An Object Model Correspondence for Aldor and C++

Marc Gaétano & Stephen M. Watt
INRIA — Projet Safir
2004, route des Lucioles, BP 93
06902 Sophia Antipolis Cedex - France
{marc.gaetano,stephen.watt}@sophia.inria.fr

Deliverable 2.2.1

(© 1998 The FRISCO Consortium (LTR 21.024)

1 Introduction

One of the major emphasis of the FRISCO project is to provide software tools for the linkage of FRISCO
components with existing, well-understood technologies actually used in industrial settings. While much
of the new FRISCO library development will occur in Aldor, the natural interoperation of Alder and C++
objects becomes a central goal the project wants to achieve. The language C++ is widely used for applications
programs in the industrial world and most of the background material of the project (the PoSSo library)
is written in C++. Therefore, a well-defined semantic correspondence between the Aldor and the C++
computational models is needed in order to provide an interface suitable for direct end use. The first benefit
of this work will be to provide natural interoperation of the C++ PoSSo Library and Aldor FRISCO Library
elements.

This report provides a semantic correspondence between the object models of C++ and Alder. This
correspondence will be used for two purposes:

e as the basis for manual interface development between specific C++ and Aldor programs,

e as the starting point for the implementation of internal Aldor compiler support for a C++ interface
(Frisco deliverable D2.2.2).

There are two levels at which the object model correspondence must be discussed:
¢ low level: object data layout and compatibility
¢ high level: object hierarchy and inheritance

This report addresses both these questions.

The C++ model of objects has a single-level class-based inheritance hierarchy, and single object dynamic
dispatch. This model has proven not sufficiently rich to write statically type-safe algebraic software. The
Aldor model of objects has a two-level, category-based, inheritance hierarchy, and dynamic dispatch based on
dependent types. This two-level model is particularly suitable to the implementation of algebraic software.
Domains and categories look in some way similar to classes and abstract classes. However, there are major
differences between the two concepts. For example, Alder functions match both on the types of their
arguments and on the types of the results while C++ functions ignore result type when trying to match
function signature. Aldor reaches an higher abstraction level than C++. For instance, every Aldor domain
can provide a generator abstracting the traversal of its eleinent. These iterators can iterate over structures
in a more clegant and abstract fashion than in C++ where the programmer needs to define a friend iterator
class.

The object model of C++ is based on the class concept. A class is a user-defined data type. A class
specifies the type of class members. This type defines the representation of a variable (an object of the
class). The class specifies also the set of operations (the functions) that manipulates these objects and the
access the user has on these members. The object model for Aldor is based on the category/domain concept.
A calegory is an abstract data type and describes a collection of exports, namely a (family of) type and the
functions acting on this (family of) type. A domain belongs to a category and gives an implementation of
the corresponding abstract type.

A simple mapping rule between C++ class and Aldor category and domain is given by the following
example:

// & C++ class ——— The corresponding Aldor Category
Class 4 : B,C { define A__Cat : Category ==
public: Join (B__Cat, C__Cat) with {
f: (4,) —> A f: 4> CLA >4
} }

The correspondence between a class and a category follows three simple rules :
e a C++ class (4) corresponds to an Aldor category (A.Cat)
e class multiple inheritance in C++ is handled by Joining the corresponding Alder categories

¢ a public C++ function corresponds to an exported Aldor function with as an extra argument the actual
domain (the type) the function is exported from.

In the example above, the C++ class A maps to the Aldor category 4_Cat. The class & inherits from class
B and €. Therefore, the corresponding Aldor category 4_Cat has the union of all the exports of the B_Cat
and C_Cat categories. The public function £ with two arguments exported by the class & corresponds to the
Aldor function £ with three arguments exported by (any domain of) category 4 Cat. The extra argument is
the domain the function is exported from.

Functions and data structures may be shared between programs written in Aldor and other languages.
An actual example of such interoperability is given with the C programming language. A C function can be
called from an Aldor program and vice-versa. Moreover, there is a correspondence between the way data
values are represented in Aldor and the way they are in C. It is foreseen that this capability will be extended
to C++. This requires modifications to the Aldor compiler and will be investigated at a later stage.

2 Summary of the Aldor Object Model

The Aldor object model is a two-level model based on category and domain. A category is used to specify
information about domains. A domain is an environment providing a collection of exported constants like
types, functions and variables. A domain can be viewed as an abstract data type which defines a distinguished
type and a collection of related exports. A category is used to place restrictions on the sort of domains it is
prepared to handle and to make promises about the domains which it may return. It can be viewed as a fype
for these domains. In a category object, the restrictions and promises are expressed in terms of collections
of exports which the domains typed by this category will be required to provide. Conversely, a domain may
belong to any number of categories so long as it has the necessary exports.

The primitive for forming categories in Aldor is the "with" expression:

define StackCategory(S: Type): Category == with {

new: () -> % ++ creates an empty stack

push!: (8, %) -> %; ++ destructively push an element into the stack
pop!: % -> 5; ++ destructively pop the top of the stack

top: % —> 8; ++ returns the top of the stack

empty?: % -> Boolean; ++ returns true if the stack is empty

b

The category Category is an Alder built-in type which serves as the root type for all categories. The
StackCategory is an abstract data type for stack objects. It has one parameter of type Type (any type),
the type of the objects stored in a stack. A domain of type StackCategory, (i.e. an actual stack) is denoted
by the identifier % and must export at least the functions specified in the category. A category can extend
another category in a simple inheritance scheme:

define AbelianGroup: Category == AbelianMonoid with {

- %> +4+ Negation.
LY ¥ ++ Subtraction.

default (a: %) = (b: %): % == a + (-b);
3

In this example, AbelianGroup inherits from AbelianMonoid and exports two additional functions named
"=, Thus, function names can be overloaded in Aidor. The default construct gives an implementation for
the subtraction function using only the information supplied in the category. A domain of type AbelianGroup
is free to over-ride the implementation of "-" or to use the default. Multiple inheritance is achieved by the
Join function on categories:

define OrderedFinite: Category == Join(Ordered, Finite) with {
min: %; ++ Minimum value belonging to the type.
max: %; ++ Maximum value belonging to the type.

}

The category OrderedFinite includes all the exports from both Ordered and Finite plus the two constants
min and max.

A domain belongs to a category and defines a distinguished type of that category together with a collection
of related exports. Unlike categories which only specify information, a domain describes how data values
belonging to the distinguished type are encoded and exports callable functions acting on those values. The

representation type of the elements of a domain remains hidden from outside the domain and any domain
can serve as representation type. The representation of a domain is typically a more primitive domain which
is chosen to achieve a certain level of efficiency in the operations provided by the domain. These operations
can be arranged so that a client programs which uses a domain need not depend on the representation of
the domain. Thus, the representation of the domain provides the private view of its elements. On the public
part, values from the domain are viewed through the exported functions which are acting on them. The
domain Stack belongs to the StackCategory:

Stack(S: Type): StackCategory(S) == add {

Rep ==> Record(l: List(S));
import from List(S), Rep;

new(): % == per [nill;

push!(x: S, =: %): % == {
rep(s).1 := cons(x,rep(s).l);
g};

pop!{s: %): § ==
x = first(rep(s).1);
rep(s).1l := rest(rep(s).l);
x};

top(s: %): S == first(rep(s).1);

empty?(s: %): Boolean == empty?(rep(s).l);

}

The Stack domain is parameterized by another domain (the formal parameter S) of type Type which indicates
that the actual parameter could be of any type. The Stack domain itself could serve as actual parameter and
be used everywhere a type of category StackCategoryis required. A domain may inherit the implementation
of many of its operations from another domain:

IntegerMod(n: Integer): ModularIntegerNumberSystem(Integer)
== ModularIntegerNumberRep(Integer)(n) add {

Rep == Integer;

coerce(i: SI): Y == per(i::Integer mod n);

coerca(i: Integer): § == per(i mod n};

(x: %) * (y: %W % == per((rep x * rep y) mod n);

(x: %) = (k: Integer): Y%== power(1l, x, k)$BinaryPowering(%,*,Integer);
(x: %) =~ (k: 8I): % == power(1, x, k)$BinaryPowering(%,*,8I};

(x: R/ (y: % 4 == x * inv y;

}

The domain IntegerMod inherits from ModularIntegerNumberRep. Consequently it inherits the operations
exported by this domain (called its parent) and so need not implement them explicitly in the add expression.

3 Summary of the C++ Object Model

The object model of C++ is based on the class concept. A class is a user-defined data type. Classes in C++
are similar to structures in C, except that the visibility of the class members can be specified explicitly. Class
members can be variables and functions. The inheritance model of CG++ supports dynamic binding through
virtual functions and multiple inheritance. C++ has complicated mechanisms for controlling the visibility of
class members. They can be declared as either public, protected or private. Only public members are
available outside the class. However, if a class B inherits items from a class 4, the protected items of class A
can be used by the derived class B.

A C++ class is a description of a kind of object and it contains a description of the internal variables of
the class, and the operations that can act on the objects of the class. For example, the class Stack can be
defined as:

class Stack {

protected:

int buffer[50]; // the stack

int index; // the top of the stack
public:

void push(int i); // push an integer into the stack

int top(void); // returns the top of the stack

int pop(void); // pop the stack and returns the top
¥

Explicit reference to the index member such as index++ is not allowed. The actual code implementing the
operations specified in the class declaration is usually separated from the class definition itself. Using a scope
resolution operator, it is possible to give the code implementing the operations of the class Stack:

int stack::pop(void)

{
return buffer[--index];
}
void stack::push(int i)
{
buffer[index++] = i;
}

Inheritance allows to define new classes by extending existing classes, using the following notation:

class NewClass: ExistingClass {

+;

The class NewClass is called the derived class and the ExistingClass is called the base class. If the base
class is derived from yet another class, the members of this class are also inherited. it is often the case
that classes in a program are organized in a hierarchy and a class inherits from all its ancestors. If a class
is viewed as a type, a derived class can be consider as a subtype of the base type (class). Therefore, it is
possible to assign variables of a derived class to variables of its base class. A derived class may have more
than one base class and this situation is called multiple inheritance. The syntax for expressing multiple
inheritance is simply an extension of that for single inheritance:

class C: public 4, public B {

};

The derived class € inherits all of the member variables and functions of both classes & and B and is a subtype
of both classes.

C++ allows both static and dynamic bindings. Dynamic binding of operations looks at the class of the
object to which the operation is applied, and possibly at ancestors of this class. In this case, there is some
execution time overhead since the run-time system must decide dynamically which operation to invoke.
Dynamic binding is achieved in C++ by the use of virtual functions. A virtual function is declared in a base
class or derived class and redefined in descendant classes. The set of classes and subclasses that define and
redefine virtual function is viewed as a polymorphic cluster associated with the particular virtual function.
Within the polymorphic cluster, a message is bound to a particular virtnal member function at run-time.
For example in:

class employee {
char* name;
short department;
employee* next;
static employee* list;
public:
employee(char* n, int d);
static void print_list(}
virtual veid print() const;

¥

the keyword virtual indicates that the function print is a virtual function that will be redefined in descen-
dant classes of employes. Virtual functions work with simple and multiple inheritance in a way similar to
other functions. That is, a call to a virtual function invokes the implementation provided by the whatever
class is closest to the bottom of the object’s inheritance DAG.

Object in C++ can be created through a declaration or with the new construct. For example, the following
code:

SomeClass v; // static allocation
SomeClass *v1, *v2; // pointer variables
vl = &v; // vl points to object v

v2 = new SomeClass; // dynamic allocation

declares a new variable v containing an object of class SomeClass and two variables, v1 and v2, that are
pointers to SomeClass objects. The variable v1 is set to point to object v, while v2 will contain a reference
to a newly created SomeClass object. Dynamic binding and polymorphism only work for pointers to objects.

4 Data Correspondence

We develop the C++-Alder object correspondence by beginning at the lowest level, showing how individual
data objects in C++ and Aldor are related.

Both C++ and Aldor have well-defined mechanisms for calling programs written in the C language. The
simplest way to describe the data correspondence between C++ and Aldor is therefore in terms of C data

types.

4.1 C++and C

In theory, there need not be a strict correspondence even between two C compilers by different manufacturers
for the same hardware platform. For example, it can be the case that two C compilers for a PC will have
compatible meanings for short and long, but will use different sizes for int.

In practice, C compilers by different manufacturers can be made to behave compatibly through the use
of command line flags to control the size, alignment, (and sometimes the representation) of the various
primitive types.

The C++ programming language is essentially an upward extension of C, so all the types of C have their
well defined meaning in C++, and in practice are represented compatibly. This de facto compatibility between
C compilers’ data layout is exploited by C++ compilers for a straightforward linkage to C programs using
extern "C", as in the declaration

extern "C" {
extern char *strcpy(char *);
extern int fprintf(FILE *, char #*, ...);

¥

The treatment of types specific to C++ (i.e. not in C), however, is quite implementation dependent. This
becomes relevant when dealing with the representation of objects of complex classes. Here, the issues are:

¢ the order and relation between the various collections of fields under multiple inheritance, and

¢ the location of virtual function tables.

4.2 Aldor and C

Note that the NAG Alder compiler can generate code for two quite different environments: for embedding
in closed Lisp systems, and for linking with C, Fortran and other open programming languages. The
correspondence we describe here is applicable in the second case.

In Aldor, while there is multiple inheritance of interface and behavior, the inheritance of representation
is extremely limited: Each domain in Alder defines its own representation ab initin. The constructed domain
may elect to use some of the exported operations of the representing type

NewDomain: InterfaceSpecification == RepresentingDomain add {
}
or it may elect that none of the behavior of the representing domain be inherited automatically:
NewDomain: InterfaceSpecification == add {
Rep == RepresentingDomain;
}

Note that in either case, the representation is given by a single type and not a combination of ancestors.
Therefore inheritance of representation is an either/or decision — there is no extension of representation and
certainly no multiple inheritance of representation.

Secondly, in Aldor the polymorphism and dynamic dispatch associated with C++ virtual functions is
provided through the more transparent mechanism of dependent types. This means that individual Aldor
objects to not need to carry with them any sort of virtual function table. As a consequence Aldor data
values can be mapped directly to C.

The functionality associated with the virtual function tables in C++ is provided by explicit type values
in Aldor. Function closures and type values are represented as pointers to {undocumented) structures, so
they may be passed as opaque structures to programs in other programming languages.

The precise rules of the correspondence are detailed in the Aldor users guide [?]. Here we give a brief
surmmary:

Aldor’s first order abstract machine (FOAM) defines a number of types which correspond to types on the
target machine (in this case C on top of some operating system). The “Hachine” package, described in [?],
exports the types provided by the abstract machine. All Aldor values are represented internally as elements
of one of these types. The complete listing and definition of the types is given in the FOAM reference guide.

Because many Aldor domains can be parameterized over different types, Aldor uses a pointer-sized
object when passing domains. Thus, double precision floating point numbers (which are typically bigger
than pointers) are “boxed”, and a pointer to the box is passed, rather that the number itself. Types which
are the same size or smaller than pointer-size are cast to the pointer type when used in a generic context
and cast back as appropriate.

In order to make the underlying types available, Aldor provides the Machine package, which exports
these types and operations on them. For example, the underlying representation type of DoubleFloat is
DFlo$Machine. This type should be used when calling foreign functions, and the result coerced back to
appropriate generic type at the Aldor level.

Records in Aldor are compatible with C structs. When calling C-defined functions that use records it is
important to ensure that the elements of the Aldor record correspond to elements in the C structure. This
implies that records intended for use in Foreign functions should use the underlying types, rather than the
user-level types. The file "$AXIOMXLROOT/samples/1ib/libax1X11" provides an example.

The Aldor types correspond to C types given as typedefs in the file $AXIOMXLROOT/include/foamc.h.
The following table shows the correspondance between the types exported from the Aldor package Machine
and C. It should be possible from this to understand which Aldor declaration will correspond to a declaration
in C.

Aldor type C typedef Usual C type

Nil$Machine FiNil Ptr
Word$Machine FiWord int
Arb$Machine FiArb long int
Ptr$Machine FiPtr Ptr
Bool$Machine FiBool char
Byte$Hachine FiByte char
HInt$Machine FiHInt short
SInt$Machine FiSInt long
Char$Machine FiChar char
Arr$Machine FiArr Ptr
Rec$Machine FiRec Ptr
BInt$Machine FiBInt Ptr
SFlo$Machine FiSFlo float
DFlo$Machine FiDFlo double
A-> B FiClos struct _FiClos #*

Here Ptr is defined as the type char * for compatibility with old C dialects, but could equally well be

1

fun(sin);
fun(cos);
fun{tan);
}
Test();

Aldor functions can be exported to the C foreign language in a similar way, using the export to construct:

Int == SingleInteger;
export {
fact: Int —> Int;
print: Int => ()} to Foreign C;

if ¥ = 0 then 1 else x * fact(x-1);
print<<x<<newline;

i}

fact (x: Int) : Int =
print (x: Int) : ()

11

5 Class/Category Correspondence

In C++ classes specify both the sharing of interfaces and the sharing of representation. These aspects are
treated separately in Aldor, with the specification of type interfaces given by Categories and the specification
of type representation given by individual Domains.

For a C++ class library to be used from Aldor, a set of Aldor declarations have to be provided to make
available information about

¢ the data layout for members of the individual classes
¢ the relationship and inheritance among classes in the library
e the global objects defined by the library.

We have already seen in Section 77 how to handle the data layout information. This section details how
to capture the relationships and interitance properties of a class library. Once this is done, the declaration
of global library objects is straightforward.

5.1 Base Classes

Suppose we have a C++ base class A, specifying member functions fal and fa2 as follows:

class A4 {

public:
A fai(int, int);
int fa2(int);

};

Then, if a is a2 member of class A then it may be used as follows:
A aa = a.fa1(2,3);

That is, given a value a, one can apply its member function fal to two integer parameters to produce a new
value of type A.
The corresponding Aldor category definition is

define A__Cat: Category == with {
fal: 4 —> (SingleInteger, SingleInteger) —-> Y%;
fa2: % -> (SingleInteger) -> Singlelnteger;
Y

Note that all of the exports are derived from the public member functions of the C++ class, but are curried
to take an additional first parameter, corresponding to the object from which the C++ method is selected.
There is no need to provide exports corresponding to the private member functions.

Then, if A__Dom is a particular domain satisfying this category interface, and a is an element of A__Dom,
we may use it as follows:

aa := fai(a)(2,3);

That is, given a value a, one can apply the (curried) function fat to two integer parameters to produce
a new value of type 4__Domn.

We note that it would be possible to develop a correspondence where the extra first parameter were just
added to the argument list of each function. Then all of the exported C++ unary functions would become
binary Alder functions, etc. However, by using curried functions in the way we propose here, we have a
strong visual parallel to the C++ code, and the late binding achieved through dependent functions (to model
virtual functions) is more evident.

12

5.2 Derived Classes

In C++ new classes may be derived from existing classes. For example

class X: A, B {
public:
// additional members, if desired.

}

In Aldor, inheritance is specified by including a Join of one or more categories in the new definition. For
example:

define X__Cat: Category == Join{A__Cat, B__Cat) with {
-- additional members, if desired.

¥

5.3 Public and Private Derivation

There are two independent aspects in the relation between the derived (X) and the base classes (4, B} in the
example above:

o Whether the inheritance is visible to the outside world, i.e. whether an instance of the derived class is
known to be an instance of the base class.

¢ Under multiple inheritance, whether repeated inheritance from the same base class counts as distinet
or shared behaviour,

The first issue is controlled in C++ by a declaration of the base class as either private, protected or
public. E.g.

class X: private A, public B { ...}

In Aldor the inheritance relationships among categories are normally publicly visible. E.g. above, the
inheritance relationship between X__Cat and A__Cat, and between X__Cat and B__Cat, is public.

Private inheritance can be achieved through an additional level of declaration. To reproduce the example
above, with a private inheritance from A and public from B, the following would be used:

define A__Private: Category == with { };
define A__Cat: Category == A__Private;

define X__Cat: Category == Join(A__Private, B__Cat) with { };

5.4 Shared and Repeated Inheritance

In C++ it is possibie to specify whether the instances of the same base class appearing in an ancestry are to
be kept distinct or to be shared. The normal behaviour is to keep the repeated base classes distinet, This is
overridden to provide shared behaviour by the use of the “virtual” keyword.

In Aldor, the normal behaviour is for repeated inherited categories to be deemed the same. This is
natural, since categorical inheritance specifies what operations are available on the type, and do not imply
anything about the data representation. So, for example, in the following code the category Y__cCat inherits
from A__Cat through two distinct paths, but the semantics of the base category A__Cat is the same.

13

define A__Cat: Category == { a: () -> Singlelnteger };

define Bi__Cat: Category == 4 with { bi: () -> %; };
define B2__Cat: Category == A with { b2: % -> (); }:

define Y__Cat: Category == Join(B1, B2);

In the rare case where one really does wish to imply two distincet sets of behaviours corresponding to
(logical) subsets of the data value, the way to do this is to provide separate “member” functions providing
the necessary views:

define Y__Cat: Category == with {
viewl: % -> B1__Cat;
view2: % -> B2__Cat;

by

Then these may be accessed as follows:

myfun(Y: Y__Cat, y: Y): () == {
nl := a()$viewi(y);
12 := a()$view2(y);

14

6 Class/Domain Correspondence

So far, we have seen in Section ?7 how to build a set of parallel delcarations to yield an Aldor category
heirarchy mirroring a C++ class hierarchy.

To do any computation in Aldor, however, it is also necessary to specify some concrete domains. To
finish the model of a class hierarchy, it is necessary to select those classes from which objects will be declared
and used. For each of those C++ classes, it will be necessary to build a corresponding Alder domain. This
Aldor domain will serve as a wrapper, representing its values as pointers to the corresponding C++ objects
(if they are extended objects), or as the values themselves (if they are pointers/handles).

6.1 The Exact Case

The simple case of C++ object use is when each object is known to belong to an exact class. That is, when
the programs do not pass values belonging to derived classes to functions expecting objects of a base class.

class A { ... };
class B : A { ... }:

Af(aa){ ...}

4 al;

B bl;

f(ai); -~ Exact.
£(b1); -- Not exact.

In this case, all that is necessary is to declare Aldor values belonging to the corresponding domains,
and to use them as normal Aldor objects. The domains will stand in the place of the C++ classes for
object declarations in programs. The implementation of each domain will be very reguiar and could even be
automatically generated.

6.2 The Derived Case

When the C++ library being modelled is designed to make use of late-binding via subclassing, then its use
from Aldor is more complicated.

Subclassing and virtual functions combine in C++ to give a very powerful form of object oriented pro-
gramming, where individual values can be viewed as carrying around all their own methods.

There are two mechanisms for providing similar function in Aldor. The first is explicit parametric
polymorphism. An example would be

double(R: Ring, r: R): R == r + r;

Here the value r and its type R are passed as individual dependent parameters to the function double,
and the addition applied to r is taken from R.

This might seem more complicated than the subclassed object polymorphism of C++, because of the
requirement that R be passed explicitly. An important factor, however, is that in mathematical applications,
it is quite commeon to have to combine different values in various steps of a computation. For example:

excess(R: Ring, a: R, b: R): R == a*b - b*a;

In C++, without specifying R explicitly, there is no guarantee that the two elemenis would be coming
from the same algebraic structure and so run-time tests would be required to guarantee coherence between
the operands of the multiplications and the subtraction.

15

Even though it is much less common than in C++, there are cases where one does want to explicitly use
subclassed object polymorphism in Alder. For this, the type constructor Object is provided,

Object: (C: Category)-> with {
object: (T: C, T) => %
avail: h=>(T: C, T);
}

This constructor builds objects in exactly the C++ sense, each carrying around a virtual function table
(in this case modelled as the type argument to the constructor “object”).

An automatic interface generator could, in principle, build interfaces to all of all of the classes of a C++
hierarchy using an Object representation. This would have a significant overhead, however, in the case
when it was not needed, so a more judicious approach, using a direct pointer representation for classes used
exactly, would seem to hold the most promise.

16

7 Examples from the PoSSo Library

Some examples of mapping using the principles detailed in the previous sections have been written for a
subset of the PoSSo library. A few typical PoSSo types have been translated to the corresponding Aldor
categories using the simple mapping rules described in section ??. For instance, the class PL_PP of the PoSSo
library defines the power product type and its operations:

class PL_PP {

friend class PL_PPMonoid;
..... // more friend class

public:

const PL_PP& pp);
const PL_PP& pp);
const PL_PPZ pp);
const PL_PP& pp);
const PL_PP& pp);
const PL_PP& pp);

PL_Bool operator > (
PL_Bool operator >= (
PL_Bool operator < ¢
PL_Bool operator <= (
PL_Bool operator == (
PL_Bool operator != (
PL_PP& operator = (const PL_PP& pp };
PL_PP& operator * (const PL_PP& pp);
PL_PP& operator / (const PL_PP& pp);
PL_PP% operator *= (const PL_PP& pp);
PL_PP& operator /= (const PL_PP& pp);

PL_PP& mulvar(const int var, const int exp = 1);
PL_PP& dmulvar(const int var, const int exp = 1);

PL_PP& homogenize(const int var,
const Directives dir, const int target };
PL_PP& dishomogenize(const int var);

int operator [1 (comst int i);

int expsum();
int weight();
int sugar();
int ecart();
int userwgt();

PL_Bool iszero();
private:

static PL_PPMonoid#* CurrentPPMonoid;
};

The corresponding category in Aldor exports the public methods of PL_PP as functions with an extra
argument:

17

Directives ==> SI;
define PL_PP_Cat : Category == with {

—— Member functions

>: % —> % —-> Bool;

>=: % -> Y% -> Bool;

<: % -> % -> Bool;

<=: % -> % -> Bool;

==: % -> Y% -> Bool;

t=: % -> % —-> Bool;
= %h > %> %
*: % => W >
% => %> Y%
EICHD SR R E
AT A I AR ¥
mulvar: % -> (SI, SI) —> ¥%;
dmulvar: % -> (SI, SI) -> Y;
homogenize: % —> (SI, Directives, SI} -> ¥%;
dishomogenize: % -> SI -> ¥%;
_[.1: % ->» s1 -> sI;
expsum: % -> () -> SI;
weight: % -> () -> SI;
sugar: % =-> () -> SI;
ecart: % -> () ->» SI;
userwgt: % -> () -> SI;
iszero: % -> () -> 8I;

};

Besides this manual interface development between the C++ PoSSo library and the Aldor language, some
work is in progress toward the implementation of internal Alder compiler support for a C++ interface.

18

8 Conclusion

This report presents a preliminary work on Aldor and C++ interoperability. The mapping rule mechanism
described shows how to define a simple correspondence between C+4 classes and Aldor categories and do-
mains. Work in progress towards modifying the Aldor compiler so that it is possible to call C++ functions
from Aldor programs will provide further experience in programming language interoperability which can
be usefully applied to related tasks (like 2.3 on Numerical Interoperability).

References

[W+94] Stephen M. Watt, Peter A. Broadbery, Samuel 8. Dooley, Pietro Iglio, Scott C. Morrison, Jonathan
M. Steinbach, Robert S. Sutor, “AXIOM Library Compiler user Guide,” The Numerical Algorithms
Group Limited, 1994.

19

