for large-degree poly-
nomials. The algorithm above will simply report that it has
failed; the user then must examine the singular values and
make her or his own decisions. This is the best that can be
done, in principle.

3 A first approach to multivariate GCD

It is often maintained that computation of GCD’s is essen-
tially a univariate problem, since we can compute multi-
variate GCD’s by interpolation. Substantial modification
of the standard exact algebraic interpolation algorithm is
necessary, however, for a satisfactory algorithm in the ap-
proximate case. We describe this modification below.

For simplicity, let us consider a bivariate problem first.
Suppose that the degrees of the input polynomials in x are
less than the degrees in y; now consider taking a random
value of x, say x = α, and then consider the reduced prob-
lem of computing the GCD of p(α, y) and q(α, y). We use
the SVD algorithm to find the GCD of these polynomials.
Because of the randomness of α this will tell us both the
degree and the sparsity pattern of the true GCD as a poly-
nomial in y, with probability 1.

Now we take x as our main variable; we put x back as
an indeterminate, and choose a certain number of random
values βi of y. For each βi we compute the GCD of p(x, βi)
and q(x, βi). Note that these GCD’s will all be monic in x,
whereas the true GCD may have both x and y in its leading
term; hence the coefficients of the computed GCD’s will be
rational functions of β. However, we can take the denomina-
tor of these rational functions to be the same in every coef-
ficient, and this allows us to do the (sparse) interpolation at
little more than the cost of polynomial interpolation. Note
that taking more points than necessary allows us to use ideas
from least-squares approximation theory, and may allow us
to compute better answers. The problem of ‘unattainable’
or ‘near-unattainable’ points for rational interpolation may
be avoided in this fashion, as well.

In exact computation, each coefficient can be interpo-
lated separately. For approximate computation this might
allow slightly different denominators in each case, which
would be unsatisfactory. So we interpolate all the coeffi-
cients simultaneously. We do this by setting up (conceptu-
ally) the linear system describing the interpolation problem,
and then semi-analytically solving the problem—that is, re-
ducing it to a sequence of smaller-order matrix problems.

Suppose there are Tx nonzero terms in each of the GCDs
of p(x, βi) and q(x, βi). Suppose that we know that the GCD
of p(α, y) and q(α, y) has Ty nonzero terms (and we know
their powers also: e.g. GCD(p(α, y), q(α, y)) = c1y

3 + c2y
5

so Ty = 2 and the powers are known).
Then we must be able to fit rational functions pi(y)/p0(y)

to the Tx terms of the GCD’s of p(x, βi) and q(x, βi). Note
that the coefficient of the monic term is just p0(y)/p0(y) and
thus we get, for each βi, only Tx − 1 equations in the TxTy

unknown coefficients of the interpolating polynomials. This
tells us that if Tx = 1 we have to do something special, and
in fact this case is easy—since we know there is only one
term in x, and we know its power, just solve the reduced
polynomial GCD problem with x = 1 and multiply the result
by x` where ` is the known power of the GCD. If Tx > 1,
then we can take M to be any number greater than or equal
to TyTx/(Tx − 1) (in particular 2Ty will do but may require

200

too many points if Tx > 2), then we need only solve M GCD
problems in n− 1 variables.

Consider a specific example for clarity. Suppose we are
trying to recover the GCD 1 + 3y + 3y2x from its sampled
values x+6 at y = 1/3 (remember the GCD process takes a
monic GCD), x+9/4 at y = 2/3, x+0 at y = −1/3, x−3/4
at y = −2/3, x + 4/3 at y = 1, and x + 2/3 at y = −1.
Rationally interpolating the constant term of each GCD by
(p0 +p1y +p2y

2)/(q0 + q1y + q2y
2) (the degrees and nonzero

terms are known by random sampling), we get the following
system of linear equations.

p0 + βip1 + β2
i p2 − γi(q0 + βiq1 + β2

i q2) = 0

for (βi, γi) equal to (1/3, 6), (2/3, 9/4), . . ., (−1, 2/3).
This is a sixth-order homogeneous system: we are look-

ing for an eigenvector corresponding to the zero eigenvalue.
If zero isn’t an eigenvalue, then there is no rational system
with the same denominator fitting the data.

For larger systems we quickly notice that the matrices
multiplying the numerator coefficients are all the same Van-
dermonde matrix. This permits economical solution. Plac-
ing the denominator coefficients last in the list of unknowns
leads to a block-bordered diagonal system that looks like

B Y1B
B Y2B

. . .
...

B YpB

 ,

where B is the M by Tx Vandermonde matrix associated
with the chosen collocation points βi raised to the known
powers, and Yi is the diagonal matrix of the known values of
the i-th coefficient at each βj . Calling this matrix A, then we
are looking for a vector that makes A{p} = 0. Such a vector
will also make AT A{p} = 0, so we may confine our search
to eigenvectors of the (square) matrix AT A. Indeed since
AT A = V Σ2V T if A = UΣV T we see that the nullspace
of AT A is exactly the nullspace of A. This matrix is also
sparse, and we can, by stable block row reduction using the
SVD on BT B (which doesn’t alter the eigenvector we are
looking for), reduce it to a system of the form

I G1

I G2

. . .
...

M

 .

Explicit formulas for the Gi and M are as follows.

Gi = (BT B)−1BT YiB

and

M =

Ty−1∑
i=1

(YiB)T (YiB)− (YiB)T BGi .

We can find an eigenvector of this system by first finding an
eigenvector of the lowest-order submatrix, M . This eigen-
vector gives the coefficients of the denominator polynomial.
Finding the coefficients of the numerator polynomials is then
simply a matter of matrix multiplication.

We find the zero eigenvector of M by using the SVD
again. We simply take the last vector of V where M =
UΣV T . It is possible that more than one vector will make
AT A{p} = 0 (if for example there is a common factor d(x)

among all coefficients, which will obviously cancel after di-
viding out the leading coefficient), in which case we take the
one of largest degree possible.

This process can be recursively iterated for the case of
more than two variables. Some questions remain: how many
points should we use for a good least-squares fit, and how
should we choose them? Randomness is necessary only for
avoiding coincidences (e.g. (x2 + yx + 1, x + 1) = 1 if y 6= 2)
once the degree of the GCD in y is known.

Using a purely random choice of interpolation points
usually produces an unacceptably high condition number
for the interpolation/approximation problem: we often ob-
served condition numbers as high as 100, and on a problem
with only three digits of accuracy in the input this means
that only one digit will be accurate on the output. How-
ever, we have experimentally observed that it seems suffi-
cient to randomly scale each variable and choose the Cheby-
shev points in the new variable (that is, put xk = βuk + α
for some randomly chosen α and β, and then choose the
M values cos(πj/M), j = 0..M − 1 for uk). This typically
produces condition numbers of 5 to 10, though if we are un-
lucky with our choice of β we can have very large condition
numbers indeed so this must be monitored. We originally
chose α and β as random variables on (0, 1) but later mod-
ified this to (1/2, 1). A good theory for the choice of points
is needed.

We note that as implemented, there are two ways in
which this algorithm can fail: due to unlucky random choi-
ces, or due to poor conditioning of the Vandermonde sys-
tems. So we must be able to check the answers that the
program produces.

3.1 Backward error analysis

As in the univariate case we can compute the nearest poly-
nomials to the input whose exact GCD is the one we have
computed. If we assume that the nearby polynomials are
dense, then there is no real difficulty in performing the cal-
culation. We give an example below, which is example 7
in [17].

Put

f0 = 0.25− 0.25x2 − 0.25y2 − 0.9999xy + xy3 + yx3

and

f1 = −0.00001 + y − 1.00001x + xy2 − yx2 + x3 − y3 .

If the coefficients are rounded in the obvious way the GCD
is x2 + y2 − 1. The algorithm as implemented computes
slightly different answers on different runs (because of the
randomness). A typical result is (with tolerance 0.0001)

d̂ = −0.99997 + 0.99937x2 + y2 .

Finding the quotient that makes d(x, y)q0(x, y) = f0(x, y) is
easily set up as a set of (incompatible) linear equations for
the unknown coefficients of q0. We get Dq∗ = f∗0 , where the
matrix D is sparse and similar in structure to the symbolic
matrices in Lazard’s algorithm (section 4). It is not printed
here, for space reasons. We solve that set of equations in
the least-squares sense to find that the smallest change that

we can make in f0 to make d̂ an exact divisor has 2-norm
of about 0.0000816. Similarly, we must (and can) change f1

by 0.00001125 to make it exactly divisible by d̂.
Thus we see that the algorithm has found the exact an-

swer to a slightly different problem, a nearby dense one

201

within the specified tolerance. The fact that d̂ is not so very
different from x2 + y2 − 1 tells us that the original problem
is not very sensitive to the errors in the input data.

If sparsity is important for the error analysis, that is, if
the user is really only interested in getting the exact solution
to nearby sparse problems, then it may not be true that the
problem solved exactly is nearby (or even exists at all).

4 Solution of Multivariate Systems

The algorithms we discuss here for the solution of polyno-
mial systems are similar to those of [2, 13, 14, 15], in that
they use the SVD and generalized eigenvalue computations
on a resultant-like matrix; however, the details of the com-
putation are different. Aside from complexity differences,
the main difference is that the algorithm we adapt, Lazard’s
algorithm, is capable of solving over-determined systems.
(We note, however, that for the n equation in n unknown
case, earlier methods [13] are superior.) In principle we can
take some advantage of sparse matrix computations, for the
algorithm considered in the present paper, but we have not
yet done so, and in any event the matrices used here are not
as sparse as in the n× n case.

We note that if we treat the input data as being exact,
then overdetermined systems with approximately-known co-
efficients will, in general, have no solutions. Thus we are
forced to treat the input data as being inexact, and allow
the algorithm to pick out nearby interesting problems to
solve.

The method is based in part on the recognition of certain
matrices as being representations of multiplication by each
of the variables in an affine ring, and hence that the matrices
are commutative. This leads to an interesting approach to
the computation of linear bases for polynomial ideals. See [7]
for details.

4.1 Lazard’s algorithm for solution of polynomial
systems

In a following section we will be modifying Lazard’s algo-
rithm [12] to the present case of approximately-known in-
put polynomials. This section contains a brief exposition
by example of Lazard’s method, for easy reference. We use
Lazard’s own example, with some additional remarks to pre-
pare for the transition to the approximate case.

Consider the very simple system of equations

f0 = −1 + 2x + y + x2 + xy = 0 (1)

f1 = −1 + 3x + 2y + x2 − y2 = 0 . (2)

These equations have three finite solutions, (0, 1), (1,−1),
and (−3, 1), and one solution at infinity in the common
asymptotic direction (−1, 1).

Now put
f2 = u + vx + wy , (3)

where u, v, and w are scalar indeterminates. We now form
a matrix system out of these three polynomials, from the
coefficients of the monomials that occur in f0, xf0, yf0,
f1, xf1, yf1, f2, xf2, yf2, x2f2, xyf2, and y2f2. Lazard’s
Theorem 3.3 [12] tells us how many such polynomials to
construct, and what the maximum degree of the resulting
monomials is (in this case, D = 3). Taking the monomials in
lexicographic order, the resulting table is shown in Figure 1.

The table was constructed as follows. The exterior left-
hand column lists the monomials of degree less than or equal

to D = 3. The three interior parts correspond to the polyno-
mials f0, f1, and f2. The top row is a list of the monomials
of degree less than or equal to D−degree(fi). If m is a
monomial from the left-hand exterior column, and n is a
monomial from the top row, then the entry in the table in
that row and column intersection is the coefficient of m in
the polynomial nfi. For example, 3 is the coefficient of xy
in yf2.

It is clear that this is a generalized Sylvester matrix, and
that if we put x̃ = [1, x, y, x2, xy, . . . , xy2, y3], then if Z is
the matrix above then the components of x̃Z are f0(x, y),
xf0(x, y), yf0(x, y), f1(x, y), . . ., and y2f2(x, y). For the
general problem, this matrix can get very large (though it
is sparse).

Lazard works with this table as one large matrix. We
will find it simpler to split it into four matrices, all purely
numerical. For the moment, however, we split it only into
two: the left-hand purely numerical part, which we will call
Z, and the right hand symbolic part, which we will call M .
Later we will split M = uMu + vMv + wMw into three
numerical parts.

The algorithm proceeds as follows. First, we perform
Gaussian elimination on Z; that is, we factor Z = PLUR
into its row-echelon factorization [4]. Here, Z is the first six
(numeric) columns of the matrix in Figure 1, and it factors
into PLUR where P interchanges rows 5 and 7 and U is a
10 by 10 upper-triangular matrix, and the row-echelon form
of Z is a 10 by 6 matrix with its main diagonals all equal
to 1. We really need only P , L, and R for our purposes.
R tells us that the rank of Z is k = 6, which we need, and
we will apply L−1P−1 (or, rather, the bottom rows of this,
corresponding to the nontrivial part of the result) to the
symbolic matrix M . This gives Z1, as given below (some
entries are not printed, to save space).

Z1 =

 −u− v + w ∗ ∗ ∗ u −u
−v + w ∗ ∗ ∗ v 0

u− v + 2 w ∗ ∗ ∗ w u + v
u + w ∗ ∗ ∗ 0 u + w

We then go on to apply more Gaussian elimination, in

order to compute a determinant. This determinant factors
into factors linear in u, v, and w, which is the crucial result
that the algorithm is based on. It turns out that this deter-
minant is precisely the determinant of U in the row echelon
factorization of Z1 = PLUR, where P is a permutation ma-
trix, L is unit lower triangular, U is a nonsingular upper
triangular matrix, and R is the row echelon form. We re-
mark that this determinant of U is necessarily nonzero when
the computed factorization is correct on specialization—this
computation gives one of the simplest examples of a useful
‘proviso’ [5].

The determinant of U is

(v − w) (u + w) (u− 3v + w) (u + v − w) .

From this determinant, we can read off the roots by the
coefficients of the linear factors:

(0, 1,−1), (1, 0, 1), (1,−3, 1), (1, 1,−1) .

The first set of coefficients corresponds to the solution at in-
finity. There are three coefficients here because the method
is based on homogenization of the original polynomial set,
and hence we want to set the first coefficient to 1 (by scaling)
if we can.

202

1 x y 1 x y 1 x y x2 xy y2

1 −1 · · −1 · · u · · · · ·
x 2 −1 · 3 −1 · v u · · · ·
y 1 · −1 2 · −1 w · u · · ·
x2 1 2 · 1 3 · · v · u · ·
xy 1 1 2 · 2 3 · w v · u ·
y2 · · 1 −1 · 2 · · w · · u
x3 · 1 · · 1 · · · · v · ·
x2y · 1 1 · · 1 · · · w v ·
xy2 · · 1 · −1 · · · · · w v
y3 · · · · · −1 · · · · · w

Figure 1: Lazard’s matrix

Remark 6. The matrix M can be usefully split into
three numerical matrices, each multiplied by a scalar inde-
terminate. Then the rectangular matrix F formed from the
bottom n−k rows of L−1P−1 (where n = (D +1)(D +2)/2
is the row-dimension of Z, and k is the rank) can be used
on each piece of M :

FM = F (uMu + vMv + wMw)

= u(FMu) + v(FMv) + w(FMw)

= uM̂0 + vM̂1 + wM̂2 say,

and now we recognize this as a generalized eigenvalue prob-
lem: we must find scalars u, v, and w which make the deter-
minant of some r× r submatrix of FM equal to zero. Note
that the matrix F should not be formed explicitly, but that
the matrices FMs can be formed during the row echelon
process by row operations.

For arbitrary matrices Mu, Mv, and Mw, this prob-
lem will have no solution; in fact, we are looking for over-
generalized eigenvalues. But these matrices are special. If

we form (in this example) 4 by 4 submatrices Mi of the M̂i

by simply deleting the last two columns (in general we will
have to be more sophisticated but for this example this is
good enough), and then form B = αM0 + βM1 + γM2 for
some randomly chosen scalars α, β, and γ, then the matri-
ces A0 = M0B

−1, A1 = M1B
−1, and A2 = M2B

−1 all com-
mute with each other: A0A1 = A1A0, A0A2 = A2A0, and
A1A2 = A2A1. This means, by a well-known theorem [9,
Theorem 2.3.3] that this guarantees the existence of a uni-
tary matrix U such that U∗AiU are all upper triangular.
Thus

det(uM0 + vM1 + wM2)

= det
(
U∗(uM0 + vM1 + wM2)B

−1U
)
det B

= det (uT0 + vT1 + wT2)

= det B

4∏
i=1

(uri + vsi + wti) (4)

where each Ti is upper triangular: hence the determinant is
just the product of the diagonal entries ri, si, and ti. That
is, the determinant splits into linear factors (which we knew
from [12] already). This means that such ‘over-generalized’
eigenvalues do indeed exist.

This point of view leads to a useful method of solution,
which involves neither formation of large symbolic determi-
nants nor factorization of such. Indeed the point of view
leads to a useful algorithm in the symbolic context also.

Remark 7. Computation of the simultaneous triangu-
larizing matrix U : Recent work shows how to simultane-
ously diagonalize symmetric commuting matrices [3], and
it is possible that these techniques may be adapted to the
nonsymmetric case. This is currently under investigation.

Remark 8. Why do those matrices commute? For de-
tails, see [7]. The following brief sketch gives the main ideas.
Choosing a generic combination of the Mi matrices which is
invertible is like choosing a hyperplane at infinity such that
no solutions lie on that hyperplane. Let y be that hyper-
plane, i.e. y =

∑
cixi such that y doesn’t vanish on any

solution.
Since x0, . . ., xn are homogeneous coordinates, x0/y, . . .,

xn/y become affine coordinates of an affine ring which is
also a finite dimensional vector space, whose dimension is
the number of solutions of the system. Multiplication by
xi/y is represented by a matrix on this vector space. Since
the ring is commutative, these matrices commute.

It turns out that MiB
−1 is similar to this multiplication

matrix, i.e. it is the same transformation acting on a vector
space with a different basis. So these matrices also commute.

Remark 9. It is crucial to be able to identify the rank
of Z correctly, and it is here that the algorithm as stated
first breaks down in the presence of data error. We will use
the SVD to rectify this problem in the next section.

Remark 10. What goes wrong when there are an in-
finite number of solutions at infinity for the homogenized
problem? We know that the theorems guaranteeing success
do not go through; it is likely that what happens is that

there are no r × r submatrices of M̂0, M̂1 or M̂2 that have
full rank, which makes the pencil determining the eigenval-
ues singular.

4.2 Inexact coefficient version

Suppose that instead of the polynomials used in the example
of the previous section, we are given the same polynomials
divided by 3 and rounded to four decimal places, simulating
input data error. What happens if we simply run the above
algorithm?

It turns out that for this problem, it works fine, pro-
vided we don’t attempt to take a determinant at the end
and then factor it but rather solve an eigenvalue problem
as below. But can we guarantee that it will always work
well? No. Consider the problem of finding the roots of an
overdetermined polynomial system (e.g. a GCD from poly-
nomials with inexactly known coefficients). We know that
Gaussian elimination on the Sylvester matrix (which is what

203

the matrix of Lazard’s algorithm works out to be in the uni-
variate case) will fail in the presence of data error—we will
not be able to reliably determine the rank of the matrix
and hence the number of solutions correctly. Other exam-
ples include linear systems in n variables whose matrices are
ill-conditioned; in this situation it means they are systems
close to ones with an infinite number of solutions.

How can we rescue this algorithm, in the presence of data
error such as was discussed in the previous paragraphs? We
use two ideas. The first is to use the SVD to correctly deter-
mine the rank of the numerical matrix; as in section 2 this
will give us tight lower bounds on the necessary perturba-
tions of the data to ensure that the solutions are correct.

The second idea is to solve the determinant factorization
problem as a generalized eigenvalue problem. This avoids
formation of the determinant as a polynomial in u, v, and
w to begin with, which is well-known to induce an insta-
bility in the rootfinding process [25]. In effect, we will be
generalizing the companion matrix method for finding roots
of univariate polynomials: we will replace the polynomial
rootfinding problem with a (generalized) eigenvalue prob-
lem. Philosophically, this approach is very similar to that of
Manocha and Demmel [14, 15], and we hope therefore that
it shares the good robustness properties of their algorithms.

We now re-solve the modification of Lazard’s example to
exhibit our modifications to the algorithm.

Since the coefficients of the polynomials were all divided
by 3 and rounded to four digits, the numerical matrix Z is
obtained from the previous Z by replacing 1/3 with 0.3333
and 2/3 by 0.6667. Instead of computing the row-echelon
factorization of Z, we compute the SVD of Z, Z = UΣV T .
U is a 10×10 matrix. Σ is a 10×6 matrix, the same shape as
Z, and it turns out that the singular values range from 1.89
to 0.107, and we conclude that the rank of Z is indeed 6. V
is a 6× 6 matrix. We can form UT Z = ΣV and notice that
the bottom four rows are all on the order of the machine
roundoff.

But we really wish to form UT M = uUT Mu +vUT Mv +
wUT Mw, and look at the last four rows of each of these. To
do this it suffices to use the last four columns of U in the
product directly to produce

M̂0 = UT
1 Mu

M̂1 = UT
1 Mv

and
M̂2 = UT

1 Mw .

As noted in passing in the previous section, for this example
it suffices to define Mi as the submatrices obtained from the
M̂i by taking the first four columns of each. In general we
can take r columns formed from random combinations of
the columns of M̂i (the same random combination for each
matrix, of course). Here we get

M0 =

 0.1505 0.2816 −0.1956 −0.1529
0.3535 0.3554 −0.3554 0.3510
0.4136 −0.0574 0.3804 0.2388
0.2106 −0.1312 0.5402 −0.2652

 ,

and similarly for M1 and M2.
We then form a matrix B as a random combination of

M0, M1, and M2. Here we can for example choose B =
αM0 + βM1 + γM2, with α = 0.2190, β = 0.0470, and
γ = 0.6789, which gives a nonsingular matrix B (this hap-
pens with probability 1, and indeed we expect B to be well-
conditioned, also). The nonsingularity of B, and its well-
conditioning, may not matter if the eigenvalue problem is

solved in a good way, as we will see, but it is important
to take a generic combination to avoid spuriously multiple
eigenvalues because multiplicity complicates the algorithm.

We now solve the generalized eigenvalue problem

det(M0 + wB) = 0 (5)

In general we will be concerned with the conditioning of the
eigenvalues and eigenvectors, and will wish to partition the
eigenvector matrix into insensitive subspaces [14, 15], but
for this example all eigenvalues are well-separated and the
eigenproblem is very well conditioned. We thus get four
linearly independent eigenvectors.

By Lemma 1.3.17 in [9] (modified for the generalized
eigenvector case), these eigenvectors are common to all the
pencils Mi + λB. This means that if the matrix of eigen-
vectors is V , then V −1MiB

−1V is upper triangular (in fact
diagonal) for each matrix. Note that the rows of V −1 are
left eigenvectors for each pencil also.

Thus our determinant becomes

det
(
V −1(uM0 + vM1 + wM2)B

−1V
)
det B

= det B

4∏
i=1

(uri + vsi + wti) .

Note that ri may be expressed as yT
i M1xi where yi is a

left eigenvector and xi is a right eigenvector corresponding
to the i-th eigenvalue. Similarly si = yT

i M1xi and ti =
yT

i M2xi. These formulas may also be arrived at by standard
perturbation theory [22], and indeed that is how we first
found them. These formulas can be expressed succinctly as
the Rayleigh quotient formula: rij = yT

i Mjxi. If all of these
quantities are small, then the root is ill-conditioned, and a
system with a multiple root is nearby.

The following table shows the results of applying this
formula to the current example.

i yT
i M0xi yT

i M1xi yT
i M2xi

1 0.3462 0.3460 −0.3460
2 0.3860 0.0000 0.3861
3 −0.1111 0.3332 −0.1110
4 0.0000 −0.1006 0.1006

(6)

The zero in the bottom left-hand corner was, in fact, 4 ·
10−15. Taking ratios, we get the (projective) roots (remem-
ber our input problem is about 10−4 different from Lazard’s
example)

1.0000 0.9994 −0.9993
1.0000 −0.0001 1.0003
1.0000 −3.0002 0.9999
0.0000 1.0000 −1.0000

(7)

A decision was made for the last one that dividing by 10−15

would produce an ‘effective infinity’.
Remark 11. The formulation of the coefficients of the

factors as a generalized eigenvalue problem is quite indepen-
dent of the method used to form the matrices Mu, Mv, and
Mw; in particular this approach could be valuable in the
purely algebraic case because the basic generalized eigenval-
ues and vectors that start the process off can be found by
solving a univariate problem. Once that has been accom-
plished, the other roots can be read off directly by vector-
matrix-vector products.

Remark 12. What if the matrix pencils are all singular?
In this case we must have a nontrivial component at infinity;
it is possible that this approach may shed some light on this

204

case as well. We are currently looking at this, and it seems
that the Kronecker canonical form may play an essential
role.

4.3 Multiple Roots

More work is necessary in the case when multiple roots are
encountered. We must

• identify multiple eigenvalues by computing condition
numbers (as in [15]);

• cluster them using standard techniques;

• (proposed, not yet tested) add one more linear equa-
tion to the original system (no more work needs to
be done for this since matrices corresponding to linear
equations have already been reduced in the formation
of the matrix associated with a given variable);

• use the new matrices, which have constant eigenval-
ues, to find all values of the coordinates of the root by
taking the average of the trace of the matrix;

however, none of these have yet been implemented. We an-
ticipate success, but multiple roots are notoriously difficult.

4.4 Algorithm Overview

We indicate below just which parts of the algorithm have
been actually implemented. The most important thing not
yet implemented is the handling of multiple roots, which we
did not need for our immediate application.

1 Form the numerical resultant matrix Z of the input
polynomials.

2 Form the n + 1 numerical M -matrices.

3 Compute the SVD of the resultant matrix, and its
rank, k.

4 Form the bottom r = dim(Z) − k rows of UT Mx0 ,
UT Mx1 , . . ., UT Mxn .

5 Form the r generic columns of each matrix (not yet
implemented). Alternatively we could take an SVD of
one matrix to find a basis for its column space (this is
what is currently done), but the generic combination
trick is cheap and effective. Call these r by r matrices
M0, M1, . . ., Mn.

6 Form a generic matrix B by a random combination of
the Mi’s. Genericity is important to avoid spurious
multiplicities.

7 Find the left and right eigenvectors of M0 + λB.

8 Partition the returned eigenvectors into insensitive eig-
enspaces corresponding to clusters of multiple eigenval-
ues (not yet implemented). The left and right eigen-
vectors may be useful in this context.

9 Use the Rayleigh quotient formula rij = yT
i Mjxi to

find all the distinct roots.

10 For each higher-dimensional invariant subspace Xi of
dimension ki ≥ 2, for each j = 2, . . . , n, follow the
steps outlined in Section 4.3 (not yet implemented).

4.5 Application to computation of singular points

One application of the solution of imperfectly-known overde-
termined polynomial systems is the computation of singular
points of algebraic curves where the projections of the curves
are only known by interpolation of data known to a certain
fixed number of decimal places. Mika Seppälä and Robert
Silhol [19] wished to do this for the following example. After
interpolation, their curve was p(x, y) = 0 where p(x, y) was

4.0y4 + 17.0x2y2 + 1.307xy2 − 19.572938y2 + 4.0x4

+5.228x3 − 18.29175x2 − 5.228x + 15.29175 .

The level of error in this interpolated polynomial is not im-
mediately apparent. To discover it a priori would involve
careful analysis of the interpolation process used to create
it. An anonymous referee pointed out that this problem is
quadratic in y2, and we could have split this problem into
two univariate ones and applied the techniques of the first
part of this paper.

The system that we wish to solve is p(x, y) = 0, px(x, y) =
0, and py(x, y) = 0. Note that if the input coefficients are
treated as being exact, then there are no real solutions.

We ran our algorithm on this set of polynomials. On
the first run, we discovered that there is precisely one real
root, if the tolerance is taken to be larger than 0.000284.
This is in fact the smallest nonzero singular value of the
generalized Sylvester system, so if the tolerance is smaller
than this, there are no solutions. The next smallest singular
value is 0.101. The largest singular value is about 187 (this
gives a natural scale for the problem). Thus we see a clear
separation between singular values, and this gives us a good
idea how accurate the input data was. We see that a relative
change in the input data of about 0.000284/187 or 1.5 ·10−6

turns the system from one that has no solution to one that
has exactly one solution.

The algorithm then computed the singular point x =
1.1838, y = 1.700 · 10−7. Approaches using Gröbner bases
to this problem produced very unsatisfactory results.

4.6 Implementation

The above procedure has been implemented in the Axiom
Version 2 library extension language [23]. This platform,
known as A] during its development, provides the necessary
symbolic facilities while allowing efficient access to libraries
written in other languages [24]. For this paper we have made
use of mature Fortran libraries to handle the singular value
decomposition and the generalized eigenvalue sub-problems.

From a top-level view, the program to solve multivariate
polynomial systems is expressed in about a dozen pages of
source code (780 lines). The program makes use of the base
Axiom Version 2 stand-alone library, an Axiom library pack-
age to represent matrices in Fortran form, and the routines
DGESVD and DGEGV from LAPACK [1].

One inconvenience was that the foreign function interface
does not yet have native support for Fortran calling conven-
tions. The scalar arguments had to be placed in Records to
pass them, by reference, as Fortran expects.

Our first implementation of the program used the IBM
ESSL library to compute the SVD and the generalized eigen-
values. This had a more convenient interface for the SVD,
but the generalized eigenvalue routine was not as convenient.

Remark 13. The code is compiled with an optimizing
compiler. This, and the interconnection to efficiently com-
piled Fortran code, allows much faster computation than
one normally finds in a computer algebraic environment.

205

5 Concluding Remarks

The algorithms for the univariate and multivariate GCD
computations described in the first part of this paper have
been implemented in a computer algebra language, and are
thus not restricted to machine-size tolerances and coeffi-
cients.

The algorithm described in the second part of this paper
solves any zero-dimensional homogeneous system of equa-
tions. The method may also be applied to affine systems
by adding an extra “homogenizing” variable, provided that
when the system is homogenized the system has a finite
number of solutions.

We have employed a technique of randomizing rank-def-
icient matrices, producing smaller matrices with rows or
columns consisting of randomized combinations of rows or
columns from the original matrix. This can be useful in re-
ducing the cost of algorithms on dense matrices when they
are not of full rank, since a rank-sized randomized matrix
will carry full information.

From the implementation perspective, we observe that
this symbolic-numeric work was greatly facilitated by mak-
ing direct use of Fortran libraries for the linear algebra sub-
problems. An important aspect, which we hope becomes
more common in computer algebra systems, is that we were
not restricted to some predetermined set of foreign libraries.
This allowed us to change the choice of linear algebra li-
braries, easily, quite late in the implementation.

Several research questions are left unanswered by this
paper. In particular, we would like to see a good theory
for the choice of collocation points in the multivariate GCD
algorithm; an ‘optimal’ optimization method for the com-
putation of univariate GCD’s, perhaps using the SVD more
directly; an implementation of the multiple root clustering
heuristics in the solution of multivariate systems; proper use
of sparse matrix technology; and an efficient algorithm for
simultaneous upper triangularization of nearly commuting
matrices. Finally, the connection of the Kroenecker Canoni-
cal Form to the case where the ideal is not zero-dimensional
may be interesting to explore.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A.
McKenney, S. Ostrouchov, and D. Sorensen, LAPACK
User’s Guide, 2nd. ed., SIAM, 1995.

[2] W. Auzinger and H. J. Stetter, “An Elimination Algo-
rithm for the Computation of All Zeros of a System of
Multivariate Polynomial Equations”, in: Conference in
Numerical Analysis, ISNM vol 86, Birkhaeuser, 1988,
pp. 11–30.

[3] Angelika Bunse-Gerstner, Ralph Byers, and Volker
Mehrmann, “Numerical Methods for Simultaneous Di-
agonalization”, SIAM J. Matrix Analysis and Applica-
tions, 14, no. 4, 1993, pp. 927–949.

[4] Robert M. Corless, David J. Jeffrey, and M. A. H.
Nerenberg, “The Row Echelon Decomposition of a Ma-
trix”, manuscript, 1989.

[5] Robert M. Corless and David J. Jeffrey, “Well, it isn’t
quite that simple. . .”, SIGSAM Bulletin 26 vol 3, Au-
gust 1992, pp. 2–6.

[6] K. O. Geddes, S. R. Czapor, and George Labahn, Al-
gorithms for Computer Algebra, Kluwer, 1992.

[7] P.M. Gianni and B.M. Trager, in preparation.

[8] Gene Golub and Charles Van Loan, Matrix Computa-
tions, Wiley-Interscience, 1981.

[9] Roger A. Horn and Charles A. Johnson, Matrix Anal-
ysis, Cambridge University Press, 1985.

[10] V. Hribernig and H. J. Stetter, “Detection and Vali-
dation of Clusters of Polynomial Zeros”, preprint, to
appear in J. Symb. Comp. 1995.

[11] N. Karcanias and M. Mitrouli, “A Matrix Pencil Based
Numerical Method for the Computation of the GCD
of Polynomials”, IEEE Trans. Automatic Control, 39,
No. 5, May 1994, pp. 977–981.

[12] Daniel Lazard, “Resolution des systemes d’equations
algebriques”, Theoretical Computer Science 15, (1981)
pp. 77-110.

[13] Dinesh Manocha, “Computing selected solutions of
polynomial equations”, Proc. 1994 ISSAC, Oxford, UK,
pp. 1-8.

[14] Dinesh Manocha, “Solving Systems of Polynomial
Equations”, IEEE Computer Graphics and Applica-
tions, March 1994.

[15] Dinesh Manocha and James Demmel, “Algorithms for
Intersecting Parametric and Algebraic Curves II: Mul-
tiple Intersections”, preprint.

[16] H. Michael Möller and Hans J. Stetter, “Multivariate
polynomial equations with multiple zeros solved by ma-
trix eigenproblems”, preprint, to appear in Numerisch
Mathematik, 1995.

[17] Matu-Tarow Noda and Tateaki Sasaki, “Approximate
GCD and its application to ill-conditioned algebraic
equations”, Journal of Computational and Applied
Mathematics, 38, (1991), pp. 335-351.

[18] A. Schönhage, “Quasi-GCD Computations”, J. Com-
plexity, 1981.

[19] M. Seppälä and R. Silhol, private communication.

[20] Hans J. Stetter, “Multivariate Polynomial Equations
as Matrix Eigenproblems”, WSSIA 2, World Scientific,
1993, pp. 355–371.

[21] H. J. Stetter, “Verification in Computer Algebra Sys-
tems”, in: Validation Numerics, R. Albrecht, G. Ale-
feld, H. J. Stetter, eds., Computing Suppl. 9, 1993, pp.
247–263.

[22] G. W. Stewart, “Perturbation theory for the General-
ized Eigenvalue Problem,” in Recent Advances in Nu-
merical Analysis, ed. C. deBoor and G. H. Golub, Aca-
demic Press, New York, 1978.

[23] S. M. Watt, P. A. Broadbery, S. S. Dooley, P. Iglio, S.
C. Morrison, J. M. Steinbach and R. S. Sutor, Axiom
Library Compiler User Guide, NAG Ltd, 1994.

[24] S. M. Watt, P. A. Broadbery, S. S. Dooley, P. Iglio, S.
C. Morrison, J. M. Steinbach and R. S. Sutor, “A first
report on the A] compiler,” in Proc. 1994 ISSAC, ACM
Press, 1994, pp. 25-31.

206

[25] J. H. Wilkinson, “The Perfidious Polynomial”, in Stud-
ies in Numerical Analysis, M.A.A. Studies in Mathe-
matics, 24, Gene H. Golub, ed., pp. 1-28, 1984.

[26] Richard Zippel, Effective Polynomial Computation,
Kluwer Academic Publishers, Boston, 1993.

207

